JPH0254930B2 - - Google Patents
Info
- Publication number
- JPH0254930B2 JPH0254930B2 JP20831684A JP20831684A JPH0254930B2 JP H0254930 B2 JPH0254930 B2 JP H0254930B2 JP 20831684 A JP20831684 A JP 20831684A JP 20831684 A JP20831684 A JP 20831684A JP H0254930 B2 JPH0254930 B2 JP H0254930B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- electric field
- field intensity
- waveguide
- mode light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000009826 distribution Methods 0.000 description 49
- 230000005684 electric field Effects 0.000 description 49
- 230000001902 propagating effect Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000008033 biological extinction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
- G02F1/313—Digital deflection, i.e. optical switching in an optical waveguide structure
- G02F1/3137—Digital deflection, i.e. optical switching in an optical waveguide structure with intersecting or branching waveguides, e.g. X-switches and Y-junctions
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は導波路中の進む光の進行方向を電気的
に制御して光のスイツチングを行う導波路型光ス
イツチに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a waveguide type optical switch that switches light by electrically controlling the traveling direction of light traveling through a waveguide.
従来のこの種の光スイツチとして、非対称分岐
構造のバランスドブリツジ型導波路を用いた導波
路型光スイツチ特願昭59−198611号があり、この
導波路型光スイツチは寸法精度に対する条件が比
較的緩やかであること、駆動電圧の低電圧化が容
易であること、及び制御の方法が簡単であること
等の長所を有している。
As a conventional optical switch of this kind, there is a waveguide type optical switch patent application No. 1986-11 which uses a balanced bridge type waveguide with an asymmetric branching structure. It has advantages such as being relatively gentle, making it easy to lower the driving voltage, and having a simple control method.
しかしながら、上述した従来の導波路型光スイ
ツチは、光のモードを分離する非対称分岐部、位
相差を作り出す干渉器部という2つの部分が必要
であり、かつ一般的に光スイツチでは素子長を長
くするとスイツチングに必要な電圧の大きさは下
るが、上述した導波路型光スイツチでは干渉器部
の長さだけがスイツチングに必要な電圧と関係す
ることから、素子長に対するスイツチングに必要
な電圧の比がまだ大きいという問題を有してい
る。
However, the above-mentioned conventional waveguide type optical switch requires two parts: an asymmetrical branching section that separates optical modes, and an interfering section that creates a phase difference.In addition, the optical switch generally has a long element length. This reduces the voltage required for switching, but in the above-mentioned waveguide optical switch, only the length of the interferometer section is related to the voltage required for switching, so the ratio of the voltage required for switching to the element length decreases. It still has the problem of being large.
本発明はこのような問題を解決するためになさ
れたもので、非対称分岐構造の導波路を用い、比
較的短い素子長でありながら、低電圧で光のスイ
ツチングが可能な導波路型光スイツチを実現する
ことを目的とするものである。 The present invention has been made to solve these problems, and has developed a waveguide-type optical switch that uses a waveguide with an asymmetric branch structure and is capable of switching light at low voltage while having a relatively short element length. The purpose is to achieve this goal.
上述した目的を達成するため、本発明は一対の
導波路のそれぞれの入力部と出力部との間を幅の
異なる非対称分岐部として、該非対称分岐部に電
極を配置することにより非対称分岐部に干渉器と
しての機能も持たせたものである。
In order to achieve the above-mentioned object, the present invention forms an asymmetrical branch with different widths between the input and output parts of a pair of waveguides, and arranges an electrode in the asymmetrical branch. It also has the function of an interference device.
上述した手段によれば、導波路における非対称
分岐部が本来の作用である導波光の偶モードと奇
モードの分離作用の他、電圧で非対称性を制御す
ることにより干渉作用も行うため、比較的短い素
子長でしかも低電圧で導波光に位相差を与えてス
イツチングを行うことができる。
According to the above-mentioned means, in addition to the original effect of the asymmetric branching part in the waveguide which separates the even mode and odd mode of the guided light, it also performs an interference effect by controlling the asymmetry with a voltage, so it is relatively effective. Switching can be performed by giving a phase difference to the guided light with a short element length and low voltage.
以下図面を参照して実施例を説明する。 Examples will be described below with reference to the drawings.
なお、この実施例では図示していないが、導波
路を設ける基板として、LiNb3−Zを用いてい
る。 Although not shown in this embodiment, LiNb 3 -Z is used as the substrate on which the waveguide is provided.
