[go: up one dir, main page]

JPH0253642B2 - - Google Patents

Info

Publication number
JPH0253642B2
JPH0253642B2 JP56141582A JP14158281A JPH0253642B2 JP H0253642 B2 JPH0253642 B2 JP H0253642B2 JP 56141582 A JP56141582 A JP 56141582A JP 14158281 A JP14158281 A JP 14158281A JP H0253642 B2 JPH0253642 B2 JP H0253642B2
Authority
JP
Japan
Prior art keywords
communicate
opened
flow path
tank
pumps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56141582A
Other languages
Japanese (ja)
Other versions
JPS5842803A (en
Inventor
Hiroshi Fukaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANDOZER IND CO Ltd
Original Assignee
HANDOZER IND CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANDOZER IND CO Ltd filed Critical HANDOZER IND CO Ltd
Priority to JP56141582A priority Critical patent/JPS5842803A/en
Publication of JPS5842803A publication Critical patent/JPS5842803A/en
Publication of JPH0253642B2 publication Critical patent/JPH0253642B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/45Control of bleed-off flow, e.g. control of bypass flow to the return line

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Description

【発明の詳細な説明】 本発明は、主として、左右に各別の油圧モータ
ーにより駆動されるクローラが夫々装架してある
車体に、ドーザー・バツクホウなどの各種作業機
を装架せしめている土木用の車輌に装設して、左
右のクローラー及び作業機の作動を制御せしめる
ように用いる切換弁と、これを複合組合わせた複
合切換弁についての改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is mainly applicable to civil engineering work in which various working machines such as dozers and backhoes are mounted on a vehicle body on which crawlers driven by separate hydraulic motors are mounted on the left and right sides. This invention relates to improvements in a switching valve that is installed on a commercial vehicle and used to control the operation of left and right crawlers and work equipment, and a composite switching valve that combines these.

従来、2個の油圧ポンプと、それを接続する複
数のアクチエータとを具備する土木用車輌の作業
機の油圧回路において、作業機のアクチエータ
を、一個の油圧ポンプで駆動するときの2倍の速
度で駆動さすようにする場合、第8図に示してい
る如く、一つの弁箱(弁枠)14に多数の切換弁
を組込んだ複合切換弁を、第9図に示している如
く、2連に並設して、各操作レバーを互いに機械
的にコネクター20で連動させ、それぞれの複合
切換弁より吐出する油圧をT型継手21等によつ
て合流し倍速を得ていた。しかし、これでは、配
管が多くなり、スペースを広く要し、さらに、構
造が複雑で、作動の信頼性を低いなどの問題があ
つた。
Conventionally, in a hydraulic circuit for a working machine of a civil engineering vehicle that is equipped with two hydraulic pumps and a plurality of actuators connecting them, the actuator of the working machine can be driven at twice the speed of driving the actuator of the working machine with a single hydraulic pump. In the case of driving a compound switching valve in which a large number of switching valves are incorporated in one valve body (valve frame) 14 as shown in FIG. 8, as shown in FIG. The operating levers were arranged in parallel, and the operating levers were mechanically interlocked with each other through connectors 20, and the hydraulic pressures discharged from the respective compound switching valves were combined through T-shaped joints 21, etc., to obtain double speed. However, this method requires a large number of pipes, requires a large space, has a complicated structure, and has low operational reliability.

また、2個の油圧ポンプと2個の油圧モーター
とをつなぐ回路に、2個の油圧モーターに対し一
方の油圧ポンプが接続する単流状態と両方の油圧
ポンプが接続する合流状態とに切換える単流・合
流切換弁と、油圧ポンプに対し2個の油圧モータ
ーが直列に接続する状態と並列に接続する状態と
に切換える直列・並列切換弁と、2つの油圧モー
ターに流れるオイルの方向を同時に切換える二系
統同時方向切換弁との、三つの切換弁を組込む制
御手段も、例えば実開昭49−122289号公報に知ら
れている。しかし、この従前手段は、前記公報に
あるように、単流・合流の切換え、及び直列・並
列の切換え、ならびに二系統の同時方向切換え、
の三通りの切換操作が、夫々各別の切換弁を操作
することで行なわれるもので、それだけ操作が面
倒であり、かつ、三通りの切換操作に三個の切換
弁を要することと、多連弁にすることが出来ない
構成になつていることから、機構が複雑で高価な
ものとなり、しかも配管が長くなつて効率が悪く
なる問題があり、さらに、2つの油圧モーターの
回転方向を各別に切換えるための切換え操作が出
来ないものである。
In addition, in the circuit connecting the two hydraulic pumps and the two hydraulic motors, there is a circuit that switches between a single flow state where one hydraulic pump is connected to the two hydraulic motors and a combined state where both hydraulic pumps are connected. A flow/merging switching valve, a series/parallel switching valve that switches between connecting the two hydraulic motors in series and parallel to the hydraulic pump, and simultaneously switching the direction of oil flowing to the two hydraulic motors. A control means incorporating three switching valves, such as a two-system simultaneous directional switching valve, is also known, for example, from Japanese Utility Model Application Publication No. 122289/1989. However, as stated in the above-mentioned publication, this conventional means is capable of switching between single flow and combined flow, switching between series and parallel flow, and simultaneous direction switching of two systems.
The three switching operations are performed by operating separate switching valves, which makes the operation that much more troublesome, and requires three switching valves for each of the three switching operations. Since the configuration does not allow for continuous valve operation, the mechanism becomes complicated and expensive, and the piping becomes long, which reduces efficiency. It is not possible to perform a separate switching operation.

本発明における目的は、前述の数種の切換えを
行なう数個の切換弁を、多連弁を可能とする一つ
の切換弁にまとめて、切換操作を簡単にし、か
つ、機構及び配管を簡略にして安価に作れ、しか
も、配管を著しく短くして効率を良くする新たな
切換弁と、これを複合組合わせた複合切換弁を提
起することにある。
The purpose of the present invention is to simplify the switching operation and simplify the mechanism and piping by combining the several switching valves that perform several types of switching into one switching valve that enables multiple valves. The purpose of the present invention is to propose a new switching valve that can be manufactured at low cost and improves efficiency by significantly shortening the piping, and a composite switching valve that combines the same.

以下、本発明を図示する実施例を参照しながら
説明する。
The invention will now be described with reference to illustrative embodiments.

