JPH0253909B2 - - Google Patents
Info
- Publication number
- JPH0253909B2 JPH0253909B2 JP56063506A JP6350681A JPH0253909B2 JP H0253909 B2 JPH0253909 B2 JP H0253909B2 JP 56063506 A JP56063506 A JP 56063506A JP 6350681 A JP6350681 A JP 6350681A JP H0253909 B2 JPH0253909 B2 JP H0253909B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- fuel cell
- fuel
- inlet
- oxidant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001816 cooling Methods 0.000 claims description 100
- 239000000446 fuel Substances 0.000 claims description 89
- 239000007800 oxidant agent Substances 0.000 claims description 31
- 230000001590 oxidative effect Effects 0.000 claims description 21
- 239000012530 fluid Substances 0.000 claims description 5
- 238000009826 distribution Methods 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000012809 cooling fluid Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/08—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/026—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
- H01M8/0265—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0267—Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】
本発明は燃料電池装置用の冷却装置に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for a fuel cell device.
燃料電池装置(燃料電池システム)には多くの
形式があるが、マトリツクスを2枚の双極板の間
に設けた燃料電池がある。燃料電池は上下に重ね
られ、普通は直列に電気的に接続されて燃料電池
スタツクを構成している。燃料電池の動作、即ち
例えば水素と酸素とが反応して熱、電力および水
を発生する反応は、発熱反応であり、燃料電池要
素の健全性を維持するために要素を冷却すること
が必要である。例えば、双極板あるいは電解質マ
トリツクスは高温で劣化する傾向のある樹脂によ
り結合された炭素含有材料で作られることがあ
る。更に、発熱反応により燃料電池内に不均等な
温度分布を生ずることがあり、燃料電池の動作温
度および効率を制限し、また例えば一酸化炭素に
よる触媒劣化の問題を引起こす。 Although there are many types of fuel cell devices (fuel cell systems), there is a fuel cell in which a matrix is provided between two bipolar plates. Fuel cells are stacked one on top of the other, usually electrically connected in series to form a fuel cell stack. The operation of a fuel cell, i.e., the reaction of hydrogen and oxygen to generate heat, electricity and water, is an exothermic reaction and requires cooling of the fuel cell elements to maintain their health. be. For example, bipolar plates or electrolyte matrices may be made of carbon-containing materials bonded by resins that tend to degrade at high temperatures. Additionally, exothermic reactions can create uneven temperature distribution within the fuel cell, limiting the operating temperature and efficiency of the fuel cell and causing problems with catalyst degradation, such as by carbon monoxide.
従つて従来の燃料電池装置に於ては閉流体冷却
ループが提案されていた。普通のものは、例えば
4番目毎の燃料電池が冷却水を循環させる小型金
属管を有するようにした堆積された複数の燃料電
池を有する燃料電池装置である。循環用動力が必
要であり燃料電池全体の効率を低下させる。これ
は更に小径管内の圧力降下および或る場合には酸
等の燃料電池スタツク内の媒体に対する冷却管の
耐性によつて複雑になる。 Therefore, closed fluid cooling loops have been proposed in conventional fuel cell devices. Common are fuel cell systems having a plurality of stacked fuel cells, for example every fourth fuel cell has a small metal tube through which cooling water is circulated. Circulating power is required, reducing the overall efficiency of the fuel cell. This is further complicated by the pressure drop in the small diameter tubes and the resistance of the cooling tubes to media in the fuel cell stack, such as acids in some cases.
又、電気化学的反応に必要な化学量論的量の数
倍の量の大量の空気等の酸化剤を燃料電池スタツ
クに循環させて冷却媒体としても用いることも提
案されている。液体冷却型装置の場合と同様、循
環に要する動力が大きいという不利益がある。 It has also been proposed to circulate large amounts of oxidizing agent, such as air, through the fuel cell stack in an amount several times the stoichiometric amount required for the electrochemical reaction and to also serve as a cooling medium. As with liquid-cooled devices, the disadvantage is that the power required for circulation is high.
最近提案されたものに燃料電池スタツクの例え
ば4番目毎の燃料電池間に冷却モジユールを配置
した燃料電池のスタツクを有する装置がある。空
気がマニフオールドで案内されて燃料電池の酸化
剤チヤンネル内と冷却モジユールの冷却通路内と
を平行に流される。冷却モジユールの冷却通路は
燃料電池内チヤンネルよりもずつと大きく、約80
%の空気が冷却通路を流れ残りが燃料電池内を流
れる。このような装置は機械的必要動力の点では
改善されているが、更に改善する余地がある。例
えば、空気流量が適正である場合、即ち過大な循
環用動力を要しないような量を用いる場合、冷却
チヤンネルを流れる空気が冷却通路を流れる際に
相当な量の熱エネルギーを吸収しチヤンネルの出
口端での冷却効果が小さい。このため燃料電池装
置内の温度分布が不均等になり、反応率、電圧お
よび電流分布が不平衡となつて最大動作温度を制
限することになる。 Recently proposed devices include a stack of fuel cells in which a cooling module is placed between, for example, every fourth fuel cell in the fuel cell stack. Air is guided in the manifold and flowed in parallel through the oxidizer channel of the fuel cell and the cooling passages of the cooling module. The cooling passages of the cooling module are larger than the channels in the fuel cell, approximately 80
% of the air flows through the cooling passages and the remainder flows within the fuel cell. Although such devices have improved in terms of mechanical power requirements, there is room for further improvement. For example, if the air flow rate is adequate, i.e., does not require excessive circulation power, the air flowing through the cooling channels will absorb a significant amount of thermal energy as it flows through the cooling passages, and The cooling effect at the edges is small. This results in an uneven temperature distribution within the fuel cell device, resulting in unbalanced reaction rates, voltage and current distributions, and limiting the maximum operating temperature.
従つて本発明の目的は、圧力降下に対処し循環
供給に必要な動力を過大にせず、燃料電池装置全
体に亙つて温度分布を改善する冷却装置を備えた
燃料電池装置を得ることである。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a fuel cell system equipped with a cooling device that copes with pressure drops, does not increase the power required for circulating supply, and improves temperature distribution throughout the fuel cell system.