第1図は本発明による導波路型光スイツチの第
1の実施例を示す平面図で、図において1と2は
非対称分岐構造に形成された一対の導波路であ
る。 FIG. 1 is a plan view showing a first embodiment of a waveguide type optical switch according to the present invention. In the figure, 1 and 2 are a pair of waveguides formed in an asymmetric branch structure.
この導波路1と2は、それぞれ入力部1a,2
aと、該入力部1a,2aに接続した互いに幅の
異なる入力側非対称分岐部1b,2bと、該入力
側非対称分岐部1b,2bに接続した互いに幅の
異なる出力側非対称分岐部1c,2cと、該出力
側非対称分岐部1c,2cに接続した出力部1
d,2dとより成り、ここで導波路1の入力側非
対称分岐部1bと出力側非対称分岐部1cは同じ
幅に形成され、また導波路2の入力側非対称分岐
部2bと出力側非対称分岐部2cも同じ幅に形成
されていて、更に1b及び1cは2b及び2cよ
り幅が広く形成されている。 The waveguides 1 and 2 have input sections 1a and 2, respectively.
a, input-side asymmetric branch parts 1b, 2b connected to the input parts 1a, 2a and having mutually different widths, and output-side asymmetric branch parts 1c, 2c connected to the input-side asymmetric branch parts 1b, 2b and having mutually different widths. and an output section 1 connected to the output side asymmetric branch sections 1c and 2c.
d, 2d, where the input side asymmetric branch part 1b and the output side asymmetric branch part 1c of the waveguide 1 are formed to have the same width, and the input side asymmetric branch part 2b and the output side asymmetric branch part of the waveguide 2 are formed to have the same width. 2c is also formed to have the same width, and furthermore, 1b and 1c are formed to be wider than 2b and 2c.
3は入力部1a,2aと入力側非対称分岐部1
b,2bとの接点部、4は出力側非対称分岐部1
c,2cと出力部1d,2dとの接点部、5は入
力側非対称分岐部1b及び出力側非対称分岐部1
c上に設けられた非対称性制御用の電極、6は入
力側非対称分岐部2b及び出力側非対称分岐部2
c上に設けられた非対称性制御用の電極である。 3 is the input section 1a, 2a and the input side asymmetric branch section 1
b, contact part with 2b, 4 is output side asymmetric branch part 1
contact points between c and 2c and output parts 1d and 2d; 5 is an asymmetrical branching part 1b on the input side and an asymmetrical branching part 1 on the output side;
an electrode for asymmetry control provided on c, 6 an input side asymmetric branch part 2b and an output side asymmetric branch part 2;
This is an electrode for asymmetry control provided on c.
第2図A〜Dは上述した構成による光スイツチ
の動作を示す説明図で、7a〜7dは入力光の電
場強度分布、8a〜8dは入力側の接点部3にお
ける偶モード光の電場強度分布、9a〜9dは同
じく接点部3における奇モード光の電場強度分布
である。 2A to 2D are explanatory diagrams showing the operation of the optical switch with the above-described configuration, in which 7a to 7d are electric field intensity distributions of input light, and 8a to 8d are electric field intensity distributions of even mode light at the contact portion 3 on the input side. , 9a to 9d are the electric field intensity distributions of odd mode light in the contact portion 3 as well.
10a〜10dは導波路1の入力側非対称分岐
部1bと出力側非対称分岐部1cとの中点におけ
る光の電場強度分布であり、また11a〜11d
は導波路2の入力側非対称分岐部2bと出力側非
対称分岐部2cとの中点における光の電場強度分
布である。 10a to 10d are the electric field intensity distributions of light at the midpoint between the input-side asymmetric branch 1b and the output-side asymmetric branch 1c of the waveguide 1, and 11a to 11d
is the electric field intensity distribution of light at the midpoint between the input-side asymmetric branch section 2b and the output-side asymmetric branch section 2c of the waveguide 2.
12a〜12dは出力側の接点部4における偶
モード光の電場強度分布、13a〜13dは同じ
く接点部4における奇モード光の電場強度分布で
あり、更に14a〜14dは出力光の電場強度分
布である。 12a to 12d are the electric field intensity distributions of even mode light at the contact portion 4 on the output side, 13a to 13d are the electric field intensity distributions of odd mode light at the contact portion 4, and 14a to 14d are the electric field intensity distributions of the output light. be.