第1図において、1は弁本体であり、スプール
2が摺動可能となる主流路3が、左右方向に貫通
するように形設してある。
In FIG. 1, reference numeral 1 denotes a valve body, and a main channel 3 through which a spool 2 can slide is formed so as to penetrate in the left-right direction.

そして、弁本体1には、第10図および第11
図に示している如く、この主流路3より上方に寄
せた位置に、二つのポンプP1,P2にそれぞれ連
通する左右に一対の流路W1,W2が、平面視にお
いて主流路3と直交する方向となる前後方向に貫
通するように形成してある。
10 and 11 on the valve body 1.
As shown in the figure, a pair of flow passages W 1 and W 2 on the left and right, which communicate with the two pumps P 1 and P 2 , respectively, are located above the main flow passage 3 , and are connected to the main flow passage 3 in a plan view. It is formed so as to penetrate in the front-rear direction, which is a direction perpendicular to the front-back direction.

また、該弁本体1の前記主流路3とラツプする
高さ位置に、前記二つのポンプP1,P2にそれぞ
れ連通する左右に一対の流路Y1,Y2が、主流路
3とクロスして該弁本体1を前後に貫通するよう
形成してあり、それら流路Y1,Y2は主流路3と
クロスする部位においてその主流路3にそれぞれ
連通している。
Further, at a height position of the valve body 1 that overlaps with the main flow path 3, a pair of flow paths Y 1 and Y 2 on the left and right, which communicate with the two pumps P 1 and P 2 respectively, crosses the main flow path 3. The valve body 1 is formed so as to pass through the valve body 1 in the front and back directions, and the flow paths Y 1 and Y 2 communicate with the main flow path 3 at the portions where they intersect with the main flow path 3, respectively.

そしてまた、弁本体1の主流路3より下方にに
寄る部位には、タンクTに連通するタンクライン
7が、該弁本体1を前後に貫通するよう形成して
ある。
Furthermore, a tank line 7 communicating with the tank T is formed in a portion of the valve body 1 that is closer to the lower side than the main flow path 3 so as to penetrate the valve body 1 in the front and back directions.

再び第1図において、弁本体1に左右方向に貫
通するように設けた前述の主流路3には、アクチ
エータ4を作動させるための流路5,5とそれぞ
れ連通するポート5A,5B、及び前記一対の流
路W1,W2からそれぞれ分岐した分岐流路9P1
9P2のそれぞれの分岐端ポート10P1,11P1
と10P2,11P2および、前述の該主流路3と
クロスする一対の流路Y1,Y2の開口部6P1,6
P2、ならびに前記タンクライン7の開口部7A,
7Bが、それぞれ左右に対称するように位置して
開口している。それらポートおよび開口部の位置
関係は、タンクライン7の開口部7A,7Bが左
右の最外側両サイドに位置し、その内側両サイド
にアクチエータ4に連通する流路5,5のポート
5A,5Bが位置し、その内側に流路W1,W2
ら分岐した分岐流路9P1,9P2の一方の分岐端
ポート10P2,11P1とその内側に前記分岐流
路9P1,9P2の他方の分岐端ポート10P1,1
1P2が位置し、更に、その内側中央に、流路Y1
Y2のそれぞれの開口部6P1,6P2が近接して位
置しいてる。
Referring again to FIG. 1, the above-mentioned main flow path 3, which is provided so as to pass through the valve body 1 in the left-right direction, has ports 5A and 5B that communicate with flow paths 5 and 5, respectively, for actuating the actuator 4, and Branch flow paths 9P 1 branched from the pair of flow paths W 1 and W 2 , respectively;
Each branch end port of 9P 2 10P 1 , 11P 1
and 10P 2 , 11P 2 and the openings 6P 1 , 6 of the pair of channels Y 1 , Y 2 that cross the above-mentioned main channel 3
P 2 , as well as the opening 7A of the tank line 7,
7B are opened and positioned symmetrically on the left and right. The positional relationship of these ports and openings is such that the openings 7A and 7B of the tank line 7 are located on both the left and right outermost sides, and the ports 5A and 5B of the flow paths 5 and 5 communicating with the actuator 4 are located on both inner sides thereof. are located, and one branch end port 10P 2 , 11P 1 of the branch channels 9P 1 , 9P 2 branched from the channels W 1 , W 2 is located inside thereof, and one branch end port 10P 2 , 11P 1 of the branch channel 9P 1 , 9P 2 is located inside thereof. The other branch end port 10P 1 , 1
1P 2 is located, and furthermore, a flow path Y 1 ,
The respective openings 6P 1 and 6P 2 of Y 2 are located close to each other.

前記主流路3とクロスする流路Y1,Y2は、そ
れの主流路3とクロスする部位が、第1図にて鎖
線に示している如く、主流路3に対し開口部6
P1,6P2によりそのまま連通しているが、流路
W1,W2は、分岐流路9P1,9P2に対しそれぞれ
ロードチエツキバルブ8P1,8P2を介し連通し
ている。
The flow paths Y 1 and Y 2 that cross the main flow path 3 have an opening 6 with respect to the main flow path 3, as shown by the chain line in FIG.
P 1 and 6P 2 communicate as they are, but the flow path
W 1 and W 2 communicate with branch flow paths 9P 1 and 9P 2 via road check valves 8P 1 and 8P 2 , respectively.

そして、それら分岐流路9P1,9P2のうちの
一方の分岐流路9P1は、二つの分岐端ポート1
0P1,11P1を具備し、それらによつて夫々前
記5A,5Bに接近した部位で主流路3に連通す
る。他方、他の分岐流路9P2もまた二つの分岐
端ポート10P2,11P2によつて夫々前記ポー
ト5A,5Bに接近した部位で主流路3に連通す
る。そして、分岐端ポート10P1と分岐端ポー
ト11P2とは第1図において互いに左右対称の
位置関係にあり、同様に分岐端ポート10P2
分岐端ポート11P1とは互いに左右対称の位置
関係にある。
One of the branch channels 9P 1 and 9P 2 , the branch channel 9P 1 , has two branch end ports 1.
0P 1 and 11P 1 , which communicate with the main flow path 3 at portions close to the aforementioned 5A and 5B, respectively. On the other hand, the other branch channel 9P 2 also communicates with the main channel 3 through two branch end ports 10P 2 and 11P 2 at locations close to the ports 5A and 5B, respectively. The branch end port 10P 1 and the branch end port 11P 2 are in a bilaterally symmetrical positional relationship with each other in FIG . be.

