JPH0253508B2 - - Google Patents
Info
- Publication number
- JPH0253508B2 JPH0253508B2 JP6320983A JP6320983A JPH0253508B2 JP H0253508 B2 JPH0253508 B2 JP H0253508B2 JP 6320983 A JP6320983 A JP 6320983A JP 6320983 A JP6320983 A JP 6320983A JP H0253508 B2 JPH0253508 B2 JP H0253508B2
- Authority
- JP
- Japan
- Prior art keywords
- electrons
- metal
- electrode substrate
- workpiece
- electron gun
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 33
- 239000000758 substrate Substances 0.000 claims description 28
- 150000001875 compounds Chemical class 0.000 claims description 18
- 150000002500 ions Chemical class 0.000 claims description 17
- 238000007733 ion plating Methods 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 4
- 229910000765 intermetallic Inorganic materials 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- -1 titanium Chemical class 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
- C23C14/541—Heating or cooling of the substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は、金属電極の周囲に電子が過剰な状態
を作り、この金属電極に化合物を作る多種類のイ
オンが到達した時に、多種類のイオンの共有結合
する確率が高いことを利用した過飽和電子型イオ
ンプレーテイング法に関するものである。Detailed Description of the Invention The present invention creates an excess state of electrons around a metal electrode, and when many types of ions that form a compound arrive at this metal electrode, the probability of covalent bonding of many types of ions is increased. This relates to a supersaturated electron type ion plating method that takes advantage of the high density.
一般に、金属間化合物やセラミツクなどの化合
物は、2種類以上の原子が密着して互いの外該電
子が共有結合しているものと考えられる。ここ
で、溶融している金属の中では沢山の電子が存在
するので、簡単に化合物を作るが、真空中では、
原子と電子がそれぞればらばらに存在するため、
原子がイオン状態で接近して密着しても、電子が
不足している場合には化合物を作る確率が低く、
また金属は電気的に電子が過不足ない状態にある
ため、中性であり、また金属電極にイオンを集め
るために、この金属電極に負の電圧を加えた場合
でも、電極の表面では電子は過不足ない場態にな
つているものと考えられ、その電極にイオンが到
達すると、負の電圧を加えた電極より電子が供給
され、その電子によつて共有結合ができて、合金
ができると判断されている。 In general, compounds such as intermetallic compounds and ceramics are considered to have two or more types of atoms in close contact with each other, and their outer electrons are covalently bonded. Since there are many electrons in the molten metal, it is easy to form compounds, but in a vacuum,
Because atoms and electrons exist separately,
Even if atoms are in close contact with each other in an ionic state, the probability of forming a compound is low if there is a lack of electrons.
In addition, metals are neutral because they have just the right amount of electrons, and even when a negative voltage is applied to the metal electrode to collect ions, there are no electrons on the surface of the electrode. It is thought that there is just the right amount of excess and deficiency, and when ions reach that electrode, electrons are supplied from the electrode to which a negative voltage is applied, and these electrons form covalent bonds, forming an alloy. being judged.
従つて、従来のイオンプレーテイング法では、
電極の形、蒸発金属の温度や蒸発の方法、イオン
の作り方、原子の温度を上昇させる励起法(高周
波法)などが研究開発されてきたが、イオンとイ
オンが結合するための条件については詳細な実験
研究は行なわれておらず、未知のものであつた。 Therefore, in the conventional ion plating method,
Research and development has been carried out on the shape of the electrode, the temperature of the evaporated metal, the evaporation method, how to create ions, the excitation method (high frequency method) to increase the temperature of atoms, etc., but the conditions for ions to bond are not yet detailed. No experimental research had been conducted on it, and it remained unknown.
本発明は、上記の点を考慮して電極基板にダイ
オードを接続して電極基板から電子が流れないよ
うにし、水冷ルツボに第1の電子銃で発生した電
子を照射するとともに、第2の電子銃で発生した
電子を電極基板に照射して、この電極基板の周囲
に電子が過剰な状態を作り出し、そこに化合物を
作る多種類のイオンを到達させることによつて、
共有結合をさせる確率を高くすることを特徴と
し、その目的は真空中でも金属間化合物またはセ
ラミツクなどの化合物ができ易い過飽和電子型イ
オンプレーテイング法を提供するものである。以
下、図面により本発明の実施例を詳細に説明す
る。 In consideration of the above points, the present invention connects a diode to the electrode substrate to prevent electrons from flowing from the electrode substrate, irradiates the water-cooled crucible with electrons generated by the first electron gun, and irradiates the water-cooled crucible with the electrons generated by the first electron gun. By irradiating the electrode substrate with electrons generated by a gun and creating a state of excess electrons around the electrode substrate, many types of ions that form compounds arrive there.