本発明は、電気的に接続され、流体酸化剤が通
る酸化剤チヤンネルを有する2つの燃料電池と、
上記燃料電池の間に設けられた冷却モジユール
と、上記冷却モジユール内に入口および出口を有
して形成され、上記酸化剤チヤンネルと並列に冷
却モジユール内を通つて延び、上記流体酸化剤を
上記酸化剤チヤンネルと並列に供給できる少なく
とも1つの冷却通路とを備えた燃料電池装置に於
いて、上記少なくとも1つの冷却通路が、上記入
口から上記出口に向かつて増大して変化する表面
積を有することを特徴とする燃料電池装置に在
る。 The present invention comprises two fuel cells electrically connected and having an oxidant channel through which a fluid oxidant passes;
a cooling module disposed between the fuel cells and having an inlet and an outlet within the cooling module extending through the cooling module in parallel with the oxidant channel to direct the fluid oxidant to the oxidizer; a fuel cell device comprising at least one cooling passage capable of being fed in parallel with an agent channel, characterized in that said at least one cooling passage has a surface area that increases and changes from said inlet to said outlet; It is used in fuel cell equipment.
本発明は不平衡温度分布を軽減し過大な冷却流
体流量を要しない堆積された冷却装置を有する燃
料電池装置を提供する。望ましい態様に於ては、
スタツクに複数の燃料電池が設けられ選択された
2つの燃料電池間に周期的に冷却モジユールが配
置される。燃料電池内のチヤンネルは空気等の酸
化剤を、冷却モジユールの冷却通路を流れる空気
流れに望ましくは略々平行な方向に燃料電池内を
流すように構成される。 The present invention provides a fuel cell system having a stacked cooling system that reduces unbalanced temperature distribution and does not require excessive cooling fluid flow rates. In a desirable embodiment,
A plurality of fuel cells are provided in the stack with cooling modules periodically placed between selected two fuel cells. Channels within the fuel cell are configured to flow an oxidant, such as air, through the fuel cell in a direction desirably substantially parallel to the air flow through the cooling passages of the cooling module.
冷却通路は燃料電池チヤンネルよりも相当に大
きい。燃料電池チヤンネルは全長に亘つて略々一
定の断面積でも、あるいは変化する断面積のもの
でも良い。しかしながら冷却通路は入口から出口
へ所定の態様で変化する表面積を備えている。冷
却通路入口は、入口が新しい酸化剤に曝されるス
タツクの面に沿い、出口がスタツクの使用済酸化
剤に曝される面に沿うように構成するのが望まし
い。冷却通路の表面積は入口から出口に向つて次
第に増大させる。このようにして、冷却空気が燃
料電池チヤンネルを流れて熱エネルギーを吸収し
それに応じて冷却能力が減少される一方、より大
きな表面積に接触して冷却能力がそれに応じて増
大する。従つて実効効果としては冷却がより一様
に行なわれ、燃料電池温度がより一様になる。 The cooling passages are considerably larger than the fuel cell channels. The fuel cell channel may have a substantially constant cross-sectional area over its length, or it may have a varying cross-sectional area. However, the cooling passages have a surface area that varies in a predetermined manner from the inlet to the outlet. Preferably, the cooling passage inlets are configured such that the inlet is along the side of the stack that is exposed to fresh oxidant and the outlet is along the side of the stack that is exposed to spent oxidant. The surface area of the cooling passage increases gradually from the inlet to the outlet. In this way, the cooling air flows through the fuel cell channels and absorbs thermal energy, reducing the cooling capacity accordingly, while contacting a larger surface area and increasing the cooling capacity accordingly. The net effect is therefore more uniform cooling and more uniform fuel cell temperature.
燃料電池内の流路に沿つた位置に応じて冷却通
路の冷却表面積を変化させることに加えて、隣り
のチヤンネル間の間隔をも変化させて反応度分布
をより一様にさせることもできる。反応度分布は
燃料電池燃料入口端で大きく、燃料出口端で低く
なる傾向にある。 In addition to varying the cooling surface area of the cooling passages depending on their location along the flow path within the fuel cell, the spacing between adjacent channels can also be varied to provide a more uniform reactivity distribution. The reactivity distribution tends to be large at the fuel cell fuel inlet end and low at the fuel outlet end.
冷却通路の表面積を変化させる方法は種々あ
り、例えば単一の入口から望ましくはより小さい
出口へ等冷却通路を分岐させることができる。ま
た断面形を矩形から十字形に変形しても良い。発
熱分布による冷却条件に最も良く適合させるため
にはチヤンネルの断面形の基本形を略々矩形とす
るのが望ましい。 There are various ways to vary the surface area of the cooling passages, for example by bifurcating the cooling passages from a single inlet to a desirably smaller outlet. Further, the cross-sectional shape may be changed from a rectangular shape to a cross shape. In order to best suit the cooling conditions based on heat generation distribution, it is desirable that the basic cross-sectional shape of the channel be approximately rectangular.
次に添附図面に示す本発明の実施例に沿つて本
発明を説明する。 Next, the present invention will be explained along with embodiments of the present invention shown in the accompanying drawings.
第1図に電気化学的燃料電池装置10が示され
ている。この燃料電池装置は複数の燃料電池12
を有し、燃料電池12が直列に接続されるように
スタツクに構成されている。スタツクを並列に構
成することもできる。 An electrochemical fuel cell system 10 is shown in FIG. This fuel cell device includes a plurality of fuel cells 12
The fuel cells 12 are arranged in a stack so that the fuel cells 12 are connected in series. Stacks can also be configured in parallel.
燃料電池12′等の個々の燃料電池は2つの双
極板14を有し、その間に例えば燐酸等の酸で飽
和された多孔質グラフアイトマトリツクス16等
の電解質が挾まれている。電気的に絶縁性の材料
を用いた多くの他の材料および構造も使用でき
る。双極板14は、電解質マトリツクス16の両
側に設けられた圧縮成型グラフアイト−樹脂組成
物と正極20および負極22等の電極18とを備
えることもできる。各電極18は又補強用の多孔
質グラフアイト繊維裏打24を有する多孔質グラ
フアイト材料とすることもできる。 An individual fuel cell, such as fuel cell 12', has two bipolar plates 14 between which is sandwiched an electrolyte, such as a porous graphite matrix 16 saturated with an acid such as phosphoric acid. Many other materials and structures using electrically insulating materials can also be used. Bipolar plate 14 may also include a compression molded graphite-resin composition on either side of electrolyte matrix 16 and electrodes 18, such as positive electrode 20 and negative electrode 22. Each electrode 18 may also be a porous graphite material with a reinforcing porous graphite fiber backing 24.