前記スプール2は、5つのシリンダー部2C1
2C2,2C3,2C4,2C5と4つのくびれ部2L1
2L2,2L3,2L4とが交互に直列状に連続して
なり、各部分はシリンダー部2C3を中心に第1
図において、左右対称をなす。
The spool 2 has five cylinder parts 2C 1 ,
2C 2 , 2C 3 , 2C 4 , 2C 5 and four constrictions 2L 1 ,
2L 2 , 2L 3 , and 2L 4 are arranged in series alternately, and each part has the first part centered around the cylinder part 2C 3 .
In the figure, it is symmetrical.

中央のシリンダー部2C3の長さは、主流路3
とクロスする二つの流路Y1,Y2の開口部6P1
6P2の間隔に略等しく、中立状態(第1図の状
態)では、該シリンダー部2C3は主流路3にお
けるこれら流路Y1,Y2の開口部6P1,6P2の間
隔内にあつて該開口部6P1,6P2をブロツクし
ないよう設定されている。いいかえれば、開口部
6P1,6P2は、スプール2が中立状態にあると
きには、そのスプール2の中央シリンダー部2
C3の両側に連続するくびれ部2L2,2L3の部分
に臨む位置を占めて常にポンプP1,P2から流体
の通過を許容するようになつている。
The length of the central cylinder part 2C3 is the main flow path 3.
The openings 6P 1 of the two flow paths Y 1 and Y 2 that intersect with
6P 2 , and in the neutral state (the state shown in FIG. 1), the cylinder portion 2C 3 is within the spacing between the openings 6P 1 and 6P 2 of these channels Y 1 and Y 2 in the main flow channel 3. The openings 6P 1 and 6P 2 are set so as not to be blocked. In other words, the openings 6P 1 and 6P 2 are connected to the central cylinder portion 2 of the spool 2 when the spool 2 is in the neutral state.
It occupies a position facing the constricted portions 2L 2 and 2L 3 that are continuous on both sides of C 3 and always allows passage of fluid from the pumps P 1 and P 2 .

これらくびれ部2L2,2L3の長さは、中立状
態では第1図に示すように、いずれもが流路Y1
の開口部6P1または流路Y2の開口部6P2に対面
する状態となり、シングル作動状態では第2図・
第4図に示すようにいずれか一方のみが流路Y1
の開口部6P1または流路Y2の開口部6P2に面し
他方は主流路3のむくの部分に位置する状態とな
り、ダブル作動状態では第3図・第5図に示すよ
うにいずれか一方のくびれ部は流路Y1の開口部
6P1と流路Y2の開口部6P2との間に位置し他方
のくびれ部は分岐端ポート10P1または分岐端
ポート11P2に面するように設定されている。
The lengths of these constrictions 2L 2 and 2L 3 are such that in the neutral state, as shown in FIG.
It faces the opening 6P 1 of the channel Y 2 or the opening 6P 2 of the flow path Y 2.
As shown in Figure 4, only one of them is the flow path Y1.
The opening 6P1 of the flow path Y2 or the opening 6P2 of the flow path Y2 is in a state where the other is located in the open part of the main flow path 3, and in the double operation state, either one faces the opening 6P1 of the flow path Y2 or the opening 6P2 of the flow path Y2. One constriction is located between the opening 6P 1 of the channel Y 1 and the opening 6P 2 of the channel Y 2 , and the other constriction faces the branch end port 10P 1 or the branch end port 11P 2 . is set to .

これらくびれ部2L2,2L3の各外側に連続す
るシリンダー部2C2,2C4の長さは、中立状態
において主流路3の第1図において左側に並列し
ている分岐端ポート10P1,10P2と右側に並
列している分岐端ポート11P1,11P2をブロ
ツクするように設定されている。
The lengths of the cylinder parts 2C 2 and 2C 4 that are continuous to the outside of these constricted parts 2L 2 and 2L 3 are the branch end ports 10P 1 and 10P that are parallel to each other on the left side of the main flow path 3 in FIG. 1 in the neutral state. The branch end ports 11P 1 and 11P 2 which are parallel to each other on the right side of the port 2 are blocked.

さらに、これらシリンダー部2C2,2C4の各
外側に連続しているくびれ部2L1,2L4の長さ
は、第1図に示すように中立状態において、主流
路3の各両外側部分に連通するポート5A,5B
に面するよう設定されている。そして、くびれ部
2L1の長さはシングル作動状態においては、第
2図に示すようにポート5Aと分岐端ポート10
P2との連通を可能とするよう設定され、かつ、
ダブル作動状態においては、第3図に示すように
ポート5Aと分岐端ポート10P1と分岐端ポー
ト10P2との三者の連通を可能とするよう設定
されている。また、くびれ部2L4の長さは、シ
ングル作動状態においては第4図に示すようにポ
ート5Bと分岐端ポート11P1との二者を連通
可能とし、かつ、ダブル作動状態においては、第
5図に示すようにポート5Bと分岐端ポート11
P1と分岐端ポート11P2との三者の連通を可能
とするよう設定されている。
Furthermore, the lengths of the constricted portions 2L 1 and 2L 4 that are continuous on the outside of these cylinder portions 2C 2 and 2C 4 are the same as those of the two outside portions of the main flow path 3 in the neutral state as shown in FIG. Communicating ports 5A, 5B
It is set to face. In the single operating state, the length of the constricted portion 2L1 is as shown in FIG.
configured to enable communication with P 2 , and
In the double operating state, as shown in FIG. 3, the configuration is such that communication between the port 5A, the branch end port 10P1 , and the branch end port 10P2 is enabled. In addition, the length of the constricted portion 2L4 is such that in the single operating state, the port 5B and the branch end port 11P1 can communicate with each other as shown in FIG. As shown in the figure, port 5B and branch end port 11
It is set to enable three-way communication between P1 and the branch end port 11P2 .