It is characterized by increasing the probability of covalent bonding, and its purpose is to provide a supersaturated electron type ion plating method that can easily form compounds such as intermetallic compounds or ceramics even in a vacuum. Embodiments of the present invention will be described in detail below with reference to the drawings.
まず、本発明者は、一般のイオンプレーテイン
グ法において、非常によいイオンプレーテイング
が施されている部分は電子が過剰な状態の所であ
り、化合物が作られる電極基板よりも、電子が沢
山集まる部分に非常に良いイオンプレーテイング
ができていることを実験により確かめた。例え
ば、電子銃から発射された電子流を磁界で偏向し
て水冷ルツボに入れた蒸発金属に照射するように
した磁場偏向型電子ビーム炉においても、拘束さ
れた電子が集まる部分において非常に良いイオン
プレーテイングができていることが確認された。
従つて、本発明はこの良いイオンプレーテイング
ができる状態を真空槽の中の被加工物である基板
電極の周囲に作ることによつて、良い製品を作る
ことを特徴とするものである。 First, the inventor discovered that in the general ion plating method, the areas where very good ion plating is applied are areas with an excess of electrons, and there are more electrons than in the electrode substrate on which the compound is made. It was confirmed through experiments that very good ion plating was achieved in the areas where the ions gathered. For example, even in a magnetically deflected electron beam reactor, in which the electron stream emitted from an electron gun is deflected by a magnetic field and irradiated onto the evaporated metal placed in a water-cooled crucible, very good ionization occurs in the part where the restrained electrons gather. It was confirmed that plating was possible.
Therefore, the present invention is characterized in that a good product can be manufactured by creating a condition in which good ion plating can be performed around the substrate electrode, which is a workpiece in a vacuum chamber.
第1図は、本発明の方法を実施するための構成
図を示したもので、1は水冷ルツボであり、この
水冷ルツボ1の上に合金となる金属2が入れら
れ、この水冷ルツボ1は直流電源3の正側に接続
されている。4は磁場型電子銃からなる第1の電
子銃であり、この第1の電子銃4で発生した電子
は第1の電子銃4の照射口の斜め上方に設けられ
た外部磁場5で偏向されて金属2に照射される。
6は電極基板であり、この電極基板6に被加工物
7が取り付けられ、また電極基板6はダイオード
8のアノードが接続され、このダイオード8のカ
ソードは直流電源3の負側に接続されている。9
は静電型電子銃からなる第2の電子銃であり、こ
の第2の電子銃9で発生した電子は被加工物7に
照射される。なお、直流電源3及びダイオード8
以外は真空槽10内に設けられている。 FIG. 1 shows a block diagram for carrying out the method of the present invention, in which 1 is a water-cooled crucible, a metal 2 to be alloyed is placed on top of this water-cooled crucible 1, and this water-cooled crucible 1 is It is connected to the positive side of the DC power supply 3. 4 is a first electron gun consisting of a magnetic field type electron gun, and the electrons generated by this first electron gun 4 are deflected by an external magnetic field 5 provided obliquely above the irradiation port of the first electron gun 4. and irradiates the metal 2.
6 is an electrode substrate, a workpiece 7 is attached to this electrode substrate 6, an anode of a diode 8 is connected to the electrode substrate 6, and a cathode of this diode 8 is connected to the negative side of the DC power source 3. . 9
is a second electron gun consisting of an electrostatic electron gun, and the workpiece 7 is irradiated with electrons generated by this second electron gun 9. In addition, the DC power supply 3 and the diode 8
The rest are provided inside the vacuum chamber 10.