次に、この第2図A〜Dにより作用について説
明する。 Next, the operation will be explained with reference to FIGS. 2A to 2D.
() まず光の直進状態、所謂Bar状態を考える。() First, consider the state in which light travels in a straight line, the so-called Bar state.
第2図Aにおいて導波路2の入力部2aに電
場強度分布7aをもつ光が入射されると、この
光は該入力部2aを伝搬した後接点部3で電場
強度分布8aの偶モード光と電場強度分布9a
の奇モード光とに分れる。その後入力側非対称
分岐部1b,2bの動作により偶モード光は1
bへ、また1次モード光は2bへと移つてい
き、それぞれ電場強度分布10a,11aの導
波光となり、更にこの導波光が出力側非対称分
岐部1c,2cをそれぞれ伝搬して行くと、該
出力側非対称分岐部1c,2cの動作により接
点部4において10aの導波光は電場強度分布
12aの偶モード光に、また11aの導波光は
電場強度分布13aの奇モード光に再び変換さ
れるが、後述するように入力側非対称分岐部1
b及び出力側非対称分岐部1cを伝搬する間に
生じる偶モード光と、入力側非対称分岐部2b
及び出力側非対称分岐部2cを伝搬する間に生
じる奇モード光の間の接点部4における位相差
を電極5,6に印加する電圧で調整することが
できる。従つて電極5,6に印加する電圧Va
により電場強度分布12aの偶モード光と、電
場強度分布13aの奇モード光との間の位相差
を2mπ(m:整数)に調整しておけば、導波光
は出力部2aより電場強度分布14aの光とし
て出射される。 In FIG. 2A, when light with an electric field intensity distribution 7a is incident on the input part 2a of the waveguide 2, this light propagates through the input part 2a and then becomes an even mode light with an electric field intensity distribution 8a at the contact part 3. Electric field strength distribution 9a
It is divided into odd mode light. After that, the even mode light becomes 1 due to the operation of the input side asymmetric branching parts 1b and 2b.
b, and the first-order mode light moves to 2b, becoming guided lights with electric field intensity distributions 10a and 11a, respectively. When these guided lights further propagate through the output-side asymmetric branches 1c and 2c, the By the operation of the output-side asymmetric branching parts 1c and 2c, the guided light 10a is converted back into even mode light with an electric field intensity distribution 12a, and the guided light 11a is converted back into odd mode light with an electric field intensity distribution 13a at the contact part 4. , as described later, the input side asymmetric branch part 1
b, the even mode light generated while propagating through the output side asymmetric branch 1c, and the input side asymmetric branch 2b.
The phase difference at the contact portion 4 between the odd mode light and the odd mode light generated while propagating through the output side asymmetric branch portion 2c can be adjusted by the voltage applied to the electrodes 5 and 6. Therefore, the voltage Va applied to the electrodes 5 and 6
If the phase difference between the even mode light of the electric field intensity distribution 12a and the odd mode light of the electric field intensity distribution 13a is adjusted to 2mπ (m: an integer), the guided light will be transmitted from the output section 2a to the electric field intensity distribution 14a. It is emitted as light.
一方、第2図Bに示すように導波路1の入力
部1aに電場強度分布7bの光が入射される
と、この光は該入力部1aを伝搬した後、接点
部3において電場強度分布8bの偶モード光
と、電場強度分布9bの奇モード光とに分れ
る。この偶モード光と奇モード光の位相差は、
第2図Aの場合に比べてπだけ変化しており、
入力側非対称分岐部1b,2bの動作により偶
モード光は入力側非対称分岐部1bへ、また奇
モード光は入力非対称分岐部2bへと移つてい
き、それぞれ電場強度分布10b,11bの導
波光となる。この導波光は更に出力側非対称分
岐部1c,2cを伝搬し、該出力側非対称分岐
部1c,2cの特性により接点部4において電
場強度分布10bの導波光は電場強度分布12
bの偶モードに、また電場強度分布11bの導
波光は電場強度分布13bの奇モード光に再び
変換される。ここで、電極5,6に第2図Aの
場合と同じ電圧Vaが印加されている場合、入
力側非対称分岐部1b及び出力側非対称分岐部
1cを伝搬する間に生じた偶モード光と、入力
側非対称分岐部2b及び出力側非対称分岐部2
cを伝搬する間に生じた奇モード光との間の位
相差は、接点部4において前記接点部3におけ
る偶モード光と奇モード光との間の位相差つま
り電圧による位相変化を受ける前の両モード光
間の位相差が、第2図Aの場合と同じ場合2mπ
となる。しかし第2図Bの場合では、最初に接
点部3における電場強度分布8bの偶モード光
と電場強度分布9bの1次モードとの間の位相
差が、第2図Aの場合に比べてΔφ=πだけず
れているために、接点部4において電場強度分
布12bの偶モード光と電場強度分布13bの
奇モード光との間の位相差は2mπ+Δφ=(2m
+1)πとなり、従つて導波光は出力部1dか
ら電場強度分布14bの光として出射される。 On the other hand, as shown in FIG. 2B, when light with an electric field intensity distribution 7b is incident on the input part 1a of the waveguide 1, this light propagates through the input part 1a and then reaches the contact part 3 with an electric field intensity distribution 8b. The light is divided into even mode light with an electric field intensity distribution 9b and odd mode light with an electric field intensity distribution 9b. The phase difference between this even mode light and odd mode light is