さらにまた、前記くびれ部2L1,2L4の各外
側に連続しているシリンダー部2C1,2C5は、
中立状態では第1図に示すようにいずれもタンク
ライン7の開口部7A,7Bをブロツクし、シン
グル作動状態では第2図・第4図に示すように
し、いずれか一方がタンクライン7の開口部7
A,7Bのうちの一方をブロツクし他方はそのタ
ンクライン7の開口部7A,7Bのうちの他方を
連通し、ダブル作動状態でも第3図・第5図に示
すように、いずれか一方がタンクライン7の開口
部7A,7Bのうちの一方をブロツクし他方はそ
のタンクライン7の開口部7A,7Bのうちの他
方を連通するよう構成されている。
Furthermore, the cylinder portions 2C 1 and 2C 5 that are continuous to the outside of the constricted portions 2L 1 and 2L 4 are as follows:
In the neutral state, the openings 7A and 7B of the tank line 7 are both blocked, as shown in FIG. 1, and in the single operating state, as shown in FIGS. Part 7
One of the openings 7A and 7B of the tank line 7 is blocked, and the other one is connected to the other of the openings 7A and 7B of the tank line 7, so that even in the double operation state, either one of the openings 7A and 7B is blocked, as shown in Figures 3 and 5. One of the openings 7A, 7B of the tank line 7 is blocked, and the other is configured to communicate with the other of the openings 7A, 7B of the tank line 7.

このように、弁本体1とスプール2とは、中
立、シングル作動、ダブル作動等の5つの状態が
提供できるように構成されているが、これに限定
されることなく他の複数の状態に構成されること
もある。
In this way, the valve body 1 and the spool 2 are configured to provide five states such as neutral, single operation, and double operation, but are not limited to these and can be configured to provide multiple other states. Sometimes it is done.

12は前記ロードチエツキバルブ8P1,8P2
の弁であり、13は該弁12を押圧するスプリン
グである。なお、第7図においてT1,T2はタン
クTに通ずるタンクラインである。
12 is the road check valve 8P 1 , 8P 2
13 is a spring that presses the valve 12. In addition, in FIG. 7, T 1 and T 2 are tank lines leading to the tank T.

次に上述のように構成された切換弁の主な作用
を説明する。
Next, the main functions of the switching valve configured as described above will be explained.

中立状態 スプール2はいかなる作用も受けず、第1図
に示すようにそのくびれ部2L2,2L3に流路
Y1,Y2の開口部6P1,6P2が臨んでいる。従
つて、ポンプP1,P2から送られる流体は、弁
本体1を前後に貫通する流路Y1,Y2を、主流
路3とクロスする部位において、そこに嵌合し
ているスプール2のくびれ部2L2,2L3の部
分を経て、夫々二つの別々の流れとなつてタン
クTに至る。それで、ポンプP1,P2を無負荷
で運転することができる。この場合、ポート5
A,5Bに接続されているアクチエータ4は中
立状態にある。
In the neutral state, the spool 2 is not subjected to any action, and as shown in Fig.
Openings 6P 1 and 6P 2 of Y 1 and Y 2 are facing. Therefore, the fluid sent from the pumps P 1 and P 2 passes through the flow paths Y 1 and Y 2 that pass through the valve body 1 in the front and rear directions, and the spool 2 that is fitted therein crosses the main flow path 3. The water flows through the constrictions 2L 2 and 2L 3 and reaches the tank T as two separate streams. Therefore, pumps P 1 and P 2 can be operated without load. In this case, port 5
The actuator 4 connected to A and 5B is in a neutral state.

正転単流・逆転単流 第2図に示すように、スプール2を右方に僅
かに摺動し、中央のシリンダー部2C3によつ
て一方の流路Y2の開口部6P2をブロツクし、
他方の流路Y1の開口部6P1をくびれ部2L2
範囲内に位置せしめる。このとき、前記流路
W2に連通可能な分岐流路9P2の一方の分岐端
ポート11P2は、シリンダー部2C4によつて
ブロツクされ、他の分岐端ポート10P2はく
びれ部2L1によつてポート5Aと連通する。
従つて、ポンプP1から流路Y1に送られる流体
は前記中立状態と同様に開口部6P1からスプ
ール2のくびれ部2L2の部分を通つてタンク
Tに流れるが、ポンプP2から流路Y2に送られ
る流体はスプール2のシリンダ部2C3によつ
てブロツクされる。このためポンプP2から送
られる流体は、別の流路である。流路W2から
ロードチエツキバルブ8P2の弁12をスプリ
ング13に抗して押上げて分岐流路9P2を流
れ、その一方の分岐端ポート10P2からポー
ト5Aへ流れ、さらに、アクチエータ4のシリ
ンダ4aへ流れ、そこのピストン4bをヘツド
側から押し上げる。これに同調して、該ピスト
ン4bの反ヘツド側の流体はポート5Rに押出
されて主流路3のくびれ部2L4の部分から開
口してきたタンクライン7の開口部を経てタン
クに排出される。
Forward rotation single flow/reverse rotation single flow As shown in Fig. 2, slide the spool 2 slightly to the right and block the opening 6P 2 of one flow path Y 2 with the central cylinder portion 2C 3 . death,
The opening 6P 1 of the other flow path Y 1 is located within the range of the constriction 2L 2 . At this time, the flow path
One branch end port 11P 2 of the branch flow path 9P 2 that can communicate with W 2 is blocked by the cylinder part 2C 4 , and the other branch end port 10P 2 communicates with the port 5A through the constriction part 2L 1 . do.
Therefore, the fluid sent from the pump P 1 to the flow path Y 1 flows from the opening 6P 1 to the tank T through the constricted part 2L 2 of the spool 2, as in the neutral state, but the fluid sent from the pump P 2 flows to the tank T. The fluid sent to the path Y2 is blocked by the cylinder portion 2C3 of the spool 2. Therefore, the fluid sent from pump P2 is a separate flow path. From the flow path W2, the valve 12 of the load check valve 8P2 is pushed up against the spring 13 to flow through the branched flow path 9P2 , from one branch end port 10P2 to the port 5A, and further to the actuator 4. It flows to the cylinder 4a of the cylinder 4a, and pushes up the piston 4b there from the head side. In synchronization with this, the fluid on the side opposite to the head of the piston 4b is pushed out to the port 5R, and is discharged into the tank through the opening of the tank line 7 which opens from the constriction 2L4 of the main flow path 3.