次に、本実施例の動作を説明する。まず、第1
の電子銃4から発生した電子は磁場5によつて偏
向され、水冷ルツボ1上の金属2に照射される
と、金属2は溶解して蒸発するとともにイオン化
される。ここで、金属2が蒸発するときに2次電
子が発生するが、この2次電子は外部磁場5のた
めに偏向され、電極基板6の被加工物7には到達
しない。従つて、金属2が蒸発して被加工物7に
到達し、また真空槽内の金属2と化合物を作る気
体が第1の電子銃4からの電子でイオン化されて
被加工物7に到達しても、化合物はでき難いとい
う欠点がある。 Next, the operation of this embodiment will be explained. First, the first
When the electrons generated from the electron gun 4 are deflected by the magnetic field 5 and irradiated onto the metal 2 on the water-cooled crucible 1, the metal 2 is melted, evaporated, and ionized. Here, secondary electrons are generated when the metal 2 evaporates, but these secondary electrons are deflected by the external magnetic field 5 and do not reach the workpiece 7 of the electrode substrate 6. Therefore, the metal 2 evaporates and reaches the workpiece 7, and the gas that forms a compound with the metal 2 in the vacuum chamber is ionized by the electrons from the first electron gun 4 and reaches the workpiece 7. However, the disadvantage is that it is difficult to form compounds.
そこで、本発明では、第2の電子銃9を設け、
この第2の電子銃9で発生した電子を被加工物7
に照射する。ここで、電極基板6の被加工物7に
照射された電子はダイオード8のために直流電源
3に流れないので、電極基板6及び被加工物7の
周囲は電子が過飽和の状態になる。このように被
加工物7に電子が照射されると、被加工物7は焼
鈍温度近くまで昇温されるので、被加工物7の表
面が真空中でクリーニングされ、また表面が活性
化されるため、電子が過飽和の状態の中で、蒸発
してくる金属または金属イオンが反応ガスイオン
と反応し、被加工物7全体の組織を変更すること
なく、被加工物7の表面に非常に硬度の高い化合
物、セラミツクまたは合金が作られ、非常に密着
性の良いイオンプレーテイングを行なうことがで
きる。また、第2の電子銃9から電子を照射した
部分に良いイオンプレーテイングが施されるの
で、被加工物の所望の部分のイオンプレーテイン
グも可能である。 Therefore, in the present invention, a second electron gun 9 is provided,
The electrons generated by this second electron gun 9 are transferred to the workpiece 7.
irradiate. Here, since the electrons irradiated onto the workpiece 7 of the electrode substrate 6 do not flow to the DC power supply 3 due to the diode 8, the area around the electrode substrate 6 and the workpiece 7 becomes oversaturated with electrons. When the workpiece 7 is irradiated with electrons in this way, the workpiece 7 is heated to near the annealing temperature, so the surface of the workpiece 7 is cleaned in vacuum and the surface is activated. Therefore, in a supersaturated state of electrons, the evaporated metal or metal ions react with the reactive gas ions, giving the surface of the workpiece 7 a very hard surface without changing the overall structure of the workpiece 7. Compounds, ceramics, or alloys with high ion plating properties can be made to provide highly adhesive ion plating. Further, since good ion plating is performed on the part irradiated with electrons from the second electron gun 9, ion plating can also be performed on a desired part of the workpiece.
なお、第2の電子銃9から被加工物7に照射さ
れる電子は、この第2の電子銃9のフイラメント
とアノード間の電圧(5000v)まで加速される
が、電極基板6は負の電圧(2000v)がかかつて
いるので、この負の電圧以下の電子は電極基板6
に到達しないが、これは何の支障もきたすもので
はなく、到達しなかつた電子は反応ガスや蒸発金
属のイオン化に役立つているものである。 Note that the electrons irradiated from the second electron gun 9 to the workpiece 7 are accelerated to the voltage (5000v) between the filament and the anode of this second electron gun 9, but the electrode substrate 6 is at a negative voltage. (2000v), the electrons below this negative voltage are at the electrode substrate 6.
However, this does not pose any problem; the unreached electrons are useful for ionizing the reactant gas and vaporized metal.
第2図は、本発明の方法を実施するための構成
図を示したもので、1は水冷ルツボ、2は化合さ
せる金属、3は直流電源、4は第1の電子銃、6
は電極基板、7は被加工物、8はダイオード、1
0は真空槽であり、これらの構成は前述の実施例
と同じであるので、説明は省略する。11は制御
装置、12は測定電極、13は電流検出器、14
はプラズマ発生装置、15はプラズマ電子銃、1
6はプラズマ用電源、17は反応ガス供給口、1
8はプラズマ引き出し電極、19はコイル電極で
ある。 FIG. 2 shows a block diagram for carrying out the method of the present invention, in which 1 is a water-cooled crucible, 2 is a metal to be combined, 3 is a DC power supply, 4 is a first electron gun, 6 is a water-cooled crucible;
is an electrode substrate, 7 is a workpiece, 8 is a diode, 1
0 is a vacuum chamber, and since the configuration thereof is the same as in the previous embodiment, a description thereof will be omitted. 11 is a control device, 12 is a measurement electrode, 13 is a current detector, 14
is a plasma generator, 15 is a plasma electron gun, 1
6 is a plasma power supply, 17 is a reaction gas supply port, 1
8 is a plasma extraction electrode, and 19 is a coil electrode.