双極板14は燃料チヤンネル26および酸化剤
チヤンネル28を有するチヤンネルの組を備えて
いる。チヤンネル26および28は望ましくは断
面形が略々矩形で、例えば成形型を外すのに必要
な場合の如く製造を容易にする僅かに傾いた縁3
0を持つている。従つて例えば接着剤あるいは外
枠等の周知手段によつて互いに結合されたとき、
各燃料電池は略々封止された装置を形成する。 Bipolar plate 14 includes a set of channels including a fuel channel 26 and an oxidizer channel 28. Channels 26 and 28 are preferably generally rectangular in cross-section, with slightly beveled edges 3 to facilitate manufacturing, such as when necessary to remove a mold.
It has 0. Therefore, when connected to each other by known means, such as adhesives or an outer frame,
Each fuel cell forms a generally sealed device.
ハロゲンあるいは空気あるいは他の酸素含有物
質等の酸化剤が酸化剤チヤンネル28を通つて流
れ、水素、有機物あるいは金属等の燃料が燃料チ
ヤンネル26を通つて流れる。一般にはマニフオ
ールド27が用いられて、例えば酸化剤を燃料電
池システムスタツクの酸化剤入口側34に供給
し、スタツクの酸化剤出口側36から酸化剤を受
入れるようにしてある。同様に燃料入口側38お
よび燃料出口側40にもマニフオールドが設けら
れている。電極18および電解質マトリツクス1
6を通る燃料と酸化剤との相互作用により電力と
熱とが発生する。図示の燃料電池12は水素燃料
と空気の酸化剤とを用い電解質は燐酸である。 An oxidant, such as a halogen or air or other oxygen-containing material, flows through oxidant channel 28 and a fuel, such as hydrogen, organic or metal, flows through fuel channel 26. A manifold 27 is typically used, for example, to supply oxidant to the oxidant inlet side 34 of the fuel cell system stack and to receive oxidant from the oxidant outlet side 36 of the stack. Similarly, manifolds are provided on the fuel inlet side 38 and the fuel outlet side 40. Electrode 18 and electrolyte matrix 1
Electric power and heat are generated by the interaction of the fuel and oxidizer through 6. The illustrated fuel cell 12 uses hydrogen fuel and an air oxidizer, and the electrolyte is phosphoric acid.
電気化学的反応により相当の熱が発生し、従つ
てスタツク10には冷却モジユール42が設けて
ある。所望の作動温度に応じてスタツク10内の
適当な位置で燃料電池12の間に冷却モジユール
42が配置されている。冷却モジユール42は例
えば3乃至8番目毎の燃料電池の間に設けること
ができる。 The electrochemical reactions generate considerable heat and therefore the stack 10 is provided with a cooling module 42. A cooling module 42 is positioned between the fuel cells 12 at an appropriate location within the stack 10 depending on the desired operating temperature. A cooling module 42 can be provided, for example, between every third to eighth fuel cell.
各冷却モジユール42は望ましくは双極板14
と同様の材料、即ち図示の例では圧縮成型された
グラフアイト−樹脂組成物で作るのが望ましい。
冷却モジユール42はリブ45で分離された後に
詳しく説明する複数の冷却通路44を備えてい
る。冷却モジユール42は一体に形成することも
できるが、図示の如く2つの部分46を別々に作
つて後で封止するのが望ましい。冷却通路44は
望ましくは略々矩形であるが他の形も同様に用い
得る。冷却モジユール42を2つの部分46で形
成する場合、冷却通路の縁48を燃料電池のチヤ
ンネル28と同様に僅かに傾け(垂直から約7
度)て製造を容易とするのが望ましい。 Each cooling module 42 preferably includes a bipolar plate 14
Preferably, it is made of a similar material, ie, in the illustrated example, a compression molded graphite-resin composition.
Cooling module 42 includes a plurality of cooling passages 44 separated by ribs 45, which will be described in more detail below. Although the cooling module 42 can be formed in one piece, it is preferable to fabricate the two sections 46 separately and then seal them as shown. Cooling passages 44 are preferably generally rectangular, although other shapes may be used as well. When the cooling module 42 is formed in two parts 46, the edges 48 of the cooling passages are slightly inclined (approximately 7° from vertical) similar to the fuel cell channels 28.
It is desirable to make the manufacturing process easier.
冷却通路44は酸化剤チヤンネル28に略々平
行にするのが望ましいが、燃料チヤンネル26に
平行とすることもできる。しかしながら後者の場
合にはマニフオールドがより複雑になる。冷却流
体は冷却通路44内を通つて流れる。望ましい態
様では冷却流体と酸化剤とは空気等の同じ媒体で
ある。従つて図示の構成では空気は単一のマニフ
オールド27から燃料電池装置10の酸化剤入口
側34に供給され、冷却通路44および酸化剤チ
ヤンネル28を通つて平行に同じ方向に流れる。 Preferably, the cooling passages 44 are generally parallel to the oxidant channel 28, but could also be parallel to the fuel channel 26. However, in the latter case the manifold becomes more complex. Cooling fluid flows through cooling passages 44 . In a preferred embodiment, the cooling fluid and oxidizing agent are the same medium, such as air. Thus, in the illustrated configuration, air is supplied from a single manifold 27 to the oxidant inlet side 34 of the fuel cell device 10 and flows through the cooling passage 44 and the oxidant channel 28 in parallel and in the same direction.
冷却空気が冷却通路44を流れると、電気化学
的反応により発生した熱が吸収される。過大な冷
却空気流量を要さずに燃料電池12内の温度を比
較的一定に維持するために、冷却通路44の表面
積を冷却通路の入口端からの距離に応じて変化さ
せてある。入口端では表面積が小さく、出口端で
は表面積が大きい。表面積を増大させるのは種々
の方法により行なわれ、例えば距離の関数として
冷却通路の形状を変化させ、あるいは流れ方向に
沿つて通路を分岐させることによる。この変化は
連続的なものでも段階的なものでも良い。実際の
通路の形は製造上の理由により定めて良い。 As the cooling air flows through the cooling passages 44, heat generated by the electrochemical reaction is absorbed. In order to maintain a relatively constant temperature within fuel cell 12 without requiring excessive cooling air flow, the surface area of cooling passage 44 varies with distance from the inlet end of the cooling passage. The inlet end has a smaller surface area and the outlet end has a larger surface area. Increasing the surface area can be done in various ways, for example by changing the shape of the cooling passages as a function of distance or by branching the passages along the flow direction. This change may be continuous or gradual. The actual shape of the passageway may be determined by manufacturing considerations.
