[go: up one dir, main page]

JPH0254491B2 - - Google Patents

Info

Publication number
JPH0254491B2
JPH0254491B2 JP57092182A JP9218282A JPH0254491B2 JP H0254491 B2 JPH0254491 B2 JP H0254491B2 JP 57092182 A JP57092182 A JP 57092182A JP 9218282 A JP9218282 A JP 9218282A JP H0254491 B2 JPH0254491 B2 JP H0254491B2
Authority
JP
Japan
Prior art keywords
sample
mechanical impedance
displacement
elasticity
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57092182A
Other languages
Japanese (ja)
Other versions
JPS58210544A (en
Inventor
Shinsaku Uemura
Tadao Odaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIENTETSUKU KK
Original Assignee
ORIENTETSUKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIENTETSUKU KK filed Critical ORIENTETSUKU KK
Priority to JP9218282A priority Critical patent/JPS58210544A/en
Publication of JPS58210544A publication Critical patent/JPS58210544A/en
Publication of JPH0254491B2 publication Critical patent/JPH0254491B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0092Visco-elasticity, solidification, curing, cross-linking degree, vulcanisation or strength properties of semi-solid materials
    • G01N2203/0094Visco-elasticity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、強制振動法を用いて、可聴周波数帯
域における複素弾性率を測定するのに適した粘弾
性測定方法、特に試料の両端から同時に振動変位
を与えるようにした粘弾性測定方法に関する。
[Detailed Description of the Invention] The present invention is a viscoelasticity measurement method suitable for measuring the complex modulus of elasticity in an audio frequency range using a forced vibration method, in particular a method in which vibration displacement is applied simultaneously from both ends of a sample. Related to viscoelasticity measurement method.

従来の粘弾性測定では、主に数百Hz以下の低に
周波数帯域は強制振動法により、又数KHz以上の
高い周波数帯域は超音波吸収法により、それぞれ
測定が行なわれているが、防音材料の開発等実用
上最も利用度が高いと思われる中間の周波数帯
域、即ち数百Hz〜数KHzにおける可聴周波数帯で
は、精度の高い測定法が開発されていないのが現
状である。
In conventional viscoelasticity measurements, measurements are mainly performed using the forced vibration method in the low frequency band of several hundred Hz or less, and by the ultrasonic absorption method in the high frequency band of several KHz or more. At present, no highly accurate measurement method has been developed for the intermediate frequency band, that is, the audible frequency band from several hundred Hz to several KHz, which is considered to be most useful in practice.

そこで、本発明と同じ強制振動法を用いる従来
の粘弾性測定方法(低い周波数帯域用)について
述べれば、第1図に示すように、細長い試料1の
両端をそれぞれ連結棒2,3の結合したチヤツク
4,5を挾持し、一方の連結棒2の一端に加振器
6を連結して強制的に振動歪を加え、この歪によ
る試料1の伸の伸びΔlを変位検出器7で検出す
ると共に、他方の連結棒3の一端に連結した力検
出器8で力Fを検出して、複素弾性率E*が算出
されるようになつている。ここで、9は力検出器
8の等価質量、10(斜線)は固定を表わしてい
る。
Therefore, to describe the conventional viscoelasticity measurement method (for low frequency bands) that uses the same forced vibration method as the present invention, as shown in Fig. Holding the chucks 4 and 5, a vibrator 6 is connected to one end of one of the connecting rods 2 to forcibly apply vibration strain, and the displacement detector 7 detects the elongation Δl of the sample 1 due to this strain. At the same time, the force F is detected by a force detector 8 connected to one end of the other connecting rod 3, and the complex modulus of elasticity E * is calculated. Here, 9 represents the equivalent mass of the force detector 8, and 10 (shaded) represents fixed.

そして、この時の算出方法については、試料1
の長さをl、その断面積をAとすれば、歪γはγ
=Δl/lであり、応力σはσ=F/Aであるか
ら、複素弾性率E*として次式(1)より計算(位相
を含む)されたものが用いられている。
Regarding the calculation method at this time, sample 1
If the length of is l and its cross-sectional area is A, then the strain γ is γ
=Δl/l, and the stress σ is σ=F/A, so the complex modulus of elasticity E * calculated from the following equation (1) (including phase) is used.