第4図に示すように、スプール2を逆に左方
に僅かに摺動し、スプール2の中央のシリンダ
ー部2C3によつて一方の流路Y1の開口部6P1
をブロツクし、他方の流路Y2の開口部6P2
スプール2のくびれ部2L3の範囲内に位置せ
しめる。このとき、前記流路W1に連通可能な
分岐流路9P1の一方の分岐端ポート10P1は、
シリンダー部2C2によつてブロツクされ、他
の分岐端ポート11P1はくびれ部2L4によつ
てポート5Bと連通する。従つて、アクチエー
タ4のシリンダ4a内への流体の流れは前述の
場合とは逆となり、ピストン4bの動きを逆に
する。
As shown in FIG. 4, the spool 2 is reversely slid slightly to the left, and the opening 6P 1 of one channel Y 1 is opened by the central cylinder portion 2C 3 of the spool 2.
The opening 6P2 of the other channel Y2 is located within the constriction 2L3 of the spool 2. At this time, one branch end port 10P 1 of the branch flow path 9P 1 that can communicate with the flow path W 1 is
The other branch end port 11P1 is blocked by the cylinder portion 2C2 and communicates with the port 5B through the constriction portion 2L4 . The flow of fluid into the cylinder 4a of the actuator 4 is therefore opposite to that described above, reversing the movement of the piston 4b.

正転合流・逆転合流 第3図に示すように、スプール2の右方への
摺動量を多くして、一方の流路Y1の開口部6
P1はシリンダー部2C2でブロツクすると共に
他方の流路Y2の開口部6P2も中央のシリンダ
ー部2C3でブロツクする。このとき、前記各
流路W1,W2に連通可能な二つの分岐流路9
P1,9P2は、それぞれの一方の分岐端ポート
10P1,10P2が、くびれ部2L1に連通し、
そのくびれ部2L1がポート5Aに開通する。
従つて、二つのポンプP1,P2から流路W1,W2
に流れる流体は、ロードチエツキバルブ8P1
8P2を経て分岐流路9P1,9P2に流れそれら
の分岐端ポート10P1,10P2からスプール
2のくびれ部2L1で合流して、ポート5Aか
らアクチエータ4のシリンダ4aに導入され、
前記単流の場合の倍の速度でピストン4bを押
圧する。これに同調して、該ピストン4bの反
対側の流体はポート5B側に押出され、スプー
ル2のくびれ部2L4の部分からタンクライン
7へ排出される。
Forward rotation merging/reverse rotation merging As shown in Figure 3, the amount of sliding of the spool 2 to the right is increased, and the opening 6 of one flow path Y1 is
P1 is blocked by the cylinder portion 2C2 , and the opening 6P2 of the other channel Y2 is also blocked by the central cylinder portion 2C3 . At this time, there are two branch channels 9 that can communicate with each of the channels W 1 and W 2 .
P 1 and 9P 2 each have one branch end port 10P 1 and 10P 2 communicating with the constriction portion 2L 1 ,
The constricted portion 2L1 opens to the port 5A.
Therefore, the flow paths W 1 , W 2 from the two pumps P 1 , P 2
The fluid flowing to the road check valve 8P 1 ,
8P 2 to branch flow paths 9P 1 and 9P 2 , and from those branch end ports 10P 1 and 10P 2 , they merge at the constriction 2L 1 of the spool 2, and are introduced into the cylinder 4a of the actuator 4 from the port 5A,
The piston 4b is pressed at twice the speed of the single flow. In synchronization with this, the fluid on the opposite side of the piston 4b is pushed out to the port 5B side and is discharged from the constricted portion 2L4 of the spool 2 to the tank line 7.

第5図は、スプール2を逆に左方に摺動量を
多くし、第3図の場合と左右対称の位置関係に
作動させたもので、二つのポンプP1,P2から
流路W1,W2に流れる流体は、分岐流路9P1
他方の分岐端ポート11P1と分岐流路9P2
他方の分岐端ポート11P2とが、スプール2
のくびれ部2L4に連通し、そのくびれ部2L4
がポート5Bに連通することで、合流してポー
ト5Bからアクチエータ4のシリンダ4aに導
入される。そして、これによりアクチエータ4
は第3図の場合とは逆に作動するようになる。
In Fig. 5, the spool 2 is reversely slid to the left by increasing the amount, and is operated in a positional relationship symmetrical to that in Fig. 3 . , W2 , the other branch end port 11P1 of the branch flow path 9P1 and the other branch end port 11P2 of the branch flow path 9P2 are connected to the spool 2.
The constriction 2L 4 communicates with the constriction 2L 4 .
communicates with the port 5B, so that they merge and are introduced into the cylinder 4a of the actuator 4 from the port 5B. As a result, actuator 4
operates in the opposite way to that shown in FIG.

上述した切換弁が作業機に使用されるときに
は、第6図に示すように、複数個の切換弁を組
として弁枠14内に並列し、二つのポンプP1
P2による流体が各切換弁の中を常に二つの
別々の流路において流れるものである。なお、
同第6図では、5つのポジシヨンのみを提供す
る切換弁のみが記載されるが、2つまたは3
つ・4つなど任意のポジシヨンを与える切換弁
を選定して組として弁枠14内に並列設定する
こともある。
When the above-described switching valve is used in a working machine, a plurality of switching valves are arranged in parallel in the valve frame 14 as a set, as shown in FIG .
Fluid due to P 2 always flows in two separate channels through each switching valve. In addition,
In FIG. 6, only a switching valve that provides only five positions is shown, but only two or three positions are shown.
Switching valves that provide arbitrary positions, such as one or four, may be selected and set in parallel in the valve frame 14 as a set.

第7図は本発明による切換弁の使用の実際に
当つての応用回路を示す。同図において、弁枠
14内には作業機バツクホー15の複数の作動
部、例えば、バケツト16の反転アクチエータ
4a、ブーム17の角度調整アクチエータ4
b,4c,4dの作動を切換える切換弁a,
b,c,d…が並列して設定され、運転席18
で操作可能となつている。19は操作レバーで
ある。
FIG. 7 shows a practical application circuit for the use of the switching valve according to the invention. In the figure, inside the valve frame 14 are a plurality of actuating parts of the bucket hoe 15, such as a reversing actuator 4a of the bucket 16, an angle adjustment actuator 4 of the boom 17, etc.
switching valve a, which switches the operation of b, 4c, and 4d;
b, c, d... are set in parallel, and the driver's seat 18
It is now possible to operate. 19 is an operating lever.