分岐した冷却通路の構成は第2図乃至第5図に
示されている。この例では冷却通路44は、入口
から出口に向つて単一通路44′を有する第1部
分と、2つの分岐通路44″を有する第2部分と、
3つの分岐通路44を有する第3部分とを備え
ている。各部分は全体の長さの約1/3である。図
示の矩形は、製造が比較的容易で所望の冷却条件
に合うので望ましい。通路44′,44″,44
による表面積は次第に増大している。 The configuration of the branched cooling passages is shown in FIGS. 2-5. In this example, the cooling passage 44 includes a first part having a single passage 44' from the inlet to the outlet, and a second part having two branch passages 44''.
and a third portion having three branch passages 44. Each part is about 1/3 of the total length. The rectangular shape shown is desirable because it is relatively easy to manufacture and meets the desired cooling conditions. Passage 44', 44'', 44
The surface area is gradually increasing.
第6図乃至第8図は夫々入口から出口までの一
連の部分を示し、表面積が増大するような形状に
変形されている。第9図乃至第12図にも同様の
順で示してある。第13図および第14図は断面
形が矩形で入口から出口に向つて表面積が次第に
増大する冷却通路44を示し、第15図および第
16図は断面形が円形で入口から出口に向つて表
面積が次第に増大する冷却通路44を示す。他の
多くの形も同様に使用できる。 Figures 6 to 8 each show a series of sections from the inlet to the outlet, each of which has been modified to have an increased surface area. The same order is also shown in FIGS. 9 to 12. 13 and 14 show a cooling passage 44 that has a rectangular cross section and a surface area that gradually increases from the inlet to the outlet, and FIGS. 15 and 16 show a cooling passage 44 that has a circular cross section and a surface area that gradually increases from the inlet to the outlet. 4 shows a cooling passage 44 that gradually increases. Many other shapes can be used as well.
燃料電池12内の温度分布をより一様にするた
めに冷却通路の長さに沿つて表面積を変化させる
他に、隣接の冷却通路を所定の態様で横方向に離
間させることもできる。特に、第17図に示す如
く、冷却通路44aおよび44bは例えば冷却通
路44cおよび44dよりも接近している。燃料
が入口38から出口40までチヤンネル26内を
移動するにつれ、燃料が次第に使用される。従つ
て発熱反応による熱は燃料入口38で大きく、燃
料出口40に向つて次第に少なくなる。燃料入口
近傍で冷却空気を多量に流し、燃料出口で冷却空
気を少なくするように冷却通路44を離間させれ
ば、燃料電池内の温度分布をより一様にすること
ができる。 In addition to varying the surface area along the length of the cooling passages to provide a more uniform temperature distribution within the fuel cell 12, adjacent cooling passages may also be laterally spaced apart in a predetermined manner. In particular, as shown in FIG. 17, cooling passages 44a and 44b are closer together than, for example, cooling passages 44c and 44d. As the fuel moves through the channel 26 from the inlet 38 to the outlet 40, it is progressively used. Therefore, the heat due to the exothermic reaction is large at the fuel inlet 38 and gradually decreases toward the fuel outlet 40. By spacing the cooling passages 44 so that a large amount of cooling air flows near the fuel inlet and less cooling air at the fuel outlet, the temperature distribution within the fuel cell can be made more uniform.
冷却通路の実際の寸法、形および間隔は、与え
られた燃料電池装置の発熱および冷却流体流れの
型式および量等の熱伝達に影響を及ぼす要素によ
り変わるものである。燃料電池に必要な表面積の
変化の例として、q(x)が双極板に発生する単
位面積当り熱束(Btu/ft2−hr)である場合、
局部的冷却空気温を越える燃料電池チヤンネルの
温度上昇は次の通りである。 The actual size, shape, and spacing of the cooling passages will vary depending on factors that affect heat transfer, such as the type and amount of heat generation and cooling fluid flow for a given fuel cell device. As an example of the change in surface area required for a fuel cell, if q(x) is the heat flux per unit area (Btu/ft 2 −hr) generated in the bipolar plate, then
The temperature rise in the fuel cell channel above the local cooling air temperature is:
△T=Tp(x)−Ta(x)=q(x)/h(x)A(x)(1
)
但し、A(x)は双極板の単位面積当り冷却表面
積(無次元)、h(x)は局部的熱伝達係数
(Btu/hr−ft2−〓)、Tp(x)は双極板温度
(〓)、Ta(x)は局部的冷却空気温度である。 △T=T p(x) −T a(x) = q(x)/h(x)A(x)(1
) However, A(x) is the cooling surface area per unit area of the bipolar plate (dimensionless), h(x) is the local heat transfer coefficient (Btu/hr−ft 2 −〓), and T p (x) is the cooling surface area per unit area of the bipolar plate. Temperature (〓), T a (x) is the local cooling air temperature.
冷却空気温度は
Ta(x)=Ta(p)+w/mcp∫x pq(x)dx) (2)
を満足し、Ta(x)=Ta(p)+wxq(x)/mcpである。但し
、
wは双極板の幅、Ta(p)は入口冷却空気温度(〓)、
q(x)はx=0からxまでの平均熱束、mは双
極板当りの冷却空気重量流量(1b/hr)、Cpは冷
却空気の比熱(Btu/1b−〓)である。従つて、
Tp(x)=Ta(p)+wxq(x)/mcp+q(x)/h(x)
A(x)(3)
双極板は
U(x)=h(x)A(x)=q(x)/Tpp
−Ta(p)−w/mcp∫x/pq(x)dx(4)
とすることにより一定温度Tppにできる。説明の
ための特定の例として、双極板単位面積に発生す
る熱q(x)が一定、q、であるとすると、冷却
係数U(x)は
U(x)=q/―/Tpp−Tap−wxq/mcp (5)
そして
U(I)/U(O)=Tpp−Tap/Tpp−Tap−△Ta、 (6)
但し△Taは冷却流体の温度上昇である。 The cooling air temperature satisfies T a (x) = T a(p) + w/mc p ∫ x p q(x) dx) (2), and T a(x) = T a(p) + wxq(x) /mc p . However, w is the width of the bipolar plate, T a(p) is the inlet cooling air temperature (〓),
q(x) is the average heat flux from x=0 to x, m is the cooling air weight flow rate per bipolar plate (1b/hr), and Cp is the specific heat of the cooling air (Btu/1b-〓). Therefore, T p(x) = T a(p) + wxq(x)/mc p +q(x)/h(x)
A(x)(3) The bipolar plate is U(x) = h(x) A(x) = q(x)/T pp
−T a(p) −w/mc p ∫ x / p q(x) dx(4) A constant temperature T pp can be achieved. As a specific example for illustration, if the heat q(x) generated per unit area of the bipolar plate is constant, q, then the cooling coefficient U(x) is U(x)=q/-/T pp- T ap −wxq/mc p (5) and U(I)/U(O)=T pp −T ap /T pp −T ap −△T a , (6) where △T a is the temperature rise of the cooling fluid It is.