Compared to the case in Figure 2A, it has changed by π,
By the operation of the input side asymmetric branching parts 1b and 2b, even mode light is transferred to the input side asymmetrical branching part 1b, and odd mode light is transferred to the input asymmetrical branching part 2b, and guided light with electric field intensity distributions 10b and 11b, respectively. Become. This guided light further propagates through the output side asymmetric branch parts 1c, 2c, and due to the characteristics of the output side asymmetric branch parts 1c, 2c, the guided light with the electric field intensity distribution 10b at the contact part 4 changes to the electric field intensity distribution 12
The guided light with the electric field intensity distribution 11b is converted back into the even mode of b and into the odd mode light with the electric field intensity distribution 13b. Here, when the same voltage Va as in the case of FIG. 2A is applied to the electrodes 5 and 6, the even mode light generated while propagating through the input side asymmetric branch part 1b and the output side asymmetric branch part 1c, Input side asymmetric branch part 2b and output side asymmetric branch part 2
The phase difference between the odd mode light and the odd mode light generated while propagating through the contact point 4 is the phase difference between the even mode light and the odd mode light at the contact point 3, that is, the phase difference before undergoing a phase change due to voltage. If the phase difference between both mode lights is the same as in Figure 2 A, then 2mπ
becomes. However, in the case of FIG. 2B, the phase difference between the even mode light of the electric field intensity distribution 8b and the first mode of the electric field intensity distribution 9b at the contact portion 3 is Δφ compared to the case of FIG. 2A. = π, the phase difference between the even mode light of the electric field intensity distribution 12b and the odd mode light of the electric field intensity distribution 13b at the contact portion 4 is 2mπ+Δφ=(2m
+1)π, and therefore the guided light is emitted from the output section 1d as light with an electric field intensity distribution 14b.
() 次に光の交差状態、所謂Cross状態につい
て考える。() Next, let us consider the cross state of light, the so-called cross state.
第2図Cに示すように電場強度分布7cをも
つ光が入力部2aに入射されると、この光は該
入力部2aを伝搬した後、接点部3において電
場強度分布8cの偶モード光と電場強度分布9
cの奇モード光とに分れる。この偶モード光と
奇モード光の位相差は第2図Aの場合と同様で
ある。ここで入力側非対称分岐部1b,2bの
動作により、偶モード光は入力側非対称分岐部
1bへ、また奇モード光は入力側非対称分岐部
2bへと移つていき、それぞれ電場強度分布1
0c,11cの導波光となる。この導波光が更
に出力側非対称分岐部1c,2cを伝搬してい
くと、該出力側非対称分岐部1c,2cの特性
により接点部4において、電場強度分布10c
の導波光は電場強度分布12cの偶モードに、
また電場強度分布11cの導波光は電場強度分
布12cの奇モード光に再び変換されるので、
入力側非対称分岐部1b及び出力側非対称分岐
部1cを伝搬する間に生じた奇モード光と、入
力側非対称分岐部2b及び出力側非対称分岐部
2cを伝搬する間に生じた奇モード光との間の
位相差を電極5,6に印加する電圧Vcで調整
して、接点部4における偶モード光と奇モード
光との間の位相差を(2m′+1)π(m:整数)
にしておけば、導波光は出力部1dから電場強
度分布14cの光として出射される。 As shown in FIG. 2C, when light with an electric field intensity distribution 7c is incident on the input section 2a, this light propagates through the input section 2a and then transforms into even mode light with an electric field intensity distribution 8c at the contact section 3. Electric field strength distribution 9
It is divided into odd mode light of c. The phase difference between this even mode light and odd mode light is the same as in the case of FIG. 2A. Here, due to the operation of the input side asymmetric branching parts 1b and 2b, the even mode light moves to the input side asymmetrical branching part 1b, and the odd mode light moves to the input side asymmetrical branching part 2b, and the electric field intensity distribution 1
This becomes guided light of 0c and 11c. When this guided light further propagates through the output side asymmetric branch parts 1c, 2c, the electric field intensity distribution 10c occurs at the contact part 4 due to the characteristics of the output side asymmetric branch parts 1c, 2c.