各切換弁a,b,c…は常態においていずれ
も中立になつていて、二つのポンプP1,P2
ら送られる油が常に二つの流れとなつて流れて
いる。今、操作レバー19によつて、切換弁a
を前述した正転合流のポジシヨンに設定する
と、ブーム17の先端側に屈曲回動自在に連結
しているアーム先端部とそれの先端に回動自在
に連結している。バケツト16との間に渡架し
てあるアクチエータ4aに、ポンプP1とポン
プP2とから送り出される油が、合流して、ピ
ストンを押し出すように送り込まれ、バケツト
16は、第7図において時計廻りに回動し、正
転単流のポジシヨンに設定した場合の2倍の力
で掘削作業が行なえるようになる。また、逆
に、逆転合流のポジシヨンに設定すると該バケ
ツト16は同図において逆転単流の場合の2倍
の速度で反時計廻りに回動して掬つていた掘削
土を迅速に放出するようになる。
Each of the switching valves a, b, c... is normally in a neutral state, and the oil sent from the two pumps P 1 and P 2 always flows in two streams. Now, by operating the operating lever 19, selector valve a
When set to the above-mentioned normal rotation merging position, the arms are rotatably connected to the tip of the arm which is bendably and rotatably connected to the tip side of the boom 17. The oil sent from the pumps P1 and P2 is combined with the actuator 4a, which is suspended between the actuator 4a and the bucket 16, and is fed so as to push out the piston. It rotates around the periphery, making it possible to perform excavation work with twice the force when set to the forward rotation single flow position. Conversely, when the bucket 16 is set to the reverse merging position, the bucket 16 rotates counterclockwise at twice the speed as in the case of reverse single flow in the same figure, and quickly releases the excavated soil that has been scooped out. become.

次に、この操作の際に、切換弁aの操作レバー
19と一緒に切換弁bの操作レバー19を、同じ
ポジシヨンに動かすよう操作すれば、流路W1
W2により切換弁aおよび切換弁bに流れてきて
いるポンプP1,P2からの油が、前述のバケツト
16を回動させるアクチエータ4aと、ブーム1
7とそのブーム17の先端部に支架したアーム回
動させるアクチエータ4bとに、それぞれ、選択
したポジシヨンに応じ、正転単流・正転合流・逆
転単流・逆転合流の各状態となつて送り込まれる
ようになる。また、このとき、さらに、切換弁c
の操作レバー19も一緒に操作すれば、ブーム1
7の起伏回動用のアクチエータ4cも同時に作動
するようになる。従つて、複数系統の同時方向の
切換えが行なえる油圧回路が構成されるようにな
る。
Next, during this operation, if the operating lever 19 of the switching valve b is moved to the same position as the operating lever 19 of the switching valve a, the flow path W 1 ,
The oil from the pumps P 1 and P 2 flowing into the switching valves a and b by W 2 flows into the actuator 4a that rotates the bucket 16 mentioned above and the boom 1.
7 and the actuator 4b that rotates the arm supported at the tip of the boom 17, the flow is fed in the following states according to the selected position: forward rotation single flow, forward rotation merging, reverse rotation single flow, and reverse rotation merging. You will be able to do it. Moreover, at this time, the switching valve c
If you also operate the operation lever 19 of the boom 1
The actuator 4c for up-and-down rotation of No. 7 also comes to operate at the same time. Therefore, a hydraulic circuit capable of switching multiple systems in the same direction is constructed.

次に、並列組合わせた各切換弁a,b,c,d
のそれぞれの操作レバー19…を、各別に操作し
て、それぞれ所望のポジシヨンを選択すれば、各
切換弁a,b,c,dは、それぞれが、流路W1
W2により送給されてくる2つのポンプP1,P2
らのオイルを、選択したポジシヨンに応じて、4
つのアクチエータ4a,4b,4c,4dのそれ
ぞれに対し切換えるよう作動するようになる。
Next, each switching valve a, b, c, d combined in parallel
By operating the operating levers 19 separately to select desired positions, the switching valves a, b, c, and d will be connected to the flow paths W 1 and d, respectively.
Depending on the selected position, the oil from the two pumps P 1 and P 2 supplied by W 2 is
It operates to switch each of the three actuators 4a, 4b, 4c, and 4d.

従つて、並列した各切換弁a,b,cは、複数
系統を個別に正逆作動させ得る回路を構成するよ
うになる。
Therefore, the parallel switching valves a, b, and c constitute a circuit that can individually operate a plurality of systems in forward and reverse directions.

以上説明したように、上述の如き構成してある
本発明による切換弁は、一つの切換弁でありなが
ら、それの操作で、正転単流・逆転単流・正転合
流・逆転合流の切換えが行なえるようになる。ま
た、第6図に示している如く、多連弁に並列させ
て用いるときは、各ポンプからの流体を単流と合
流とに切換え選択し得るとともに、複数系統のア
クチエータの同時作動及び複数系統のアクチエー
タを個別に正逆作動させる作動が行なえるように
なる。
As explained above, although the switching valve according to the present invention configured as described above is a single switching valve, it can be operated to switch between forward rotation single flow, reverse rotation single flow, forward rotation merging, and reverse rotation merging. will be able to do it. In addition, as shown in Fig. 6, when used in parallel with multiple valves, the fluid from each pump can be switched between single flow and combined flow, and the actuators of multiple systems can be operated simultaneously and multiple systems can be operated simultaneously. It becomes possible to individually operate the actuators in forward and reverse directions.