次に、本実施例の動作を説明する。まず、プラ
ズマ発生装置14から反応ガスのプラズマ(+イ
オンと−イオンが同数浮遊している状態)を発生
するために、反応ガス供給口17から金属2と化
合する反応ガスを供給すると、反応ガスはプラズ
マ電子銃15プラズマ状態となり、プラズマ引き
出し電極18で引き出され、コイル電極19で集
束されて被加工物7に照射される。このプラズマ
を被加工物7に照射することは、前述の実施例に
おいて第2の電子銃9から被加工物7に電子を照
射するのと同じ状態になる。 Next, the operation of this embodiment will be explained. First, in order to generate a reactive gas plasma (a state in which the same number of + ions and - ions are floating) from the plasma generator 14, a reactive gas that combines with the metal 2 is supplied from the reactive gas supply port 17. The plasma electron gun 15 enters a plasma state, is extracted by a plasma extraction electrode 18, focused by a coil electrode 19, and irradiated onto the workpiece 7. Irradiating the workpiece 7 with this plasma results in the same state as irradiating the workpiece 7 with electrons from the second electron gun 9 in the embodiment described above.
一方、第1の電子銃4は静電型電子銃であり、
この第1の電子銃4で発生した電子が金属2に照
射されると、金属2は蒸発するとともにイオン化
される。このイオン化速度は測定電極12で検出
され、この測定電極12に流れる電流は電流検出
器13で検出され、その検出信号によつて制御装
置11は第1の電子銃4に供給する電流を制御す
る。 On the other hand, the first electron gun 4 is an electrostatic electron gun,
When the metal 2 is irradiated with electrons generated by the first electron gun 4, the metal 2 is evaporated and ionized. This ionization rate is detected by the measurement electrode 12, the current flowing through the measurement electrode 12 is detected by the current detector 13, and the control device 11 controls the current supplied to the first electron gun 4 based on the detection signal. .
このように構成した本実施例においても、前述
の実施例の第2の電子銃9と同様に、プラズマ発
生装置14で発生したプラズマを被加工物7に照
射することによつて、電極基板6及び被加工物7
の周囲に電子の過飽和の状態を作り、水冷ルツボ
1より発生した金属2のイオンとプラズマ発生装
置14で発生した反応ガスイオンとが共有結合
し、被加工物7の表面に非常に硬い化合物の膜を
作ることができる。 Also in this embodiment configured in this way, similarly to the second electron gun 9 of the above-described embodiment, the electrode substrate 6 is irradiated with plasma generated by the plasma generator 14 onto the workpiece 7. and workpiece 7
A state of supersaturation of electrons is created around the surface of the workpiece 7, and the ions of the metal 2 generated from the water-cooled crucible 1 and the reaction gas ions generated in the plasma generator 14 are covalently bonded, and a very hard compound is formed on the surface of the workpiece 7. A membrane can be created.
なお、上記実施例の説明では、基板電極6及び
被加工物7の周囲に過飽和の電子がある所に反応
ガスイオン及び金属イオンを送り込んで被加工物
7の表面に化合物を作る説明をしたが、こればか
りでなく、被加工物が金属の場合には、この金属
の表面に多くの電子を送り込むと、電子ビームに
よつて被加工物の表面が加熱されて高温になり、
従つて被加工物の表面に吸着しているガスの一部
は金属と反応して化合物を作る(更に高温にする
と蒸発する)が、その時にチタンTiのように化
合物を作り易い金属を少し蒸着し、次に前述のイ
オンプレーテイングを行なえば、被加工物の表面
に更に硬い膜ができる。また前述の実施例では、
第1の電子銃4として電磁型の電子銃を使用した
例を説明したが、静電型の電子銃でも同様に使用
できることはいうまでもない。更に、本発明者が
提案したイオンプレーテイング装置(特願昭57−
151892号参照)においても、本発明の方法のよう
に被加工物を照射する第2の電子銃を設けること
ができることはいうまでもない。 In addition, in the explanation of the above embodiment, it was explained that reactive gas ions and metal ions are sent to a place where there are supersaturated electrons around the substrate electrode 6 and the workpiece 7 to form a compound on the surface of the workpiece 7. Not only this, but if the workpiece is a metal, if many electrons are sent to the surface of the metal, the surface of the workpiece will be heated by the electron beam and become high temperature.