従つて、入口冷却空気と近接した双極板の対応
する部分との温度差が100〓であり、冷却空気温
度が冷却通路を流れる間に75〓上昇すると、入口
での熱伝達係数を表面積に掛けた値U(O)に対
する出口での熱伝達係数を表面積に掛けた値U(L)
の所要の比は、100対100−75=4対1となる。こ
の比は、入口の大きなチヤンネルを出口で2つあ
るいは3つのチヤンネルに分割することにより容
易に得られ、特に4対1の冷却係数の比を得るた
めに、hが出口でのチヤンネルの流体的直径が小
さいために増大するので表面積の比を4対1とす
る必要がない。 Therefore, if the temperature difference between the inlet cooling air and the corresponding part of the adjacent bipolar plate is 100〓, and the cooling air temperature increases by 75〓 while flowing through the cooling passage, then the heat transfer coefficient at the inlet multiplied by the surface area The value U(L) is the surface area multiplied by the heat transfer coefficient at the outlet for the value U(O)
The required ratio of is 100:100-75 = 4:1. This ratio is easily obtained by dividing a large channel at the inlet into two or three channels at the outlet, in particular when h There is no need for a 4 to 1 surface area ratio as it increases due to the small diameter.
当業者には、冷却通路の形を様々に変えること
ができ、冷却通路の形および表面積を選択すると
きに流体的直径が重要な要素であることが理解で
きるであろう。望ましい形状は、流体的直径を減
少させると同時に表面積を増大させて冷却面積と
熱伝達係数の両者を増大させ、単位面積当りの冷
却能力を増大させるような形状である。 Those skilled in the art will appreciate that the shapes of the cooling passages can vary and that fluidic diameter is an important factor when selecting the shape and surface area of the cooling passages. A desirable shape is one that reduces the fluidic diameter while simultaneously increasing the surface area to increase both the cooling area and the heat transfer coefficient, thereby increasing the cooling capacity per unit area.
75〓(41℃)の温度上昇をする冷却空気流れ
は、この発明による如き冷却チヤンネル表面積の
変化を採用しない場合には隣接の双極板間に約75
〓の温度変化をもたらす。この温度変化はこの発
明による表面積の変化を採用すると約25〓(14
℃)に減少する。 A cooling air flow with a temperature increase of 75〓 (41°C) would be approximately
〓 brings about a temperature change. This temperature change is approximately 25〓(14
°C).
より一様な温度分布による利点は相当なもので
あり、例えば与えられた最高温度に対して双極板
平均温度を上げることができる。ここに説明した
燃料電池装置は必要な空気流れを減少させて必要
な循環用動力を減少させるだけでなく、動作温度
の上昇と共に減少し従つて高い平均温度により減
少する一酸化炭素触媒劣化(ポイズニング)の影
響を更に軽減させる。 The benefits of a more uniform temperature distribution are considerable, eg increasing the bipolar plate average temperature for a given maximum temperature. The fuel cell system described herein not only reduces the required airflow and thus the circulating power required, but also reduces carbon monoxide catalyst deterioration (poisoning), which decreases with increasing operating temperature and therefore with higher average temperatures. ) to further reduce the impact of
第1図は本発明の冷却装置を有する燃料電池装
置の分解斜視図、第2図は冷却モジユールの一部
の平面断面図、第3図乃至第5図は夫々第2図の
線−,−および−に沿つた断面図、
第6図乃至第8図は夫々第18図の線−,
−および−に沿つた別の実施例の第3図乃
至第5図と同様の断面図、第9図乃至第12図は
夫々第19図の線−,−,XI−XIおよび
XII−XIIに沿つた更に別の実施例の断面図、第13
図および第15図は冷却モジユールの別の実施例
の断面平面図、第14図および第16図は夫々第
13図および第15図の線−および
−に沿つた図、第17図は本発明の別の実施
例の燃料電池装置の一部の概略分解斜視図、第1
8図および第19図は別の冷却モジユール冷却通
路構造の断面平面図である。
10……燃料電池装置、12……燃料電池、1
4……双極板、16……電解質マトリツクス、1
8……電極、26……燃料チヤンネル・28……
酸化剤チヤンネル、27……マニフオールド、3
4……酸化剤入口側、36……酸化剤出口側、3
8……燃料入口側、40……燃料出口側、42…
…冷却モジユール、44……冷却通路。
FIG. 1 is an exploded perspective view of a fuel cell device having a cooling device of the present invention, FIG. 2 is a plan sectional view of a part of the cooling module, and FIGS. 3 to 5 are lines - and - of FIG. 2, respectively. A cross-sectional view along and -,
Figures 6 to 8 are lines -, respectively, of Figure 18.
3 to 5 of another embodiment along lines - and -, and Figures 9 to 12 are cross-sectional views along lines -, -, XI-XI and -, respectively, of Figure 19.
Sectional view of yet another embodiment along XII-XII, No. 13
14 and 16 are views along the lines - and - of FIGS. 13 and 15, respectively, and FIG. 17 is a cross-sectional plan view of another embodiment of the cooling module; FIG. 17 is a view taken along the lines - and - of FIGS. 1 is a schematic exploded perspective view of a part of a fuel cell device according to another embodiment of
8 and 19 are cross-sectional plan views of alternative cooling module cooling passage structures. 10...Fuel cell device, 12...Fuel cell, 1
4... Bipolar plate, 16... Electrolyte matrix, 1
8... Electrode, 26... Fuel channel, 28...
Oxidizer channel, 27... Manifold, 3
4... Oxidizer inlet side, 36... Oxidizer outlet side, 3
8...Fuel inlet side, 40...Fuel outlet side, 42...
...Cooling module, 44...Cooling passage.
Claims (1)
チヤンネルを有する2つの燃料電池と、上記燃料
電池の間に設けられた冷却モジユールと、上記冷
却モジユール内に入口および出口を有して形成さ
れ、上記酸化剤チヤンネルと並列に上記冷却モジ
ユール内を通つて延び、上記流体酸化剤を上記酸
化剤チヤンネルと並列に供給できる少なくとも1
つの冷却通路とを備えた燃料電池装置に於いて、 上記少なくとも1つの冷却通路が、上記入口か
ら上記出口に向かつて増大して変化する表面積を
有することを特徴とする燃料電池装置。 2 上記少なくとも1つの冷却通路の断面形が矩
形である特許請求の範囲第1項記載の燃料電池装
置。 3 上記冷却通路が所定の態様で互いに不均等に
離間されてなる特許請求の範囲第1項あるいは第
2項記載の燃料電池装置。[Scope of Claims] 1. Two fuel cells electrically connected and having an oxidant channel through which a fluid oxidant passes, a cooling module provided between the fuel cells, and an inlet and an outlet within the cooling module. and extending through the cooling module in parallel with the oxidant channel and capable of supplying the fluid oxidant in parallel with the oxidant channel.