そしてまた、第6図に示している如く一つの弁
枠内に一体に組込んで複合切換弁に構成し得るこ
とから、アクチエータの多い作業機に使用すると
きに、スペースをとらず、配管の少ない複合切換
弁が得られ、従来、複合切換弁を組合わせていた
際に使用していた単流型複合切換弁を接合するた
めの操作レバー用連結管・配管接続用T字管など
が省略できるようになる。
Furthermore, since it can be integrated into a single valve frame to form a composite switching valve as shown in Fig. 6, it does not take up much space and requires no piping when used in a working machine with many actuators. Fewer composite switching valves can be obtained, and the connecting pipe for the operation lever and T-shaped pipe for piping connection to connect the single-flow type composite switching valve, which were used when conventionally combining composite switching valves, are omitted. become able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明による単一切換弁の5
つのポジシヨンの各状態を示す縦断面図であり、
第1図はその中立状態を示す縦断面図、第2図は
その正転単流の状態を示す縦断面図、第3図はそ
の正転合流の状態を示す縦断面図、第4図はその
逆転単流の状態を示す縦断面図、第5図はその逆
転合流の状態を示す縦断面図であり、第6図は本
発明による切換弁群の回路図、第7図は同上切換
弁群を作業に使用した場合の応用回路図、第8図
は従来の切換弁群の回路図、第9図は同上従来の
切換弁群を作業機に使用した場合の応用回路図、
第10図は第1図の−線縦断側面図、第11
図は第1図の−線縦断側面図、第12図は単
一切換弁を並列組合わせた複合切換弁の縦断側面
図、第13図は同上複合切換弁の異なる断面位置
の縦断側面図である。 図面符号の説明、T……タンク、T1,T2……
タンクライン、P1,P2……ポンプ、W1,W2……
流路、a,b,c,d……切換弁、Y1,Y2……
流路、1……弁本体、12……弁、13……スプ
リング、14……弁枠、15……バツクホー、1
6……バケツト、17……ブーム、18……運転
席、19……操作レバー、2……スプール、2
C1〜2C5……シリンダー部、2L1〜2L4……く
びれ部、20……コネクター、21……T型継
手、3……主流路、4……アクチエータ、4a…
…シリンダ、4b……ピストン、5……流路、5
A,5B……ポート、6P1,6P2……開口部、
7……タンクライン、7A,7B……開口部、8
P1,8P2……ロードチエツキバルブ、9P1,9
P2……分岐流路、10P1,10P2……分岐端ポ
ート、11P1,11P2……分岐端ポート。
1 to 5 show five views of a single switching valve according to the present invention.
FIG.
Fig. 1 is a vertical cross-sectional view showing the neutral state, Fig. 2 is a longitudinal cross-sectional view showing the normal rotation single flow state, Fig. 3 is a longitudinal cross-sectional view showing the normal rotation merging state, and Fig. 4 is a longitudinal cross-sectional view showing the normal rotation single flow state. FIG. 5 is a vertical cross-sectional view showing the reversed single flow state, FIG. 5 is a vertical cross-sectional view showing the reversed merging state, FIG. 6 is a circuit diagram of the switching valve group according to the present invention, and FIG. 7 is the same switching valve as above. Fig. 8 is a circuit diagram of a conventional switching valve group, and Fig. 9 is an applied circuit diagram when the same conventional switching valve group is used in a working machine.
Figure 10 is a vertical sectional side view taken along the - line in Figure 1;
The figure is a longitudinal side view taken along the line - - of Fig. 1, Fig. 12 is a longitudinal side view of a compound switching valve in which single switching valves are combined in parallel, and Fig. 13 is a longitudinal side view of the same compound switching valve at different cross-sectional positions. . Explanation of drawing symbols, T...tank, T 1 , T 2 ...
Tank line, P 1 , P 2 ... Pump, W 1 , W 2 ...
Flow path, a, b, c, d... switching valve, Y 1 , Y 2 ...
Flow path, 1... Valve body, 12... Valve, 13... Spring, 14... Valve frame, 15... Backhoe, 1
6...bucket, 17...boom, 18...driver's seat, 19...control lever, 2...spool, 2
C 1 - 2C 5 ... Cylinder part, 2L 1 - 2L 4 ... Neck part, 20 ... Connector, 21 ... T-shaped joint, 3 ... Main flow path, 4 ... Actuator, 4a ...
...Cylinder, 4b...Piston, 5...Flow path, 5
A, 5B...port, 6P 1 , 6P 2 ...opening,
7... Tank line, 7A, 7B... Opening, 8
P 1 , 8P 2 ... Road check valve, 9P 1 , 9
P 2 ... branch flow path, 10P 1 , 10P 2 ... branch end port, 11P 1 , 11P 2 ... branch end port.

Claims (1)

【特許請求の範囲】 1 弁本体1にスプール2が摺動可能となる主流
路3を左右方向に設け、その主流路3には、アク
チエータ4に夫々連通さす2つの流路5,5のポ
ート5A,5Bを左右に一対に開設するととも
に、2つのポンプP1,P2に夫々連通しそれぞれ
主流路3とクロスして貫通してタンクTに通ずる
2つの流路Y1,Y2の開口部6P1,6P2を左右に
一対に開設し、かつ、前記2つの流路Y1,Y2
別に2つのポンプP1,P2と連通する2つの流路
W1,W2にそれぞれ連通する2つの分岐流路9
P1,9P2のそれぞれに各一対に設けた分岐端ポ
ート10P1,11P1と分岐端ポート10P2,1
1P2とを左右に対称させて開設し、かつ、タン
クTに連通するタンクライン7の開口部7A,7
Bを左右に一対に開設し、前記スプール2に、前
記主流路3に開設した各ポートおよび開口部の連
通と遮断を行なわす複数のシリンダー部2C1
2C2,2C3,2C4,2C5とくびれ部2L1,2L2
2L3,2L4とを設けて、前記2つのポンプP1
P2から送られる流体の何れか一方を正転単流及
び逆転単流として取出可能とするとともに、双方
の流体を合流せしめて正転合流及び逆転合流とし
て選択的に取出可能としたことを特徴とする切換
弁。 2 弁本体1にスプール2が摺動可能となる主流
路3を左右方向に設け、その主流路3には、アク
チエータ4に夫々連通さす2つの流路5,5のポ
ート5A,5Bを左右に一対に開設するととも
に、2つのポンプP1,P2に夫々連通しそれぞれ
主流路3とクロスして貫通してタンクTに通ずる
2つの流路Y1,Y2の開口部6P1,6P2を左右に
一対に開設し、かつ、前記2つの流路Y1,Y2
別に2つのポンプP1,P2と連通する2つの流路
W1,W2にそれぞれ連通する2つの分岐流路9
P1,9P2のそれぞれに各一対に設けた分岐端ポ
ート10P1,11P1と分岐端ポート10P2,1
1P2とを左右に対称させて開設し、かつ、タン
クTに連通するタンクライン7の開口部7A,7
Bを左右に一対に開設し、前記スプール2に、前
記主流路3に開設した各ポートおよび開口部の連
通と遮断を行なわす複数のシリンダー部2C1
2C2,2C3,2C4,2C5とくびれ部2L1,2L2
2L3,2L4とを設けて構成される切断弁が組を
なして同一の弁枠内に複数個設置され、各々の切
換弁のポンプP1,P2及びタンクTに通ずる流路
W1,W2,Y1,Y2およびタンクライン7がそれ
ぞれの弁本体1を前後に貫通して相互に連通可能
となし、各ポンプからの流体を単流と合流とに切
換え選択し得るとともに、複数系統のアクチエー
タの同時作動及び複数系統のアクチエータを個別
に正逆作動させ得るよう構成したことを特徴とす
る複合切換弁。
[Claims] 1. A main channel 3 in which the spool 2 can slide is provided in the left-right direction in the valve body 1, and the main channel 3 has ports for two channels 5, 5 which communicate with the actuator 4, respectively. 5A and 5B are opened as a pair on the left and right, and two flow paths Y 1 and Y 2 are opened, which communicate with the two pumps P 1 and P 2 , respectively, cross and penetrate the main flow path 3, and lead to the tank T. 6P 1 and 6P 2 are opened as a pair on the left and right, and two flow paths communicate with two pumps P 1 and P 2 separately from the two flow paths Y 1 and Y 2 .
Two branch channels 9 communicating with W 1 and W 2 respectively
Branch end ports 10P 1 , 11P 1 and branch end ports 10P 2 , 1 provided in each pair for P 1 , 9P 2
Openings 7A, 7 of the tank line 7 which are opened laterally symmetrically with 1P 2 and communicate with the tank T.
B are opened in pairs on the left and right, and a plurality of cylinder portions 2C 1 are provided in the spool 2 to communicate and cut off each port and opening opened in the main flow path 3.
2C 2 , 2C 3 , 2C 4 , 2C 5 and constrictions 2L 1 , 2L 2 ,
2L 3 and 2L 4 are provided, and the two pumps P 1 ,
It is characterized by being able to take out either one of the fluids sent from P 2 as a forward rotation single flow or a reverse rotation single flow, and also to allow both fluids to be combined and selectively taken out as a forward rotation merge or a reverse rotation merge. A switching valve. 2. A main channel 3 in which the spool 2 can slide is provided in the left and right directions in the valve body 1, and in the main channel 3, ports 5A and 5B of two channels 5 and 5, which communicate with the actuator 4, respectively, are provided in the left and right directions. Openings 6P 1 , 6P 2 of two channels Y 1 , Y 2 are opened in pairs and communicate with the two pumps P 1 , P 2 , respectively, and cross and penetrate the main channel 3 to lead to the tank T. are opened in pairs on the left and right, and two flow paths that communicate with two pumps P 1 and P 2 separately from the two flow paths Y 1 and Y 2 .
Two branch channels 9 communicating with W 1 and W 2 respectively
Branch end ports 10P 1 , 11P 1 and branch end ports 10P 2 , 1 provided in each pair for P 1 , 9P 2
Openings 7A, 7 of the tank line 7 which are opened laterally symmetrically with 1P 2 and communicate with the tank T.
B are opened in pairs on the left and right, and a plurality of cylinder portions 2C 1 are provided in the spool 2 to communicate and cut off each port and opening opened in the main flow path 3.
2C 2 , 2C 3 , 2C 4 , 2C 5 and constrictions 2L 1 , 2L 2 ,
2L 3 and 2L 4 are installed in the same valve frame as a set, and a flow path leads to the pumps P 1 and P 2 and the tank T of each switching valve.
W 1 , W 2 , Y 1 , Y 2 and the tank line 7 penetrate the respective valve bodies 1 in the front and back to enable communication with each other, and the fluid from each pump can be switched and selected between single flow and combined flow. Also, a composite switching valve characterized in that it is configured so that the actuators of multiple systems can be operated simultaneously and the actuators of the multiple systems can be operated individually in forward and reverse directions.
JP56141582A 1981-09-08 1981-09-08 Control valve and work machine circuit using it Granted JPS5842803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56141582A JPS5842803A (en) 1981-09-08 1981-09-08 Control valve and work machine circuit using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56141582A JPS5842803A (en) 1981-09-08 1981-09-08 Control valve and work machine circuit using it

Publications (2)

Publication Number Publication Date
JPS5842803A JPS5842803A (en) 1983-03-12
JPH0253642B2 true JPH0253642B2 (en) 1990-11-19

Family

ID=15295342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56141582A Granted JPS5842803A (en) 1981-09-08 1981-09-08 Control valve and work machine circuit using it

Country Status (1)

Country Link
JP (1) JPS5842803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138619A (en) * 2015-01-28 2016-08-04 ナブテスコ株式会社 Directional switching valve

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611086U (en) * 1984-06-06 1986-01-07 南機械株式会社 Dry veneer tenderizing equipment
DE10336334B3 (en) * 2003-08-08 2005-08-04 Cnh Baumaschinen Gmbh Hydraulic control system for construction machinery, in particular for excavators
JP6522320B2 (en) * 2014-11-11 2019-05-29 ナブテスコ株式会社 Directional switching valve
JP6773421B2 (en) * 2016-02-08 2020-10-21 ナブテスコ株式会社 Direction switching valve and hydraulic system
JP6717541B2 (en) * 2016-07-28 2020-07-01 キャタピラー エス エー アール エル Valve device and fluid pressure system including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016138619A (en) * 2015-01-28 2016-08-04 ナブテスコ株式会社 Directional switching valve

Also Published As

Publication number Publication date
JPS5842803A (en) 1983-03-12

Similar Documents

Publication Publication Date Title
EP0262604B1 (en) Hydraulic circuit for hydraulic construction machine
EP0087748B1 (en) Hydraulic circuit system for construction machine
JPH0253642B2 (en)
JPH0232167B2 (en)
US5701796A (en) Hydraulic apparatus for traveling
JP2551543B2 (en) Hydraulic circuit of hydraulic excavator
US4561462A (en) Multiple control valve system
JP2571190Y2 (en) Hydraulic circuits such as power shovels
JP3718808B2 (en) Multiple direction directional valve
JP3547099B2 (en) Hydraulic circuit of hydraulic excavator
JP3143946B2 (en) Hydraulic circuit of excavator
CN212838660U (en) Multi-way control valve
JP2520760Y2 (en) Directional switching valve with variable regeneration valve
CN218440001U (en) Multi-way reversing valve
JPH116174A (en) Actuator operating circuit of construction vehicle
JPH08270021A (en) Hydraulic circuit of construction machine
JP3248538B2 (en) Hydraulic circuit of construction machinery
JPS61113932A (en) Hydraulic circuit for auxiliary working machine for construction machinery
JPS5883737A (en) Oil-pressure circuit for civil work and construction machinery
JPH0514001Y2 (en)
JP4189942B2 (en) Operation pattern switching valve device
JPH0649644Y2 (en) Hydraulic circuit of crawler type hydraulic excavator
JPH06341405A (en) Valve block structure of hydraulic circuit
JPS60144432A (en) Oil-pressure circuit for excavator with dozer
JPH0633009Y2 (en) Hydraulic circuit of hydraulic excavator