Therefore, some of the gas adsorbed on the surface of the workpiece reacts with the metal to form a compound (and evaporates when heated to a higher temperature), but at that time, a small amount of a metal that easily forms compounds, such as titanium, is deposited. However, if the aforementioned ion plating is then performed, an even harder film will be formed on the surface of the workpiece. Furthermore, in the above embodiment,
Although an example in which an electromagnetic type electron gun is used as the first electron gun 4 has been described, it goes without saying that an electrostatic type electron gun can also be used in the same manner. Furthermore, the ion plating device proposed by the present inventor (patent application 1983-
151892), it goes without saying that a second electron gun for irradiating the workpiece can be provided as in the method of the present invention.
以上説明したように、本発明によれば、第2の
電子銃及びプラズマ発生装置によつて被加工物の
周囲に電子の過飽和状態を作り、この状態におい
て金属イオン及び反応ガスイオンを送り込むこと
により被加工物の表面に非常に良いイオンプレー
テイングを行なうことができる。 As explained above, according to the present invention, by creating a supersaturated state of electrons around the workpiece using the second electron gun and the plasma generator, and sending metal ions and reactive gas ions in this state, Very good ion plating can be performed on the surface of the workpiece.
第1図は本発明の方法を実施するための構成
図、第2図は本発明の他の方法を実施するための
構成図である。
1……水冷ルツボ、2……金属、3……直流電
源、4……第1の電極銃、5……外部磁場、6…
…基板電極、7……被加工物、8……ダイオー
ド、9……第2の電子銃、10……真空槽、11
……制御装置、12……測定電極、13……電流
検出器、14……プラズマ発生装置、15……プ
ラズマ電子銃、16……プラズマ用電源、17…
…反応ガス供給口、18……プラズマ引き出し電
極、19……コイル電極。
FIG. 1 is a block diagram for implementing the method of the present invention, and FIG. 2 is a block diagram for implementing another method of the present invention. DESCRIPTION OF SYMBOLS 1... Water-cooled crucible, 2... Metal, 3... DC power supply, 4... First electrode gun, 5... External magnetic field, 6...
... Substrate electrode, 7 ... Workpiece, 8 ... Diode, 9 ... Second electron gun, 10 ... Vacuum chamber, 11
...Control device, 12...Measurement electrode, 13...Current detector, 14...Plasma generator, 15...Plasma electron gun, 16...Plasma power supply, 17...
... Reaction gas supply port, 18 ... Plasma extraction electrode, 19 ... Coil electrode.
Claims (1)
ミツクまたは金属間化合物などの化合物を電極基
板の被加工物に形成するイオンプレーテイング法
において、真空槽内に前記電極基板と水冷ルツボ
を間隔をあけて設置し、前記電極基板をダイオー
ドのアノードに接続し、該ダイオードを抵抗を介
して電源の負側に接続し、前記水冷ルツボを前記
電源の正側に接続し、前記電極基板以外の部分に
設けた第1の電子銃から発生した電子を前記水冷
ルツボの金属に照射して、該金属のイオン状の原
子を発生させるとともに、第2の電子銃またはイ
オン発生装置から発生した電子を前記電極基板の
前記被加工物に照射し、前記電極基板に接続した
ダイオードによつて前記電極基板から電子が流れ
ないようにし、前記電極基板の周囲に多量の電子
を浮遊させている状態の中に前記金属のイオン状
の原子を送り込むことによつて、前記電子によつ
てイオン化された反応性ガスと前記金属の化合物
を前記電極基板上に形成するか、または前記電子
と前記金属及び反応性ガスのイオンがほぼ同数存
在するプラズマ状態の中で、前記イオン量よりも
電子の数を多くして、前記電極板上に前記反応性
ガスと前記金属の化合物を形成することを特徴と
する過飽和電子型イオンプレーテイング法。1 In the ion plating method, in which two or more types of atoms are combined in a vacuum to form a compound such as a ceramic or an intermetallic compound on a workpiece of an electrode substrate, the electrode substrate and a water-cooled crucible are placed in a vacuum chamber with a space between them. The electrode substrate is connected to the anode of the diode, the diode is connected to the negative side of the power source through a resistor, the water-cooled crucible is connected to the positive side of the power source, and the parts other than the electrode substrate are connected to the anode of the diode. The metal of the water-cooled crucible is irradiated with electrons generated from a first electron gun provided in the water-cooled crucible to generate ionic atoms of the metal, and the electrons generated from the second electron gun or ion generator are irradiated with the metal of the water-cooled crucible. In a state in which the workpiece of the electrode substrate is irradiated, electrons