1. A fuel cell device comprising at least one cooling passage, wherein the at least one cooling passage has a surface area that increases and changes from the inlet to the outlet. 2. The fuel cell device according to claim 1, wherein the at least one cooling passage has a rectangular cross-section. 3. The fuel cell device according to claim 1 or 2, wherein the cooling passages are unevenly spaced from each other in a predetermined manner.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/144,090 US4324844A (en) | 1980-04-28 | 1980-04-28 | Variable area fuel cell cooling |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57852A JPS57852A (en) | 1982-01-05 |
JPH0253909B2 true JPH0253909B2 (en) | 1990-11-20 |
Family
ID=22506996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6350681A Granted JPS57852A (en) | 1980-04-28 | 1981-04-28 | Cooler for fule battery |
Country Status (6)
Country | Link |
---|---|
US (1) | US4324844A (en) |
EP (1) | EP0039236B1 (en) |
JP (1) | JPS57852A (en) |
BR (1) | BR8102275A (en) |
DE (1) | DE3170475D1 (en) |
ZA (1) | ZA812049B (en) |
Families Citing this family (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3119409A1 (en) * | 1981-05-15 | 1982-12-09 | Brown, Boveri & Cie Ag, 6800 Mannheim | "HIGH TEMPERATURE BATTERY" |
US4416955A (en) * | 1982-01-11 | 1983-11-22 | Energy Research Corporation | Fuel cell sub-assembly |
US4444851A (en) * | 1982-06-28 | 1984-04-24 | Energy Research Corporation | Fuel cell stack |
US4508793A (en) * | 1982-09-08 | 1985-04-02 | Sanyo Electric Co., Ltd. | Air-cooled fuel cell system |
CA1229376A (en) * | 1983-06-02 | 1987-11-17 | John Werth | Fuel cell crimp-resistant cooling device with internal support |
US4945010A (en) * | 1983-06-02 | 1990-07-31 | Engelhard Corporation | Cooling assembly for fuel cells |
US4476196A (en) * | 1983-10-12 | 1984-10-09 | The United States Of America As Represented By The United States Department Of Energy | Solid oxide fuel cell having monolithic cross flow core and manifolding |
US4476197A (en) * | 1983-10-12 | 1984-10-09 | The United States Of America As Represented By The United States Department Of Energy | Integral manifolding structure for fuel cell core having parallel gas flow |
US4510212A (en) * | 1983-10-12 | 1985-04-09 | The United States Of America As Represented By The United States Department Of Energy | Solid oxide fuel cell having compound cross flow gas patterns |
US4476198A (en) * | 1983-10-12 | 1984-10-09 | The United States Of America As Represented By The United States Department Of Energy | Solid oxide fuel cell having monolithic core |
US4664988A (en) * | 1984-04-06 | 1987-05-12 | Kureha Kagaku Kogyo Kabushiki Kaisha | Fuel cell electrode substrate incorporating separator as an intercooler and process for preparation thereof |
JPS6130968U (en) * | 1984-07-28 | 1986-02-25 | 株式会社 富士電機総合研究所 | fuel cell stack |
US4572876A (en) * | 1985-04-01 | 1986-02-25 | Westinghouse Electric Corp. | Apparatus for supplying electrolyte to fuel cell stacks |
FR2582156B1 (en) * | 1985-05-15 | 1988-03-04 | Thomson Csf | MICROWAVE OSCILLATOR OPERATING IN MILLIMETER BAND |
JPS6273568A (en) * | 1985-09-26 | 1987-04-04 | Toshiba Corp | Fuel cell |
US4853301A (en) * | 1985-12-04 | 1989-08-01 | The United States Of America As Represented By The United States Department Of Energy | Fuel cell plates with skewed process channels for uniform distribution of stack compression load |
US4631239A (en) * | 1985-12-04 | 1986-12-23 | Westinghouse Electric Corp. | Fuel cell plates with improved arrangement of process channels for enhanced pressure drop across the plates |
US4732822A (en) * | 1986-12-10 | 1988-03-22 | The United States Of America As Represented By The United States Department Of Energy | Internal electrolyte supply system for reliable transport throughout fuel cell stacks |
US5108849A (en) * | 1989-08-30 | 1992-04-28 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Fuel cell fluid flow field plate |
US4988583A (en) * | 1989-08-30 | 1991-01-29 | Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government | Novel fuel cell fluid flow field plate |
US5547776A (en) * | 1991-01-15 | 1996-08-20 | Ballard Power Systems Inc. | Electrochemical fuel cell stack with concurrently flowing coolant and oxidant streams |
US5541015A (en) * | 1992-05-12 | 1996-07-30 | Sanyo Electric Co., Ltd. | Fuel cell using a separate gas cooling method |
JP2551713B2 (en) * | 1992-07-15 | 1996-11-06 | 株式会社日立製作所 | Fuel cell |
US5773160A (en) * | 1994-06-24 | 1998-06-30 | Ballard Power Systems Inc. | Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams |
ATE301335T1 (en) * | 1995-05-25 | 2005-08-15 | Honda Motor Co Ltd | FUEL CELL AND METHOD FOR CONTROL THEREOF |
JP3604848B2 (en) | 1996-01-18 | 2004-12-22 | 日本碍子株式会社 | Laminated sintered body for electrochemical cell, electrochemical cell, and method for producing laminated sintered body for electrochemical cell |
JP4543440B2 (en) * | 1997-12-22 | 2010-09-15 | 株式会社エクォス・リサーチ | Water direct injection fuel cell system |
US7029775B2 (en) * | 1997-12-22 | 2006-04-18 | Kabushikikaisha Equos Research | Fuel cell system |
JPH11317236A (en) | 1997-12-22 | 1999-11-16 | Aqueous Reserch:Kk | Fuel cell system |
GB9814120D0 (en) * | 1998-07-01 | 1998-08-26 | British Gas Plc | Cooling of fuel cell stacks |
AU2197400A (en) * | 1998-12-17 | 2000-07-03 | International Fuel Cells, Llc | A cooling plate for a fuel cell stack assembly |