E*=σ/γ=Fl/AΔl ……(1) これから分かるように、この式(1)における歪γ
は試料1の左端における伸びΔlを利用した値で
あり、応力σは右端における検出力Fを利用した
値であるから、歪γが試料中どこの場所でも一様
であり、全てが静的に釣合つている状態、言い換
えれば試料1を一定の力で引張つている(或は圧
縮している)場合にのみ式(1)が成立つ訳である
が、振動歪を与える粘弾性測定においても、加振
周波数が低い帯域では測定誤差も比較的小さいこ
とから、従来は式(1)がそのまま近似式として用い
られていた。
E * = σ / γ = Fl / AΔl ...(1) As you can see, the strain γ in this equation (1)
is a value using elongation Δl at the left end of sample 1, and stress σ is a value using detection force F at the right end, so strain γ is uniform everywhere in the sample, and everything is static. Equation (1) only holds true when sample 1 is in a balanced state, in other words when it is pulled (or compressed) with a constant force, but it also holds true in viscoelastic measurements that apply vibrational strain. Since the measurement error is relatively small in a band where the excitation frequency is low, formula (1) has conventionally been used as an approximation formula.

これを少し詳しく考察してみると、粘弾性測定
では当然のことであるが、振動歪を第1図のよう
に加振器6で加えるから、力は試料1内を波動と
して伝播することになる。そして、この波動伝播
は、周知のように固体中を伝わる弾性波として、
次の波動方程式に従う。
Examining this in a little more detail, we find that, as is natural in viscoelasticity measurements, since vibrational strain is applied by the vibrator 6 as shown in Figure 1, the force propagates within the sample 1 as a wave. Become. As is well known, this wave propagation is an elastic wave that propagates through a solid.
It follows the wave equation:

ρ∂2ξ/∂t2=E∂2ξ/∂x2+η∂3ξ/∂t∂x2
…(2) ここで、ξは変位、xは試料1の長さ方向に計
つた左端からの距離、tは時間、ρは密度、Eは
弾性率、ηは粘性係数である。
ρ∂ 2 ξ/∂t 2 =E∂ 2 ξ/∂x 2 +η∂ 3 ξ/∂t∂x 2 ...
...(2) Here, ξ is the displacement, x is the distance from the left end measured in the length direction of the sample 1, t is the time, ρ is the density, E is the elastic modulus, and η is the viscosity coefficient.

したがつて、応力σと歪γは位置x、時間tの
関数、即ちσ(x,t)、γ(x,t)となつて一
定ではなくなり、複素弾性率E*としては、それ
ぞれ、同一場所での応力σと歪γの値を使つて計
算しなければならないから、例えば距離xの所で
は次式(3)により計算しなければならない。
Therefore, stress σ and strain γ are functions of position x and time t, that is, σ(x, t) and γ(x, t), and are no longer constant, and the complex modulus of elasticity E * is the same. Since it must be calculated using the values of stress σ and strain γ at a location, for example, at a distance x, it must be calculated using the following equation (3).

E*=σ(x,t)/γ(x,t) ……(3) 所が、試料1の内部の点xについて考えてみる
と、この点の応力σ(x,t)を測定することは
実際上不可能で、複素弾性率E*を算出すること
ができない。
E * = σ (x, t) / γ (x, t) ...(3) However, if we consider point x inside sample 1, we can measure the stress σ (x, t) at this point. This is practically impossible, and the complex modulus of elasticity E * cannot be calculated.