are prevented from flowing from the electrode substrate by a diode connected to the electrode substrate, and a large amount of electrons are suspended around the electrode substrate. A compound of the reactive gas ionized by the electrons and the metal is formed on the electrode substrate by feeding ionic atoms of the metal, or a compound of the metal and the electrons is formed on the electrode substrate. Supersaturated electrons characterized by forming a compound of the reactive gas and the metal on the electrode plate by making the number of electrons larger than the amount of ions in a plasma state where approximately the same number of ions exist. type ion plating method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6320983A JPS59190357A (en) | 1983-04-11 | 1983-04-11 | Supersaturated electron type ion plating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6320983A JPS59190357A (en) | 1983-04-11 | 1983-04-11 | Supersaturated electron type ion plating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59190357A JPS59190357A (en) | 1984-10-29 |
JPH0253508B2 true JPH0253508B2 (en) | 1990-11-16 |
Family
ID=13222574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6320983A Granted JPS59190357A (en) | 1983-04-11 | 1983-04-11 | Supersaturated electron type ion plating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59190357A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07197963A (en) * | 1993-12-22 | 1995-08-01 | Westinghouse Air Brake Co | Spring clip for latch locking |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS605876A (en) * | 1983-06-23 | 1985-01-12 | Jeol Ltd | Film forming equipment |
JPH0372070A (en) * | 1989-08-11 | 1991-03-27 | Nisshin Steel Co Ltd | Method for vapor-depositing compound at high rate |
DE4026367A1 (en) * | 1990-06-25 | 1992-03-12 | Leybold Ag | DEVICE FOR COATING SUBSTRATES |
US9187815B2 (en) * | 2010-03-12 | 2015-11-17 | United Technologies Corporation | Thermal stabilization of coating material vapor stream |
-
1983
- 1983-04-11 JP JP6320983A patent/JPS59190357A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07197963A (en) * | 1993-12-22 | 1995-08-01 | Westinghouse Air Brake Co | Spring clip for latch locking |
Also Published As
Publication number | Publication date |
---|---|
JPS59190357A (en) | 1984-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS60221566A (en) | Thin film forming equipment | |
US4854265A (en) | Thin film forming apparatus | |
JP3345009B2 (en) | Method for ionizing material vapor produced by heating and apparatus for performing the method | |
JPS59208841A (en) | Vapor stream and ion stream generator | |
JPH0253508B2 (en) | ||
JPS5989763A (en) | Vapor deposition device for thin film | |
JPH09176840A (en) | Vacuum coating apparatus | |
JP3555033B2 (en) | Apparatus for coating a substrate with a material vapor under negative pressure or vacuum | |
JP3401365B2 (en) | Plasma generator and ion plating device | |
JP3406769B2 (en) | Ion plating equipment | |
JP2857743B2 (en) | Thin film forming apparatus and thin film forming method | |
JP3318595B2 (en) | Laser ion plating equipment | |
JPH04191364A (en) | Method and device for ion plating | |
JPH0238563A (en) | Ionizing vapor deposition method | |
JP2768960B2 (en) | Thin film forming equipment | |
JPH0216380B2 (en) | ||
JPH0428862A (en) | Plasma producing device | |
JP3032380B2 (en) | Plasma electron gun | |
JPS5842769A (en) | Ion plating device using light beam | |
JPS59173263A (en) | Supersaturation electron type ion plating method | |
JP3330159B2 (en) | Dynamic mixing device | |
JPS628409A (en) | Formation of transparent conducting metal oxide film | |
JPS60139323A (en) | Laser isotope separation apparatus | |
JP2973171B2 (en) | Plasma control method and apparatus | |
JPH06145979A (en) | Film forming device |