JP4686814B2 (en) | 1999-11-17 | 2011-05-25 | 株式会社エクォス・リサーチ | Fuel cell device |
DE10007763B4 (en) * | 2000-02-20 | 2017-04-06 | General Motors Corp. (N.D.Ges.D. Staates Delaware) | A fuel cell assembly |
US6921598B2 (en) * | 2000-03-07 | 2005-07-26 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell and method of manufacturing the same |
AU4835901A (en) * | 2000-03-28 | 2001-10-08 | Manhattan Scientifics, Inc. | Method of operating a fuel cell system, and fuel cell system operable accordingly |
JP2001332288A (en) * | 2000-05-24 | 2001-11-30 | Honda Motor Co Ltd | Fuel cell stack |
JP4516229B2 (en) * | 2001-03-06 | 2010-08-04 | 本田技研工業株式会社 | Solid polymer cell assembly |
US20030035984A1 (en) | 2001-08-15 | 2003-02-20 | Colborn Jeffrey A. | Metal fuel cell system for providing backup power to one or more loads |
US6780536B2 (en) * | 2001-09-17 | 2004-08-24 | 3M Innovative Properties Company | Flow field |
US6783884B2 (en) | 2002-04-12 | 2004-08-31 | Ballard Power Systems Inc. | Flow field plate assembly for an electrochemical fuel cell |
JP4308515B2 (en) * | 2002-12-27 | 2009-08-05 | パナソニック株式会社 | Battery module |
US7482088B2 (en) * | 2003-01-31 | 2009-01-27 | 3M Innovative Properties Company | Flow field |
DE112004002313B4 (en) * | 2003-11-28 | 2011-09-15 | Toyota Jidosha Kabushiki Kaisha | fuel cell |
FR2865028B1 (en) * | 2004-01-12 | 2006-12-29 | Ziepack | THERMAL EXCHANGER AND EXCHANGE MODULE RELATING THERETO |
EP1624515B1 (en) * | 2004-05-28 | 2008-12-17 | Du Pont Canada Inc. | Unitized electrochemical cell sub-assembly and the method of making the same |
ITMI20041314A1 (en) * | 2004-06-30 | 2004-09-30 | Nuvera Fuel Cells Europ Srl | COOLING DEVICE FOR MEMBRANE FUEL CELLS |
KR100637504B1 (en) | 2004-08-30 | 2006-10-20 | 삼성에스디아이 주식회사 | Fuel cell system and its stack |
US7041408B1 (en) * | 2004-12-28 | 2006-05-09 | Utc Fuel Cells, Llc | Varied fuel cell oxidant flow channel depth resulting in fewer cooler plates |
KR101023584B1 (en) * | 2004-12-29 | 2011-03-21 | 유티씨 파워 코포레이션 | Fuel Cell Assembly with Operating Temperature for Extended Life |
WO2006073071A1 (en) * | 2005-01-04 | 2006-07-13 | Nec Corporation | Case for film-packed electrical device and film-packed electrical device assembly |
US7361427B1 (en) | 2005-05-27 | 2008-04-22 | The United States Of America Represented By The Secretary Of The Navy | Manifold for a pile configured battery |
EP1736715A1 (en) * | 2005-06-23 | 2006-12-27 | Sgl Carbon Ag | Vacuum tube for solar collectors with improved heat transfer |
US7833645B2 (en) * | 2005-11-21 | 2010-11-16 | Relion, Inc. | Proton exchange membrane fuel cell and method of forming a fuel cell |
JP5021219B2 (en) * | 2006-03-01 | 2012-09-05 | 本田技研工業株式会社 | Fuel cell stack |
US8603654B2 (en) * | 2006-11-22 | 2013-12-10 | GM Global Technology Operations LLC | Supplemental coolant heating for fuel cells with metal plates |
US20080145723A1 (en) * | 2006-12-15 | 2008-06-19 | General Electric Company | Rechargeable fuel cell and method |
US7985505B2 (en) * | 2006-12-15 | 2011-07-26 | General Electric Company | Fuel cell apparatus and associated method |
US8343687B2 (en) * | 2006-12-19 | 2013-01-01 | General Electric Company | Rechargeable fuel cell system |
FR2913819A1 (en) * | 2007-03-16 | 2008-09-19 | Air Liquide | Parallelepiped shaped polar or bipolar plate for proton exchange membrane type fuel cell, has outer surface including strips that are oriented along directions having non-zero angle with respect to cooling gas circulation direction |
US8026020B2 (en) | 2007-05-08 | 2011-09-27 | Relion, Inc. | Proton exchange membrane fuel cell stack and fuel cell stack module |
DE102007024161A1 (en) * | 2007-05-24 | 2008-11-27 | Daimler Ag | Bipolar plate for fuel cells |
US9293778B2 (en) | 2007-06-11 | 2016-03-22 | Emergent Power Inc. | Proton exchange membrane fuel cell |
FR2918798A1 (en) * | 2007-07-10 | 2009-01-16 | Air Liquide | Proton exchange membrane fuel cell plate, has wings forming ribs on outside of plate, and extending on part of plate between inlet side and outlet side, where wings present notches that create turbulence during flow of coolant |
US8003274B2 (en) | 2007-10-25 | 2011-08-23 | Relion, Inc. | Direct liquid fuel cell |
GB2464274A (en) * | 2008-10-07 | 2010-04-14 | Intelligent Energy Ltd | Fuel Cell Assembly |
JP5365162B2 (en) * | 2008-11-26 | 2013-12-11 | 日産自動車株式会社 | Fuel cell |
US8168344B2 (en) * | 2009-02-20 | 2012-05-01 | Clearedge Power, Inc. | Air-cooled thermal management for a fuel cell stack |
ES2706907T3 (en) * | 2009-11-24 | 2019-04-01 | Air To Air Sweden Ab | Method for producing multiple channels for use in a device for the exchange of solutes or heat between fluid flows and the respective device |
US9683789B2 (en) | 2009-11-24 | 2017-06-20 | Air To Air Sweden Ab | Method of producing multiple channels for use in a device for exchange of solutes or heat between fluid flows |
KR101126203B1 (en) * | 2009-12-15 | 2012-03-22 | 삼성에스디아이 주식회사 | Fuel cell stack and fuel cell system having the same |
US10553881B2 (en) | 2011-07-05 | 2020-02-04 | Toyota Jidosha Kabushiki Kaisha | Fuel cell |
GB2519493A (en) | 2012-08-14 | 2015-04-22 | Powerdisc Dev Corp Ltd | Fuel cells components, stacks and modular fuel cell systems |
US9644277B2 (en) | 2012-08-14 | 2017-05-09 | Loop Energy Inc. | Reactant flow channels for electrolyzer applications |
CN104718651B (en) | 2012-08-14 | 2017-07-28 | 环能源公司 | Fuel cell flows raceway groove and flow field |
KR101491372B1 (en) * | 2013-12-17 | 2015-02-06 | 현대자동차주식회사 | Fuel cell separator and fuel cell stack including the same |
DE102014002829A1 (en) * | 2014-02-27 | 2015-08-27 | Wieland-Werke Ag | Metallic heat exchanger tube |
GB2524733A (en) | 2014-03-31 | 2015-10-07 | Intelligent Energy Ltd | Cooling plates for fuel cells |
WO2017161449A1 (en) | 2016-03-22 | 2017-09-28 | Loop Energy Inc. | Fuel cell flow field design for thermal management |
JP6772200B2 (en) * | 2018-01-09 | 2020-10-21 | 本田技研工業株式会社 | Power generation cell |
EP3543376A1 (en) | 2018-03-22 | 2019-09-25 | Hymeth ApS | Cooling plate assembly and an electrolyser stack comprising the same |
DE102021100186A1 (en) | 2021-01-08 | 2022-07-14 | Audi Aktiengesellschaft | Bipolar plate with channel splits and fuel cell stack present in the active area |
GB2628145A (en) * | 2023-03-15 | 2024-09-18 | Zeroavia Ltd | Bidirectional (staggered) bipolar plate pattern for fuel cell cooling |
DE102023122870A1 (en) | 2023-08-25 | 2024-06-20 | Schaeffler Technologies AG & Co. KG | Cooling module of an electrochemical system, cell stack and method for producing a cooling module |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3160528A (en) * | 1961-11-30 | 1964-12-08 | Exxon Research Engineering Co | Portable power plant |
US3432357A (en) * | 1964-09-28 | 1969-03-11 | Gen Electric | Fluent material distribution system and fuel cell therewith |
GB1151373A (en) * | 1965-05-18 | 1969-05-07 | Energy Conversion Ltd | Improvements in and relating to Electrochemical Cell Arrangements |
US3709736A (en) * | 1970-08-17 | 1973-01-09 | Engelhard Min & Chem | Fuel cell system comprising noncirculating,counter-current gas flow means |
FR2259447B1 (en) * | 1974-01-25 | 1976-11-26 | Alsthom Cgee | |
US4074020A (en) * | 1975-02-06 | 1978-02-14 | Societe Generale De Constructions Electriques Et Mecaniques "Alsthom Et Cie" | Cross-feed fuel cell battery with filter press type structure of polygonal cross-section |
FR2304183A1 (en) * | 1975-03-11 | 1976-10-08 | Accumulateurs Fixes | AIR DEPOLARIZATION BATTERY |
SE390582B (en) * | 1975-05-12 | 1976-12-27 | Lindstroem Ab Olle | DEVICE FOR ELECTROCHEMICAL BATTERIES CONTAINING AT LEAST TWO SERIES-CONNECTED MODULES WITH ELECTROLYTRUM CONNECTING TO EACH OTHER |
JPS52122844A (en) * | 1976-04-09 | 1977-10-15 | Hitachi Ltd | Stacked structure battery |
US4129685A (en) * | 1977-08-15 | 1978-12-12 | United Technologies Corp. | Fuel cell structure |
US4182795A (en) * | 1978-07-10 | 1980-01-08 | Energy Research Corporation | Fuel cell thermal control and reforming of process gas hydrocarbons |
US4169917A (en) * | 1978-07-10 | 1979-10-02 | Energy Research Corporation | Electrochemical cell and separator plate thereof |
-
1980
- 1980-04-28 US US06/144,090 patent/US4324844A/en not_active Expired - Lifetime
-
1981
- 1981-03-26 ZA ZA00812049A patent/ZA812049B/en unknown
- 1981-04-14 BR BR8102275A patent/BR8102275A/en unknown
- 1981-04-28 EP EP81301866A patent/EP0039236B1/en not_active Expired
- 1981-04-28 DE DE8181301866T patent/DE3170475D1/en not_active Expired
- 1981-04-28 JP JP6350681A patent/JPS57852A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
BR8102275A (en) | 1982-01-12 |
ZA812049B (en) | 1982-06-30 |
DE3170475D1 (en) | 1985-06-20 |
US4324844A (en) | 1982-04-13 |
EP0039236B1 (en) | 1985-05-15 |
JPS57852A (en) | 1982-01-05 |
EP0039236A1 (en) | 1981-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0253909B2 (en) | ||
US4292379A (en) | Variable area fuel cell process channels | |
US4582765A (en) | Fuel cell system with coolant flow reversal | |
CN107658480B (en) | A fuel cell single cell and stack with enhanced temperature and humidity uniformity | |
US5773160A (en) | Electrochemical fuel cell stack with concurrent flow of coolant and oxidant streams and countercurrent flow of fuel and oxidant streams | |
EP0063199B1 (en) | Fuel cell stack arrangements | |
US5686199A (en) | Flow field plate for use in a proton exchange membrane fuel cell | |
US5922485A (en) | Solid polymer electrolyte fuel cell | |
JP2899709B2 (en) | Molten carbonate fuel cell power generator | |
JP2000231929A (en) | Fuel cell | |
EP0039235A1 (en) | Polygonal shaped fuel cell system | |
CN114068978B (en) | Air-cooled fuel cell hydrogen air flow field parallel bipolar plate | |
JPH09511356A (en) | Electrochemical fuel cell stack with simultaneously flowing refrigerant and oxidant | |
JPH08507402A (en) | Lightweight Fuel Cell Membrane Electrode Assembly with Integrated Reactor Channel | |
JP6745920B2 (en) | Bipolar plate with variable width in the reaction gas channel in the inlet region of the active region, fuel cell stack, fuel cell system with such bipolar plate, and vehicle | |
JPH10284096A (en) | Solid polymer electrolyte fuel cell | |
US20040265675A1 (en) | Fuel Cell Flow Field Design | |
JPH05251097A (en) | Solid polymer electrolyte fuel cell | |
CN113594488B (en) | Air-cooled proton exchange membrane fuel cell metal bipolar plate and fuel cell thereof | |
JPH0950819A (en) | Solid polymer electrolyte fuel cell | |
JPH08111231A (en) | Solid polymer electrolyte fuel cell | |
JP2570771B2 (en) | Fuel cell cooling method | |
JP4601893B2 (en) | Fuel cell separator | |
CN113258093B (en) | Cathode single plate, anode single plate, flow guide polar plate and fuel cell containing same | |
CN210805927U (en) | Bipolar plate of fuel cell |