又第1図に示すように、左端から加振器6で強
制振動、例えばeiwtを与え、右端の力検出器8を
通常用いられるロードセルを使用した構造のもの
とすれば、等価的にバネ定数kと質量mを持つた
弾性体とみなし得るから、試料1と連成振動系を
形成するとして、これらの境界条件のもとに、波
動方程式(2)を解いてみると(詳細は省略するが)、
変位関数ξ(x,t)が非常に複雑となり、応力
σと歪γ(=∂ξ/∂x)は数式的にも算出するのが
極めて難しく、その結果この場合も複素弾性率
E*の算出が難しい。
Furthermore, as shown in Fig. 1, if a forced vibration, e.g. Since it can be regarded as an elastic body with a constant k and a mass m, we can form a coupled vibration system with sample 1 and solve the wave equation (2) under these boundary conditions (details omitted). ),
The displacement function ξ(x, t) becomes very complex, and the stress σ and strain γ (=∂ξ/∂x) are extremely difficult to calculate mathematically, and as a result, the complex modulus of elasticity is
Calculating E * is difficult.

このため、従来は加振角周波数ωが小さく、周
波数にして数百Hz以下のときは、止む無く式(1)が
近似式として用いられ、精々力検出器8が試料1
と連成振動系を構成して悪影響を及ぼさないよう
に、力検出器8の共振角周波数ωr、即ちωr=√
k/mを加振角周波数ωに対し、ωr≫ωとなる
ように設計して測定が行なわれていた。
For this reason, conventionally, when the excitation angular frequency ω is small and the frequency is less than several hundred Hz, equation (1) is inevitably used as an approximation equation, and at best the force detector 8
The resonance angular frequency ω r of the force detector 8, i.e., ω r =√
Measurements were carried out by designing k/m so that ω r ≫ω with respect to the excitation angular frequency ω.

しかし、加振器6の加振角周波数ωが比較的高
くなつて、上述した可聴周波数帯域に近付いて来
ると、力検出器8による連成振動の影響とは別
に、歪σが場所により一様で無くなる度合いが増
えて、最早式(1)を使つたのでは測定誤差が大きく
なり、複素粘弾性率E*を式(1)で近似することが
出来なくなる欠点があつた。
However, as the excitation angular frequency ω of the vibrator 6 becomes relatively high and approaches the audible frequency band mentioned above, the strain σ becomes uniform depending on the location, apart from the influence of the coupled vibration caused by the force detector 8. The problem is that using equation (1) increases the measurement error and makes it impossible to approximate the complex viscoelastic modulus E * using equation (1).

それ故、本発明は、試料中に生じている応力や
歪を波動として解析した結果、試料の両端を、2
つの加振器を用いて位相差θ1で同時に振動的変位
を加えたときの第1の振動状態における一方端か
ら見た機械インピーダンスZ(θ1)を測定し、こ
れを利用して複素弾性率E*を測定する新規な測
定方法を提供するもので、より具体的には、前記
機械インピーダンスZ(θ1)に対して、これと異
なる位相差で同時に振動的変位を加えたときの少
なくとも1つの別の振動状態における機械インピ
ーダンスZ(θo)を測定して、これを前記機械イ
ンピーダンスZ(θ1)と組み合わせるか、或は一
方端の加振器を作動させ試料の他方端を固定状態
にしたときの更に別の振動状態における機械イン
ピーダンスZfixを測定して、これを前記機械イン
ピーダンスZ(θ1)と組み合わせるかすることに
より、複素弾性率E*を求める新規な測定方法を
提供するものである。
Therefore, the present invention analyzes the stress and strain occurring in the sample as waves, and as a result, the two ends of the sample are
The mechanical impedance Z (θ 1 ) seen from one end in the first vibration state is measured when vibrational displacement is applied simultaneously with a phase difference θ 1 using two vibrators, and this is used to calculate the complex elasticity. The present invention provides a new measurement method for measuring the ratio E * , and more specifically, the at least Either measure the mechanical impedance Z (θ o ) in one different vibration state and combine this with the mechanical impedance Z (θ 1 ), or activate the exciter at one end and fix the other end of the sample. Provides a new measurement method for determining the complex modulus of elasticity E * by measuring the mechanical impedance Z fix in yet another vibration state and combining it with the mechanical impedance Z (θ 1 ). It is something to do.

以下図面を参照して本発明を説明するが、最初
に本発明の原理を説明する。
The present invention will be explained below with reference to the drawings, but first the principle of the present invention will be explained.

今、第2図に示すように、細長い試料11の両
端に特性の揃つた二つの加振器16A,16B
(第3図参照)を連結し、位相差θの同一振幅で
両端から同時に加振すると、試料11では、この
場合も上述した波動方程式(2)が成り立つているか
ら、加振器16A,16Bによる加振を、単位の
大きさの振動変位eiwt、ei(wt-)とすれば、この時
の境界条件は、 x=0、ξ=eiwt(左端) ……(4) x=l,ξ=ei(wt-)(右端) ……(5) であるから、これで式(2)を解くと、 ξ(x,t)={cosω/C*x+N(θ)sinω/C*
} xeiwt ……(6) を得る。但し、ここで、 N(θ)=e-i〓−cos(ωl/C*)/sin(ωl/C*
……(7) E*=E+iωη ……(9) である。
Now, as shown in FIG.
(See Fig. 3) are connected and vibrated from both ends at the same time with the same amplitude of phase difference θ. In sample 11, since the above-mentioned wave equation (2) holds in this case as well, the vibrators 16A and 16B If the excitation caused by is given as vibration displacement e iwt , e i(wt-) of unit size, the boundary conditions at this time are x = 0, ξ = e iwt (left end) ...(4) x =l, ξ=e i(wt-) (right end) ...(5) Therefore, solving equation (2) with this, ξ(x, t) = {cosω/C * x+N(θ) sinω/C * x
} xe iwt ...(6) is obtained. However, here, N(θ)=e -i 〓−cos(ωl/C * )/sin(ωl/C * )
...(7) E * =E+iωη...(9).

しかしながら、これらの式から直接歪γ(x,
t)(=∂ξ/∂x)、応力σ(x,t)を求めて複素
弾性率E*を算出することは複雑過ぎて実際上困
難である。
However, from these equations we can directly calculate the strain γ(x,
t) (=∂ξ/∂x) and stress σ(x, t) to calculate the complex modulus of elasticity E * is too complicated and practically difficult.

そのため、試料11の左端から見た機械インピ
ーダンスZ(θ)を求めてみると、このZ(θ)は
一般的に、 Z(θ)=F/〔∂ξ/∂t〕x=0 ……(10) で定義されるので、この場合の検出力Fとして、
式(3)を変形整理した、 F=−AE*〔∂ξ/∂x〕x=0 ……(11) を入れてZ(θ)を求めると、 Z(θ)=−A√ρE*/iN(θ) ……(12) となる。
Therefore, when calculating the mechanical impedance Z(θ) seen from the left end of sample 11, this Z(θ) is generally Z(θ)=F/[∂ξ/∂t] x=0 ... (10), so the power F in this case is
Formula (3) is modified and rearranged, F=-AE * [∂ξ/∂x] x=0 ...(11) to find Z(θ), Z(θ)=-A√ρE * /iN(θ) ...(12)

ここで上式から、機械インピーダンスZ(θ)
の値が例えばインピーダンスヘツドにより直接測
定できたとしても、N(θ)の中にC*があり、C*
の中にE*があるから、複素弾性率E*を容易に
は算出できない。
From the above formula, the mechanical impedance Z(θ)
Even if the value of can be measured directly, for example with an impedance head, there is C * in N(θ) and C *
Since there is E * in , the complex modulus of elasticity E* cannot be easily calculated.

そこで、本発明により見出した方法である両加
振器16A,16Bによつて試料11に加える変
位の位相差θが、それぞれ、0、π/2、π、
3π/2、……、のときの試料11の左端から見
た機械インピーダンスZ(θ)を、それぞれ、Z
(0)、Z(π/2)、Z(π)、Z(3π/2)、Z
(…
…)、とし、左方の加振器16Aを作動させ、試
料11の右端の変位を零となるように固定状態と
したときの機械インピーダンスを、ZFIXとして、
これらの値を求めるが、先ず式(12)式のZ(θ)に
それぞれの値を入れて、Z(θ)を求めてみると、 Z(0)=−A√ρE*/itan(ωl/2C*) ……(13) Z〔π/2〕=A√ρE*/i×i+cos(ωl/C*)/
sin(ωl/C*) ……(14) Z(π)=A√ρE*/icot(ωl/2C*) ……(15) Z〔3π/2〕=−A√ρE*/ii−cos(ωl/C*
/sin(ωl/C*) ……(16) が得られる。次いで、ZFIXについては、煩雑とな
るので結果だけ紹介するが、波動方程式(2)を試料
11の左端を加振(eiwt)、右端を固定とすれば、
この時の境界条件は x=0、ξ=eiwt(左端) ……(17) x=l、ξ=0(右端) ……(18) であるから、これで式(2)を解き、上記と同様にし
て試料11の左端から見た機械インピーダンス
ZFIXを求めると、 ZFIX=A√ρE*/icot(ωl/C*) ……(19) となり、これら相互間には次の代数的な関係が成
立するのを発見した。即ち、 E*=Z(0)Z(π)/ρA2 ……(20) E*={2ZFIX−Z(π)}Z(π)/ρA2 ……(21) E*={2ZFIX−Z(0))}Z(0)/ρA2 ……(22) E*={Z(π/2)+Z(3π/2)−Z (π)}Z(π)/ρA2 ……(23) のようになり、式が簡略化される。
Therefore, according to the method discovered by the present invention, the phase difference θ of the displacement applied to the sample 11 by both the vibrators 16A and 16B is 0, π/2, π,
The mechanical impedance Z (θ) seen from the left end of sample 11 when 3π/2, ..., is Z
(0), Z (π/2), Z (π), Z (3π/2), Z
(…
), and the mechanical impedance when the left vibrator 16A is activated and the displacement of the right end of the sample 11 is fixed to zero is Z FIX ,
To find these values, first enter each value into Z(θ) in equation (12) and find Z(θ). Z(0)=-A√ρE * /itan(ωl /2C * ) ...(13) Z [π/2] = A√ρE * /i×i+cos(ωl/C * )/
sin(ωl/C * ) ...(14) Z(π)=A√ρE * /icot(ωl/2C * ) ...(15) Z[3π/2]=−A√ρE * /ii−cos (ωl/C * )
/sin(ωl/C*)...(16 ) is obtained. Next, regarding Z FIX , I will only introduce the results as it will be complicated, but if the wave equation (2) is set to excite the left end of sample 11 (e iwt ) and fix the right end, then
The boundary conditions at this time are x = 0, ξ = e iwt (left end) ... (17) x = l, ξ = 0 (right end) ... (18), so solve equation (2), Mechanical impedance seen from the left end of sample 11 in the same way as above
When we find Z FIX , we get Z FIX = A√ρE * / icot (ωl / C * ) ... (19), and we discovered that the following algebraic relationship holds between them. That is, E * = Z (0) Z (π) / ρA 2 ... (20) E * = {2Z FIX - Z (π)} Z (π) / ρA 2 ... (21) E * = {2Z FIX −Z(0))}Z(0)/ρA 2 ...(22) E * = {Z(π/2)+Z(3π/2)−Z(π)}Z(π)/ρA 2 ... …(23), and the formula is simplified.

この結果、試料11の左端から見た機械インピ
ーダンスZ(θ)、或はZFIXを測定すれば、式(20)
〜(23)の何れかを用いることにより、内部の点x
における応力σ(x,t)、歪γ(x,t)を測定
しなくても、複素弾性率E*を容易に算出するこ
とができる。
As a result, if the mechanical impedance Z (θ) or Z FIX seen from the left end of sample 11 is measured, formula (20)
By using any of ~(23), the interior point x
The complex modulus of elasticity E * can be easily calculated without measuring the stress σ(x, t) and strain γ(x, t) at .

次に、この測定方法を用いた実施例を第3図を
参照して説明すると、試料11両端にはそれぞれ
変位検出器17A,17Bを介し、左端には力検
出器18を介して、特性の揃つた加振器16A,
16Bが連結されている。
Next, an example using this measurement method will be described with reference to FIG. Completed vibrator 16A,
16B are connected.

ここで、12,13は第1図におけると同様な
連結棒、14,15は同じくチヤツク、20(斜
線)は固定、21は微分回路、22は演算回路で
ある。又変位検出器17A,17Bを便宜上直結
状態で図示したが、光学式のものを用いて非接触
で構成してもよい。
Here, 12 and 13 are connecting rods similar to those in FIG. 1, 14 and 15 are chucks, 20 (hatched) is fixed, 21 is a differential circuit, and 22 is an arithmetic circuit. Further, although the displacement detectors 17A and 17B are illustrated in a directly connected state for convenience, they may be constructed in a non-contact manner using optical ones.

このような構成において、測定を始めるには、
加振器16A,16Bをそれぞれ振動変位eiwt
ei(wt-)で同時に加振することになるが、式(20)を
使用して複素弾性率E*を求める場合には、Z
(0)とZ(π)が求まればよいから、先ず位相差
θをθ=0として加振し、試料11の左端から見
た機械インピーダンスZ(0)求めてみる。
In such a configuration, to start a measurement,
The vibration displacement e iwt of the vibrators 16A and 16B is
e i(wt-) , but when calculating the complex modulus of elasticity E * using equation (20), Z
Since it is sufficient to find (0) and Z(π), first, the phase difference θ is set to θ=0, and the mechanical impedance Z(0) as seen from the left end of the sample 11 is determined.

これを求めるには、この時の左端における力F
は力検出器18で測定されており、又同時に左端
における変位ξも変位検出器17Aで測定されて
いるから、この変位ξを微分回路21により時間
tで偏微分して、(∂ξ/∂t)x=0を求め、この出力
を力検出器18の出力と共に演算回路22に入れ
て、式(10)により演算すれば、機械インピーダンス
Z(0)を求めることができる。
To find this, the force F at the left end at this time is
is measured by the force detector 18, and at the same time, the displacement ξ at the left end is also measured by the displacement detector 17A. Therefore, this displacement ξ is partially differentiated with respect to time t by the differentiating circuit 21 to obtain (∂ξ/∂ t) By determining x=0 , inputting this output together with the output of the force detector 18 into the arithmetic circuit 22, and calculating according to equation (10), the mechanical impedance Z(0) can be determined.

同様にして、位相差θがθ=πで振動変位を与
えたときの機械インピーダンスZ(π)求め、こ
れを演算回路22に入れて、先に求めたZ(0)
と一緒に式(20)により演算すれば、複素弾性率E*
を算出することができる。
Similarly, the mechanical impedance Z(π) when the phase difference θ is θ=π and vibration displacement is applied is determined, and this is input into the arithmetic circuit 22 to calculate the previously determined Z(0).
By calculating with Equation (20) together with, the complex modulus of elasticity E *
can be calculated.

なお、式(20)〜(23)を見れば分かるように、左
端から見た機械インピーダンスだけで複素弾性率
E*を算出できるから、試料11の右端には変位
検出器も力検出器も不要であるが、変位検出器1
7Bを配置したのは加振器16Bの位相を制御す
るためのモニター用として用いるためである。ま
た、上例では、変位検出器17Aと力検出器18
を使つて検出したが、勿論、試料11の左端に直
接インピーダンスヘツドを介して加振器16Aと
連結する構成にし、直接機械インピーダンスを測
定してもよいのは云う迄もない。
In addition, as can be seen from equations (20) to (23), the complex modulus of elasticity can be determined only by the mechanical impedance seen from the left end.
Since E * can be calculated, there is no need for a displacement detector or force detector at the right end of sample 11, but
7B is arranged for use as a monitor for controlling the phase of the vibrator 16B. In addition, in the above example, the displacement detector 17A and the force detector 18
Of course, it is also possible to directly measure the mechanical impedance by connecting the left end of the sample 11 directly to the vibrator 16A via an impedance head.

また、式(21)使用して複素弾性率E*を求める場
合には、Z(π)とZFIXが求まればよいから、上
述と同様に、今度は位相差θ1=πで加振器16
A,16Bを同時に加振し、機械インピーダンス
Z(π)を求め、次に試料11の右端を固定する
か、或は加振器16Bにより試料11の右端の変
位が零〔ξ(l,t)=0〕となるようにし、加振
器16Aを作動させたときの左端から見た機械イ
ンピーダンスZFIXを求めると、複素弾性率E*を式
(21)により算出することが可能である。
In addition, when calculating the complex modulus of elasticity E * using equation (21), it is sufficient to calculate Z (π) and Z FIX , so as above, this time the vibration is applied with the phase difference θ 1 = π. vessel 16
A and 16B are simultaneously excited to find the mechanical impedance Z (π), and then the right end of the sample 11 is fixed, or the displacement of the right end of the sample 11 is zero [ξ (l, t) by the vibrator 16B. )=0] and calculate the mechanical impedance Z FIX seen from the left end when the vibrator 16A is activated, it is possible to calculate the complex modulus of elasticity E * using equation (21).

このように、本発明では、試料に対する振動変
位を、波動として解析した結果を用いて複素弾性
率を求めるようにしたから、上述した可聴周波数
帯域であつても、より正確に粘弾性測定が行なえ
る利点を有している。
In this way, in the present invention, since the complex modulus of elasticity is determined using the results of analyzing the vibrational displacement of the sample as a wave, it is possible to perform more accurate viscoelasticity measurements even in the above-mentioned audio frequency band. It has the advantage of

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す概略説明図、第2図は本
発明の原理を説明するための説明図、第3図は同
原理を用いた本発明の一実施例を示す概略説明図
である。 1,11……試料、2,3,12,13……連
結棒、4,5,14,15……チヤツク、6,1
6A,16B……加振器、7,17A,17B…
…変位検出器、8,18A,18B……力検出
器、9……等価質量、21……微分回路、22…
…演算回路、ξ……変位、ω……加振角周波数、
θ……位相角、x……試料左端からの距離、l…
…試料長、t……時間。
Fig. 1 is a schematic explanatory diagram showing a conventional example, Fig. 2 is an explanatory diagram for explaining the principle of the present invention, and Fig. 3 is a schematic explanatory diagram showing an embodiment of the present invention using the same principle. . 1, 11... Sample, 2, 3, 12, 13... Connecting rod, 4, 5, 14, 15... Chack, 6, 1
6A, 16B... vibrator, 7, 17A, 17B...
...Displacement detector, 8, 18A, 18B... Force detector, 9... Equivalent mass, 21... Differential circuit, 22...
...Arithmetic circuit, ξ...Displacement, ω...Excitation angular frequency,
θ...Phase angle, x...Distance from the left edge of the sample, l...
...sample length, t...time.

Claims (1)

【特許請求の範囲】 1 試料11の両端を、一対の加振器16A、1
6Bを用いて試料11に加える変位の位相差θ1
同時に加振し、振動的変位を加えたときの第1の
振動状態における試料11の一方端から見た第1
の機械インピーダンスZ(θ1)を測定し、この第
1の機械インピーダンスZ(θ1)と、別に測定し
た少なくとも1つの別の機械インピーダンスとを
利用して複素弾性率を求めることを特徴とする粘
弾性測定方法。 2 前記別の機械インピーダンスが、前記加振器
16A,16Bを用いて前記位相差θ1とは異なる
位相差θoで同時に加振し、これによる振動的変位
を加えたときの試料11の一方端から見た機械イ
ンピーダンスZ(θo)である特許請求の範囲第1
項記載の粘弾性測定方法。 3 前記別の機械インピーダンスが、試料11の
一方端側の加振器16Aを作動させ、試料11の
他方端を固定状態としたときの他の振動状態にお
ける前記一方端から見た機械インピーダンスZFIX
である特許請求の範囲第1項記載の粘弾性測定方
法。
[Claims] 1 Both ends of the sample 11 are connected to a pair of vibrators 16A, 1
6B is used to simultaneously excite the sample 11 with a phase difference θ 1 of the displacement applied to the sample 11 and apply vibrational displacement.
The first mechanical impedance Z(θ 1 ) and at least one other mechanical impedance measured separately are used to determine the complex modulus of elasticity. Viscoelasticity measurement method. 2. One side of the sample 11 when the other mechanical impedance is simultaneously excited using the vibrators 16A and 16B with a phase difference θ o different from the phase difference θ 1 , and a vibrational displacement caused by this is applied. Claim 1 which is the mechanical impedance Z (θ o ) seen from the end
Viscoelasticity measurement method described in section. 3 Mechanical impedance Z FIX as seen from the one end in another vibration state when the other mechanical impedance operates the vibrator 16A at one end of the sample 11 and fixes the other end of the sample 11 .
A method for measuring viscoelasticity according to claim 1.
JP9218282A 1982-06-01 1982-06-01 Measurement system of viscoelasticity in audible frequency band Granted JPS58210544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9218282A JPS58210544A (en) 1982-06-01 1982-06-01 Measurement system of viscoelasticity in audible frequency band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9218282A JPS58210544A (en) 1982-06-01 1982-06-01 Measurement system of viscoelasticity in audible frequency band

Publications (2)

Publication Number Publication Date
JPS58210544A JPS58210544A (en) 1983-12-07
JPH0254491B2 true JPH0254491B2 (en) 1990-11-21

Family

ID=14047287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9218282A Granted JPS58210544A (en) 1982-06-01 1982-06-01 Measurement system of viscoelasticity in audible frequency band

Country Status (1)

Country Link
JP (1) JPS58210544A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743309B2 (en) * 1994-04-21 1998-04-22 桜井建材産業株式会社 Elasticity / viscosity coefficient measurement method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129089A (en) * 1977-04-15 1978-11-10 Mitsubishi Electric Corp Measuring method of complex modulus of elasticity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53129089A (en) * 1977-04-15 1978-11-10 Mitsubishi Electric Corp Measuring method of complex modulus of elasticity

Also Published As

Publication number Publication date
JPS58210544A (en) 1983-12-07

Similar Documents

Publication Publication Date Title
US5078013A (en) Ultrasonic measuring apparatus using a high-damping probe
Gajo et al. Experimental analysis of the effects of fluid—solid coupling on the velocity of elastic waves in saturated porous media
JPS6156450B2 (en)
Rizzo et al. Effect of frequency on the acoustoelastic response of steel bars
Farris et al. Wave propagation in a split Timoshenko beam
JPH0511895B2 (en)
US6923067B2 (en) Defect type classifying method
JPH0254491B2 (en)
US6609428B2 (en) Nonresonant technique for estimation of the mechanical properties of viscoelastic materials
CN110333295A (en) Rock soil core sample wave velocity testing system and method
US20040206181A1 (en) Defect type classifying method
Meier et al. Application of total loss factor measurements for the determination of sound insulation
Zhu et al. The potential of ultrasonic non-destructive measurement of residual stresses by modal frequency spacing using leaky lamb waves
JP2792286B2 (en) Method for measuring elastic constant of specimen
Krasnoveikin et al. Development of the noncontact approach to testing the dynamic characteristics of carbon fiber reinforced polymer composites
US7062386B1 (en) Method to estimate the mechanical properties of a solid material subjected to isonification
JPH02264843A (en) Hardness measuring apparatus
Ming et al. Errors in the measurement of structure-borne power flow using two-accelerometer techniques
KR100936118B1 (en) Sensor unit for surface wave test
Liao et al. Multi‐sensor measurements on a large‐scale bridge model
JPS62225952A (en) Method of detecting transmission function of material using ae sensor
Huang Application of Mindlin plate theory to analysis of acoustic emission waveforms in finite plates
SU1610433A1 (en) Method of determining speed of propagation of transverse ultrasonic waves through core
RU2382358C2 (en) Method for simultaneous detection of longitudinal and shift acoustic waves speed
Perkowski et al. Imaging elastic degradation in reinforced concrete slab using methodology of ultrasonic tomography and Tikhonov regularization