The guided light is in the even mode of the electric field intensity distribution 12c,
Furthermore, since the guided light with the electric field intensity distribution 11c is converted back into odd mode light with the electric field intensity distribution 12c,
The odd mode light generated while propagating through the input side asymmetric branch 1b and the output side asymmetric branch 1c, and the odd mode light generated while propagating through the input side asymmetric branch 2b and the output side asymmetric branch 2c. The phase difference between the even mode light and the odd mode light at the contact part 4 is adjusted by adjusting the phase difference between them with the voltage Vc applied to the electrodes 5 and 6, and the phase difference between the even mode light and the odd mode light at the contact part 4 is (2m'+1)π (m: integer)
If this is done, the guided light is emitted from the output section 1d as light having an electric field intensity distribution 14c.
一方、第2図Dに示すように、電場強度分布
7dをもつ光が入力部1aに入射された場合、
この光は該入力部1aを伝搬した後、接点部3
において偶モード光と奇モード光に分れる。こ
の偶モード光と奇モード光との間の位相差は、
第2図Cの場合に比べてπだけ変化している。
ここで入力側非対称分岐部1b,2bの動作に
より偶モード光は入力側非対称分岐部4bへ、
また奇モード光は入力側非対称分岐部1bへと
移つて行き、それぞれ電場強度分布10d,1
1dの導波光となる。この導波光が更に出力側
非対称分岐部1c,2cを伝搬していくと、該
出力側非対称分岐部1c,2cの動作により接
点部4において、電場強度分布10dの導波光
は電場強度分布12dの偶モード光に、また電
場強度分布11dの導波光は電場強度分布13
dの奇モード光に再び変換される。ここで、電
極5,6に第2図Cの場合と同じ電圧Vcが印
加されている場合は、入力側非対称分岐部1b
及び出力側非対称分岐部1cを伝搬する間に生
じた偶モード光と1次モード光の間の位相差
は、第2図Cの場合と同様の(2m′+1)πと
なる。しかしこの第2図Dの場合では、接点部
3における偶モード光と奇モード光との間の位
相差が第2図Cの場合に比べてΔφ=πだけず
れており、従つて接点部4における電場強度分
布12dの偶モード光と、電場強度分布13d
の奇モード光との間の位相差は(2m′+1)π
+Δφ=2m″π(m″:整数)となり、導波光は出
力部2dより電場強度分布14dの光として出
力される。 On the other hand, as shown in FIG. 2D, when light with an electric field intensity distribution 7d is incident on the input section 1a,
After propagating through the input section 1a, this light passes through the contact section 3.
The light is divided into even mode light and odd mode light. The phase difference between this even mode light and odd mode light is
The difference is π compared to the case shown in FIG. 2C.
Here, due to the operation of the input side asymmetric branching parts 1b and 2b, the even mode light goes to the input side asymmetrical branching part 4b,
In addition, the odd mode light moves to the input side asymmetric branch 1b, and the electric field intensity distributions 10d and 1
It becomes a 1d waveguide light. When this guided light further propagates through the output side asymmetric branching parts 1c and 2c, the guided light with the electric field intensity distribution 10d changes to the electric field intensity distribution 12d at the contact part 4 due to the operation of the output side asymmetrical branching parts 1c and 2c. Even mode light and guided light with electric field intensity distribution 11d have electric field intensity distribution 13.
d odd mode light. Here, when the same voltage Vc as in the case of FIG. 2C is applied to the electrodes 5 and 6, the input side asymmetric branch part 1b
The phase difference between the even mode light and the first mode light generated while propagating through the output side asymmetric branching section 1c is (2m'+1)π, which is the same as in the case of FIG. 2C. However, in the case of FIG. 2D, the phase difference between the even mode light and the odd mode light at the contact portion 3 is shifted by Δφ=π compared to the case of FIG. Even mode light with electric field intensity distribution 12d and electric field intensity distribution 13d in
The phase difference between the odd mode light and the odd mode light is (2m′+1)π
+Δφ=2m″π (m″: integer), and the guided light is output from the output section 2d as light with an electric field intensity distribution 14d.
以上のようにして、光のスイツチングが行われ
る。 Light switching is performed in the manner described above.
次に、導波路1の入力側非対称分岐部1b及び
出力側非対称分岐部1cを伝搬する偶モード光
と、導波路2の入力側非対称分岐部2b及び出力
側非対称分岐部2cを伝搬する奇モード光との間
に位相差が生じる理由と、位相差を調整する機構
について第3図を参照して説明する。 Next, even mode light propagates through the input asymmetric branch 1b and output asymmetric branch 1c of the waveguide 1, and odd mode light propagates through the input asymmetric branch 2b and output asymmetric branch 2c of the waveguide 2. The reason why a phase difference occurs between light and the mechanism for adjusting the phase difference will be explained with reference to FIG.
非対称分岐部の非対称が小さい場合、例えば第
3図に実線で示したような場合では、導波路間隔
が小さいときは偶モードと奇モードとの間の伝搬
定数差が大きいが、導波路が離れて行くにつれて
殆んど同じ大きさの伝搬定数になる。 When the asymmetry of the asymmetric branch is small, for example, as shown by the solid line in Figure 3, when the waveguide spacing is small, the difference in propagation constant between even and odd modes is large; As the distance increases, the propagation constant becomes almost the same size.
ところが、分岐の非対称性が大きい場合には、
第3図に点線で示されるように導波路間隔が大き
くなるにつれて、非対称性が小さい場合との差異
が大きくなり、偶モードと奇モードとの間の伝搬
定数差が導波路が離れていても生じる様になる。 However, when the asymmetry of the bifurcation is large,
As shown by the dotted line in Figure 3, as the waveguide spacing increases, the difference from the case with small asymmetry increases, and the difference in propagation constant between even and odd modes increases even when the waveguides are separated. It becomes like it occurs.
このように、2つのモード光の間に伝搬定数差
があるということは、或る距離光が伝搬すると、
伝搬距離と伝搬定数差の積に比例した位相差が生
じるということである。 In this way, the fact that there is a difference in the propagation constant between the two modes of light means that when light propagates over a certain distance,
This means that a phase difference occurs that is proportional to the product of the propagation distance and the difference in the propagation constant.
ところで、導波路幅が違うということは、等価
屈折率が違うということと効果が等いものであ
り、実効屈折率は導波路の屈折率によつても変化
させることができる。 By the way, a difference in waveguide width has the same effect as a difference in equivalent refractive index, and the effective refractive index can also be changed by the refractive index of the waveguide.
従つて、導波路のそれぞれの非対称分岐部の屈
折率を変化させた場合にも、第3図と同様な特性
が得られ、そのためある程度(この場合約3μm)
以上導波路が離れている場合、導波路の屈折率を
制御して、伝搬定数差を調整することが可能であ
り、よつて電気光学効果を用いれば、電気的に搬
播定数差を、更には位相差を制御することができ
る。 Therefore, even if the refractive index of each asymmetric branch of the waveguide is changed, the same characteristics as shown in FIG.
When the waveguides are separated from each other, it is possible to adjust the propagation constant difference by controlling the refractive index of the waveguides. Therefore, if the electro-optic effect is used, it is possible to electrically further reduce the propagation constant difference. can control the phase difference.
第3図中に、電極間隔10μm、印加電圧5Vの場
合の伝搬定数の変化の大きさを縦方向の矢印イで
示してある。構造的に設定された伝搬定数、つま
り第3図中に示された線に対してこの程度伝搬定
数が変化されることになる。 In FIG. 3, the magnitude of change in the propagation constant when the electrode spacing is 10 μm and the applied voltage is 5 V is shown by the vertical arrow A. The propagation constant is changed by this amount with respect to the structurally set propagation constant, that is, the line shown in FIG.
非対称分岐の特性は、
Δβ/γθ>const ………(1)
Δβ:導波路1の1b及び1cと、導波路2の
2b及び2cとの間の伝搬定数差
θ:導波路1の1b及び1cと、導波路2の2
b及び2cとが成す角
γ:導波路1,2の1b,1c及2b,2cよ
りの光のしみ出しを表わすパラメータ
const:通常1以上に選ばれる。 The characteristics of the asymmetric branch are as follows: Δβ/γθ>const (1) Δβ: Difference in propagation constant between 1b and 1c of waveguide 1 and 2b and 2c of waveguide 2 θ: 1b and 1c of waveguide 1 1c and waveguide 2
Angle formed by b and 2c γ: A parameter representing the seepage of light from 1b, 1c and 2b, 2c of the waveguides 1 and 2 const: Usually selected to be 1 or more.
で表わされるが、電圧による変化も見込んで前記
(1)式が成立するように、充分大きい非対称性と充
分小さい角度が必要である。However, taking into account changes due to voltage, the above
A sufficiently large asymmetry and a sufficiently small angle are required so that equation (1) holds true.
第4図は本発明の第2の実施例を示す平面図
で、この実施例は導波路1の入力側非対称分岐部
1b及び出力側非対称分岐部1c上に2分割した
電極5a,5bを、また導波路2の入力側非対称
分岐部2b及び出力側非対称分岐部2c上には同
じく2分割した電極6a,6bをそれぞれ配置し
た構成としており、この2組の電極5a,5b及
び6a,6bにわずかに違う電圧を印加して、非
対称性の微調整を行うことにより、より高い消光
比を得ることができるようにしたものである。 FIG. 4 is a plan view showing a second embodiment of the present invention, in which electrodes 5a and 5b divided into two are provided on the input side asymmetric branch part 1b and the output side asymmetric branch part 1c of the waveguide 1. Further, electrodes 6a and 6b, which are similarly divided into two parts, are arranged on the input side asymmetric branch part 2b and the output side asymmetric branch part 2c of the waveguide 2, respectively, and these two sets of electrodes 5a, 5b and 6a, 6b By applying slightly different voltages and finely adjusting the asymmetry, a higher extinction ratio can be obtained.
第5図は本発明の第3の実施例の平面図であ
る。長波長用の素子として設計した場合、素子が
全体として大きくなり、導波路間隔が広がるが、
そのとき電極間隔も広がつて動作電圧が増加する
のを防ぐため、この実施例は導波路1の入力側非
対称分岐部1b及び出力側非対称分岐部1cと導
波路2の入力側非対称分岐部2b及び出力側非対
称分岐部2cの両側に電極7,8を配置すると共
に、中間にも電極9を配置した構成となつてい
る。 FIG. 5 is a plan view of a third embodiment of the invention. When designed as a device for long wavelengths, the device becomes larger as a whole and the waveguide spacing increases;
At that time, in order to prevent the electrode spacing from widening and the operating voltage from increasing, this embodiment consists of the input-side asymmetric branch section 1b and output-side asymmetric branch section 1c of the waveguide 1, and the input-side asymmetric branch section 2b of the waveguide 2. Electrodes 7 and 8 are arranged on both sides of the output-side asymmetric branch portion 2c, and an electrode 9 is also arranged in the middle.
以上説明したように本発明は、一対の導波路の
それぞれの入力部と出力部との間を幅の異なる非
対称分岐部として、該非対称分岐部に電極を配置
することにより、導波路における非対称分岐部が
本来の作用である導波光の偶モードと奇モードの
分離作用の他に、電圧で非対称性を制御すること
によつて導波光に位相差を与える干渉器の機能を
も発揮するようにしているため、同じ電圧で比較
すると従来のものより短い素子長で、または、同
じ素子長で比較すると低電圧で光のスイツチング
を行うことができるという効果がある。
As explained above, the present invention provides an asymmetric branch in a waveguide by forming an asymmetric branch part with different widths between the input part and output part of a pair of waveguides, and arranging an electrode in the asymmetric branch part. In addition to its original function of separating the even mode and odd mode of the guided light, it also functions as an interferometer that gives a phase difference to the guided light by controlling the asymmetry with voltage. Therefore, it has the effect of being able to perform light switching with a shorter element length than the conventional one when compared with the same voltage, or with a lower voltage when compared with the same element length.
例えば、5Vで動作するように設計された素子
の場合、従来の非対称分岐構造のバランスドブリ
ツジ型導波路を用いた導波路型光スイツチに比べ
て、本発明のものは素子長を2/3(約7mmHe−
Ne光源)にすることが可能であり、しかも本発
明による素子の動作電圧×素子長の値は35V゜mm
であつて、従来の方向性結合器型スイツチの値に
匹敵する。 For example, in the case of an element designed to operate at 5V, the element length of the present invention can be reduced by 2/2 compared to a conventional waveguide type optical switch using a balanced bridge type waveguide with an asymmetric branch structure. 3 (approximately 7mmHe−
Ne light source), and the value of the operating voltage x element length of the element according to the present invention is 35V゜mm.
This value is comparable to that of a conventional directional coupler type switch.
第1図は本発明による導波路型光スイツチの第
1の実施例を示す平面図、第2図は第1の実施例
の作用を示す平面図、第3図は非対称分岐部にお
ける偶モード光と奇モード光の特性図、第4図は
第2の実施例を示す平面図、第5図は第3の実施
例を示す平面図である。
1,2:導波路、1a,2a:入力部、1b,
2b:入力側非対称分岐部、1c,2c:出力側
非対称分岐部、1d,2d:出力部、5,6,5
a,5b,6a,6b,7,8,9:電極。
FIG. 1 is a plan view showing the first embodiment of the waveguide type optical switch according to the present invention, FIG. 2 is a plan view showing the operation of the first embodiment, and FIG. 3 is a plan view showing the even mode light in the asymmetric branch. FIG. 4 is a plan view showing the second embodiment, and FIG. 5 is a plan view showing the third embodiment. 1, 2: waveguide, 1a, 2a: input section, 1b,
2b: Input side asymmetric branch part, 1c, 2c: Output side asymmetric branch part, 1d, 2d: Output part, 5, 6, 5
a, 5b, 6a, 6b, 7, 8, 9: electrode.
Claims (1)
の間に幅の異なる非対称分岐部を形成して、該非
対称分岐部に非対称性制御用の電極を配置したこ
とを特徴とする導波路型光スイツチ。 2 非対称分岐部に配置する電極を入力側と出力
側に分割したことを特徴とする特許請求の範囲第
1項記載の導波路型光スイツチ。[Claims] 1. An asymmetrical branch with different widths is formed between the input and output parts of a pair of waveguides, and an electrode for asymmetry control is disposed in the asymmetrical branch. Features of waveguide type optical switch. 2. The waveguide type optical switch according to claim 1, characterized in that the electrodes disposed in the asymmetric branch portion are divided into an input side and an output side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20831684A JPS6187137A (en) | 1984-10-05 | 1984-10-05 | Waveguide type optical switch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20831684A JPS6187137A (en) | 1984-10-05 | 1984-10-05 | Waveguide type optical switch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6187137A JPS6187137A (en) | 1986-05-02 |
JPH0254930B2 true JPH0254930B2 (en) | 1990-11-26 |
Family
ID=16554237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20831684A Granted JPS6187137A (en) | 1984-10-05 | 1984-10-05 | Waveguide type optical switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6187137A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01136131A (en) * | 1987-11-24 | 1989-05-29 | Oki Electric Ind Co Ltd | Waveguide type optical switch |
-
1984
- 1984-10-05 JP JP20831684A patent/JPS6187137A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6187137A (en) | 1986-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7088875B2 (en) | Optical modulator | |
US4679893A (en) | High switching frequency optical waveguide switch, modulator, and filter devices | |
JP3929814B2 (en) | Mach-Zehnder electro-optic modulator | |
EP0661577A2 (en) | Optical modulator with controllable chirp | |
JPS635740B2 (en) | ||
EP0153312B1 (en) | Electro-optical filter device | |
JPH0254930B2 (en) | ||
US5103491A (en) | Waveguide type optical circuit element | |
JPH04355714A (en) | Optical control element | |
KR100204026B1 (en) | Optical signal switching element | |
JPS57158616A (en) | Optical coupler | |
KR100207599B1 (en) | Low voltage optical switch and manufacturing method thereof | |
JP2659786B2 (en) | Mode light separator | |
JP3236426B2 (en) | Optical coupler | |
JPH05346560A (en) | Optical modulator | |
JP3018621B2 (en) | Waveguide type light controller | |
JPS60217346A (en) | Optical switch of waveguide type | |
JPH0361172B2 (en) | ||
JPH05297420A (en) | Optical switch | |
JPS63142333A (en) | Waveguide type optical switch | |
JPH05158004A (en) | Light modulator | |
JPH0553158A (en) | Waveguide type optical switch | |
JPS60195528A (en) | Waveguide type optical switch | |
JPH02928A (en) | Waveguide type optical switch | |
JPWO2003098330A1 (en) | Light modulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |