JPH0252561B2 - - Google Patents
Info
- Publication number
- JPH0252561B2 JPH0252561B2 JP59200672A JP20067284A JPH0252561B2 JP H0252561 B2 JPH0252561 B2 JP H0252561B2 JP 59200672 A JP59200672 A JP 59200672A JP 20067284 A JP20067284 A JP 20067284A JP H0252561 B2 JPH0252561 B2 JP H0252561B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- width
- pass
- reduction amount
- roll opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005096 rolling process Methods 0.000 claims description 165
- 239000002184 metal Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 38
- 230000007246 mechanism Effects 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 11
- 239000003921 oil Substances 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 241000251468 Actinopterygii Species 0.000 description 7
- 239000010720 hydraulic oil Substances 0.000 description 7
- 244000208734 Pisonia aculeata Species 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B13/00—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
- B21B13/06—Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged vertically, e.g. edgers
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Description
(産業上の利用分野)
本発明は竪型圧延機と水平圧延機を可逆運転し
て予じめ定めた圧延パススケジユールに沿つて金
属スラブを圧延して目標仕上幅を得る熱間幅圧延
方法に関するもので、更に詳しくは金属スラブの
熱間幅圧延時に発生する先端部及び後端部のフイ
シユテール成長を防止するための熱間幅圧延方法
に関するものである。
(従来の技術)
金属スラブの熱間幅圧延方法の特徴は、従来の
鋼塊を対象とした分塊圧延方法と異なり、連続鋳
造スラブを対象としており圧延時のロール接触弧
長と平均板幅の比、即ちロール間隙形状比が0.1
〜0.2と小さいこと、一回当りの繰返し竪ロール
の幅圧下量が200〜300mmと大きいことである。こ
のため、被圧延材である金属スラブの先端部及び
後端部にフイシユテールと呼ばれる異形部が発生
しやすくクロツプ・ロスも大きくなる。また、被
圧延材の先端部と後端部では材料の逃げがその長
手方向に許されるため断面がいわゆるドツグボー
ンの形状とはならず、それを幅圧延後水平圧延機
にて圧延を行なうと、他の部分はドツグボーン圧
延による幅戻りがあるのに対して、先端部及び後
端部はそれぞれ長さ1m程度にわたり幅戻りがな
く結果的に幅不足部分となり、該幅不足部分は上
記のクロツプ・ロスと合わせ圧延製品の歩留りを
悪くする原因となる。
これら歩留りを悪化させる原因のなかで、幅圧
下量に伴い増大するクロツプ・ロス低減に関して
は従来から多くの方法が提案されている。例えば
特公昭51−35383号公報に提示する、被圧延材が
圧延されて往復するパス・スケジユールに所定の
圧下量のまま通過さすことなく、圧延ロールを抜
け出てしまうまでに圧下量を減少せしめるよう
に、正パスと逆パスを繰り返す片パス可逆圧延法
などである。また、幅不足部分に低減については
特公昭58−51767号公報が提示する、被圧延材の
幅方向圧延に際し、被圧延材の先端部と後端部に
対しては圧下量が大きくならない様に竪ロール機
の固定ハウジング内に環状ピストン・シリンダー
装置を配設し圧下力を制御する方法などがある。
(発明が解決しようとする課題)
連続鋳造工程と熱間圧延工程を直結している幅
圧延工程で一定のスラブ幅から多種類のスラブ幅
を製造する場合、前後工程の能力に合わせた圧延
能率が必要で圧延時間を阻害しないで被圧延材の
先端部及び後端部のクロツプ・ロスを低減させる
ことが要求される。これに対して、特公昭51−
35383号公報が提示する、両片パス圧延法は通常
1回の圧下量を圧延途中で減じるため2回の圧延
回数が必要であり圧延能率が大幅に低下する。ま
た特公昭58−51767号公報が提示する、被圧延材
の先端部及び後端部が圧下量が大きくならない様
に圧延中に圧下力を制御する方法は圧延能率を阻
害せず、幅不足部分の解消が可能であつても、前
記のフイシユテールによるクロツプ・ロスを低減
させることはならない。
このため、従来より連続鋳造工程と熱間圧延工
程を直結している幅圧延工程においては、圧延能
率を阻害しないで被圧延材の先端部及び後端部の
クロツプ・ロスを減少させる方法が望まれてい
た。
本発明は上記問題点を解決する効果的な金属ス
ラブの熱間幅圧延方法を提供するものである。
(課題を解決するための手段)
本発明の要旨とするところは、竪型圧延機と水
平圧延機を可逆運転して予め定められた圧延パス
スケジユールに沿つて金属スラブを圧延して目標
仕上幅を得る熱間幅圧延方法において、最終パス
を除く所定パスの幅圧延の際に、金属スラブの噛
込み時のロール開度を、第1図aに示す如く当該
所定パスの配分幅圧下量ΔHM-1に、該配分幅圧
下量ΔHM-1で幅圧延した際の該スラブの噛込み
端部と定常部との圧延荷重差ΔPに相当する幅圧
下量ΔHO-1を加えた幅圧下量ΔHF-1を得るロール
開度G2に設定し、かつ圧延荷重設定値を当該所
定パスの定常部を該配分幅圧下量で幅圧延する際
の最大圧延荷重予測値P1を設定して金属スラブ
を噛込み、この設定値を超えると設定値以下にな
るまで油圧圧下機構を作動させてロール開度を拡
大しながら金属スラブの噛込み端部を幅圧延し、
ロール開度が当該所定パスの配分幅圧下量
ΔHM-1を得るロール開度G1になつた以降は該油
圧圧下機構の作動を停止し、機械的圧下機構によ
り該ロール開度を固定して幅圧延することを特徴
とする金属スラブの熱間幅圧延方法にある。
(作用)
以下、本発明の作用を図面に依り説明する。
第2図aはロール開度を金属スラブの所定の目
標幅寸法に設定固定した竪型圧延機ロールにより
金属スラブ1を幅方向に圧延した場合、噛込み端
及び噛抜け端にフイシユテールと呼ばれる先端部
及び後端部の異形部2,3が発生する状態を示す
図である。
本発明者等は上記幅圧延により生じた金属スラ
ブ11の噛込み端と噛抜け端のフイシユテール
2,3を調査した。先づ幅圧延開始パスから終了
パスまで可逆圧延せず圧延方向を同一にして幅圧
延した場合、第2図bに示す如く噛抜け端異形部
3は噛込み端異形部2の約3倍となること、及び
可逆圧延では噛込み端、噛抜け端の位置付けはパ
ス毎に圧延方向との関係で交互に変更するため先
端部及び後端部の異形部は大略等しく、一方向圧
延時の噛込み端及び噛抜け端の平均したクロツプ
4となつていることが分つた。
これ等から、可逆圧延の場合は可逆圧延の各パ
スにおいて次パス時に噛抜け端となる噛込み端の
幅圧下量を他部より大きく予成形しておき、次パ
スでの噛抜け時の幅圧下量を少なくすることによ
り、従来端部のみ幅圧延する予成形パスを設定す
るなどして圧延時間を阻害するようなことがな
く、フイシユテール量が大幅に改善されることを
確かめた。
本発明者等はパス数を増加することなく配分幅
圧下量が設定された各幅圧延パスにて、配分幅圧
下量が任意に設定されても上記予成形を実施する
手段を見い出したものである。
第3図aは幅圧下圧延機のスタンド構成の一例
で竪型圧延機ロール5(V1)と7(V2)の2ス
タンド間に水平ロール6(H)が配設されてい
る。金属スラブ1は各ロール5,6,7間で可逆
圧延される。第3図b,cは圧延過程のスラブ形
状を図示したものである。即ち、竪ロール5,7
により前記の如くロール開度を一定にして金属ス
ラブを幅圧延すると、第3図bに示す如くスラブ
の圧延方向先端部及び後端部にフイシユテールが
発生し、かつ先・後端部から一定スラブ長8,9
を除く範囲にドツグホーンと呼ばれるスラブ幅両
側端部に局部的な板厚増大部10が発生する。こ
の局部的な板厚増大部が大きくなるとスラブの表
面疵や幅方向圧延における圧延動力の増大を招
く。これらの要因がスラブ幅圧延可能量を規制す
るため、第3図cで示す如く水平圧延機6で板厚
増大部厚を水平圧下し、板厚増大部を他の部分と
同じ厚さ、またはそれ以下の厚さまで至らしめ、
再び幅方向圧延を行なつて幅を減少せしめてい
く、いわゆる第3図bと第3図cの圧延過程を繰
返す。この場合、金属スラブは幅中央部が幅端部
より薄い断面形状となり、第3図cに示す如く幅
中央部に肉引け現象による窪みを生じる。また先
端部及び後端部8,9には上記の現象が見られな
いなど、幅大圧下圧延過程は複雑な圧延挙動を示
す。
第4図に金属スラブを一定の圧下量(ロール開
度一定)で幅圧延した場合の圧延荷重曲線12を
示す。この第4図の圧延荷重曲線12には先ず加
熱炉スキツドマークによる圧延荷重変動量ΔPsが
顕著に表われる。即ち、連続鋳造工程と熱間圧延
工程を直結している幅圧延工程では前後工程の能
力に合わせた圧延能率が必要なため加熱時間に時
間制約を受け急速加熱をおこなうためである。ま
た金属スラブの先端部及び後端部ではエンドエフ
エクトの領域(第3図b,cにおいて符号8,9
で図示する部位)が1〜2mにわたつて表われ、
その部位は他の部位よりも圧延荷重が軽くなる現
象が見られ、且つ、噛込み端の荷重軽減量ΔPFは
噛抜け端の荷重軽減量ΔPTよりも大きい。
本発明者等はこれらの幅圧延荷重パターンに基
づき、配分幅圧下量を得る所定ロール開度に固定
設定して幅圧延すれば、圧延荷重が低レベルから
徐々に高く変化する噛込み端部は、噛込み端部と
噛抜け端部を除く部分(以下定常部という)を該
所定ロール開度で幅圧延した際の最大圧延荷重値
又はその低(一側)近傍値で幅圧延して定常部よ
り狭幅に予成形することにより金属スラブの先端
部及び後端部に発生するフイシユテールを大幅に
改善するものである。
第1図は本発明の具体的な圧延方法の説明図で
ある。第1図aにおいて、符号12−1は圧下量
一定(ロール開度一定)で金属スラブを幅圧延し
た場合の幅圧延ロールに負荷される荷重曲線を、
符号13は金属スラブの圧延前のスラブ幅、符号
14は本発明方法により幅圧延した後の金属スラ
ブの幅を示したものである。図において、金属ス
ラブ幅13の被圧延材は次のようにして幅圧延す
る。先ずセツトアツプは幅圧延ロールのロール開
度を当該パスの配分幅圧下量ΔHM-1に、該
ΔHM-1で金属スラブの全長を幅圧延した際の噛
込み端部と定常部との圧延荷重差ΔP(P1−P2)
に相当する幅圧下量ΔHO-1を加えた幅圧下量
ΔHF-1(ΔHM-1+ΔHO-1)を得るロール開度G2に
設定すると共に噛込み端エンドエフエクト領域の
圧延荷重設定値を金属スラブの噛込み端部と噛抜
け端部を除く部分を所定圧下量ΔHM-1で幅圧延
した際の最大圧延荷重値P1に設定する。これで
噛込み後実圧延荷重値がこの設定値を超える時の
みロール開度を拡げ、設定値以下になれば直前の
開度を維持することを繰返しながら該当パスに配
分された幅圧下量ΔHM-1を得る所定ロール開度
G1になるまで段階的に広幅圧延し、所定ロール
開度G1に到達以後はこのロール開度を固定して
配分幅圧下量ΔHM-1の幅圧延をした場合、スラ
ブ幅パターン14の金属スラブが得られる。この
時の噛込み端の圧延荷重曲線は他と同様スキツド
マークも存在するため12a−1となる。即ち、
金属スラブの幅圧延の際、従来のようにロール開
度一定で噛込み端部もその他の部位もそのパスに
配分された圧下量とすると、噛込み端部の圧延荷
重は第4図の曲線12に示す如く他の部位のそれ
より小さいから、本発明ではその差分ΔPFをなく
し他の部分と同等の圧延荷重に設定するとともに
噛込み端部の圧下量を該差分ΔPFに相当する圧下
量ΔHO-1分他部より大きく設定してそれが得られ
るロール開度にセツトアツプし上記の如き噛込み
幅圧延する。このようにして圧延したスラブ幅1
4を有する金属スラブを次の逆転パスで前パス同
様の幅圧延をすると、第1図bに示すように噛抜
け端は前パスの幅圧延における噛込み圧延で予め
他部より多量に幅圧下されているから、この幅圧
下量差分のみ軽圧下量(ΔHM-2−(ΔHF-1−
ΔHM-1))となる。この時に圧延荷重曲線は圧下
量一定の荷重曲線12−2(一点鎖線)に比べ噛
込み端及び噛抜け端は12a−2(点線)とな
る。このように可逆圧延パスを繰返すことにより
2パス目以降の各パスで、次パスのための噛込み
端強圧下予成形と、前パスの強圧下でスラブの前
パス圧延方向に予成形された噛抜け端の軽圧下の
圧延が同一パス内で可能となる。
更に、本発明者等が仕上げスラブ幅について調
査した結果、最終パス以外で噛込み端強圧下、噛
抜け端軽圧下圧延を行ない、最終パスでは逆に、
先端部及び後端部が圧下量が大きくならないよう
に圧延を実施すれば、先端部の幅不足部分が解消
可能であることが分つた。
本発明法によると圧延能率向上を目的とした最
大圧延荷重で圧延する場合においても、金属スラ
ブの噛込み端とそれ以外の圧延荷重差ΔPを前述
の如く用いているため、圧延時間を阻害すること
なくフイシユテール改善によるクロツプロスが大
幅に減少できる。
次に本発明の圧延法を実施する圧延機装置例を
第5図に示す。図において、竪型圧延機のロール
5,7はチヨツク16により支持されており、ロ
ール駆動軸に駆動連絡されている。前記チヨツク
16はヨーク17により一体に結合され、該ヨー
ク17はその後面中央部に固定ハウジング18に
設けたプルバツクシリンダー装置15で図中右方
へ牽引力を働らかせ、機械的圧下機構の各圧下ス
クリユー19の先端に設けたプレツシヤーブロツ
ク20に押圧当接されている。プレツシヤーブロ
ツク20内には圧延荷重計測用のロードセル等が
内蔵されている。そして、機械的圧下機構におい
て前記の各圧下スクリユー19は固定ハウジング
18内に回り止めを介して一定長前後進可能に装
置された圧下ナツト21に螺合すると共に後端部
においてウオームホイールギヤー22にスライド
キー係合されている。更に油圧圧下機構において
前記スクリユー19を包囲して環状ピストン24
及び環状シリンダー25からなる装置が装着さ
れ、環状シリンダー25は固定ハウジング18に
定置され、一方環状ピストン24は圧下ナツト2
1の背面に当接されている。符号26はピストン
24とシリンダー25とで形成される液室空隙で
あり、この空隙26の作動油を排出するとプルバ
ツクシリンダー装置15の牽引力により圧下ナツ
ト21、環状ピストン24も後退して、該空隙は
無くなりピストン24の右端はシリンダー25の
底に当接することになる。
図中IOは、環状シリンダー25の液室空隙2
6側に連通し、プルバツクシリンダー装置15の
牽引力より大きい圧力の作動油を源と排出ピツト
に切替可能に連通し、該液室空隙26に該作動油
を給排する配管であり、制御バルブBVと油圧検
出器Pnを介設してある。
制御バルブBVは、手動でのON−OFF制御と、
油圧検出器Pnで検出した液室空隙26内作動油
圧が設定圧になると開放排油動作し、設定圧未満
の時閉止動作する自動制御と、に切替えることが
できる。
次に本発明方法を実施するための動作を述べ
る。
幅圧下パス開始直前のセツトアツプ
制御バルブBVを手動にして全開(ON)にし、
配管IOを排出ピツトに連通させた状態において、
噛込み端部を除く設定圧下量、即ち第1図に示す
圧下量ΔHMを得るロール開度の設定を図示しな
い駆動源でロール・アジヤスター23及びウオー
ムホイールギヤ22を介して伝えられる駆動力に
より圧下スクリユー19を回転させ、ヨーク17
を前進あるいは後退させることによつて行なわれ
る。この動作開始と共に該液室空隙26内の作動
油は配管IOから排出され空隙は無くなる。この
ロール開度の設定後、配管IOを作動油源に連通
切替えして、液室空隙26内にプルバツクシリン
ダー装置15の牽引油圧より若干高めの油圧にし
た作動油をピストン24の前進ストローク長〔即
ち、予め求めた噛込み端部と定常部との最大圧延
荷重差に相当する幅圧下量の1/2〕分供給してピ
ストン24、圧下ナツト21、圧下スクリユー1
9、プレツシヤーブロツク20、ヨーク17及び
チヨツク16を介して竪ロール5をプルバツクシ
リンダー装置15の所定油圧による牽引力に抗し
て左側に、つまり前進させて、噛込み時の開度に
静止設定し、この設定後制御バルブBVを手動で
OFF(閉止)とし、次いで自動制御に切替えると
共に開放作動する油圧設定値として金属スラブの
定常部を配分幅圧下量で幅圧延する際の予測した
最大圧延荷重値に相当する油圧としこれを設定す
る。
セツトアツプ後のロール開度制御
1 前記の如くセツトアツプした竪ロール5間に
金属スラブの先端が噛込まれたら、これにより
上昇する液室空隙26内の作動油圧を油圧検出
器Pnで検出し、これが前記最大圧延荷重値に
対応した設定油圧に達すると制御バルブBVが
開放して排油し、圧延部位が非スキツドマーク
部等の高温度になり荷重が軽減されて設定油圧
未満になると閉止する動作を自動的に行なつ
て、ピストン24を後退させて竪ロール5を後
退させロール開度を段階的に拡大制御しながら
幅圧延する。このようにしてピストン24がシ
リンダー25の底Bに近付き当接されるとロー
ル開度は定常部を配分幅圧下量で幅圧延するた
めの目標ロール開度に一致する。この時液室空
隙26内の作動油が無くなつており、該拡大制
御は自動的に中止される。
2 この後、噛抜けまでの間ロール開度は、前記
目標ロール開度に一致した状態に固定設定して
幅圧延する。
以上1パス当りの幅圧下動作を少なくとも最終
パスを除く各パス繰返して、目標仕上幅まで幅圧
延するものである。
(実施例)
次に本発明の実施例を示す。圧延条件は表1に
示す通りであり、V1−H−V2の3スタンド・リ
バース圧延方式で連続鋳造スラブ280mm厚、1800
mm幅から目標スラブ寸法250mm厚、600mm、970mm、
1190mm、1400mm、1585mm幅の各種サイズを製造し
た。
(Industrial Application Field) The present invention provides a hot width rolling method in which a vertical rolling mill and a horizontal rolling mill are operated reversibly to roll a metal slab along a predetermined rolling pass schedule to obtain a target finished width. More specifically, the present invention relates to a hot width rolling method for preventing the growth of fishtails at the leading and trailing ends that occur during hot width rolling of metal slabs. (Conventional technology) The feature of the hot width rolling method for metal slabs is that, unlike the conventional blooming method for steel ingots, the hot width rolling method for metal slabs is for continuously cast slabs. The ratio of roll gap shape ratio is 0.1
It is small at ~0.2, and the width reduction amount of the vertical roll is large at 200 to 300 mm per roll. For this reason, deformed portions called fishtails are likely to occur at the leading and trailing ends of the metal slab, which is the material to be rolled, resulting in increased crop loss. In addition, at the tip and rear ends of the material to be rolled, the material is allowed to escape in the longitudinal direction, so the cross section does not have a so-called dogbone shape, and when it is rolled in a horizontal mill after width rolling, While the other parts have their width restored by dogbone rolling, the tip and rear ends each have a length of about 1 m without any width returned, resulting in a part with insufficient width. Combined with the loss, this causes a decrease in the yield of rolled products. Among these causes of deterioration of yield, many methods have been proposed to reduce crop loss, which increases with width reduction. For example, as proposed in Japanese Patent Publication No. 51-35383, the rolling material is not passed through a reciprocating pass schedule after being rolled, but the rolling reduction is reduced before it leaves the rolling rolls, without passing the rolling material with a predetermined rolling reduction. Another example is the single-pass reversible rolling method, which repeats forward and reverse passes. In addition, regarding the reduction in the insufficient width, Japanese Patent Publication No. 58-51767 proposes that when rolling the material to be rolled in the width direction, the amount of reduction in the leading and trailing ends of the material to be rolled does not become large. There is a method of controlling the rolling force by arranging an annular piston-cylinder device within the fixed housing of a vertical roll machine. (Problem to be solved by the invention) When manufacturing various slab widths from a fixed slab width in the width rolling process that directly connects the continuous casting process and the hot rolling process, it is necessary to adjust the rolling efficiency to the capacity of the preceding and following processes. It is necessary to reduce the crop loss at the leading and trailing ends of the rolled material without interfering with the rolling time. In contrast,
In the double-pass rolling method proposed in Japanese Patent No. 35383, the amount of reduction in one roll is usually reduced during rolling, so two rolling cycles are required, resulting in a significant reduction in rolling efficiency. In addition, the method proposed in Japanese Patent Publication No. 58-51767, in which the rolling force is controlled during rolling so that the amount of rolling at the leading and trailing ends of the material to be rolled does not become large, does not impede rolling efficiency, Even if it is possible to eliminate the above-mentioned crop loss caused by the fish tail, it will not reduce the crop loss caused by the fish tail. For this reason, in the width rolling process where the continuous casting process and the hot rolling process are conventionally directly connected, it is desirable to have a method of reducing crop loss at the leading and trailing ends of the rolled material without impeding rolling efficiency. It was rare. The present invention provides an effective method for hot width rolling of metal slabs that solves the above problems. (Means for Solving the Problems) The gist of the present invention is to roll a metal slab to a target finished width according to a predetermined rolling pass schedule by reversibly operating a vertical rolling mill and a horizontal rolling mill. In the hot width rolling method for obtaining width rolling of a predetermined pass excluding the final pass, the roll opening degree at the time of biting of the metal slab is determined by the distributed width reduction amount ΔH of the predetermined pass as shown in Fig. 1a. The width obtained by adding the width reduction amount ΔH O-1 corresponding to the rolling load difference ΔP between the biting end and the steady part of the slab when width rolling is performed with the distributed width reduction amount ΔH M-1 to M-1 . Set the roll opening degree G 2 to obtain the rolling reduction amount ΔH F-1 , and set the rolling load setting value to the maximum rolling load predicted value P 1 when width rolling the steady portion of the predetermined pass with the distributed width rolling amount. When this set value is exceeded, the hydraulic rolling down mechanism is operated until the roll opening is expanded and the engaged end of the metal slab is rolled to a width.
After the roll opening reaches the roll opening G 1 to obtain the distribution width reduction amount ΔH M-1 of the predetermined pass, the operation of the hydraulic reduction mechanism is stopped, and the roll opening is fixed by the mechanical reduction mechanism. A method for hot width rolling of a metal slab, characterized in that width rolling is carried out using a metal slab. (Function) Hereinafter, the function of the present invention will be explained with reference to the drawings. Figure 2a shows that when a metal slab 1 is rolled in the width direction by a vertical rolling mill roll whose roll opening degree is set and fixed at a predetermined target width dimension of the metal slab, tips called fish tails are formed at the biting and biting ends. FIG. 4 is a diagram showing a state in which irregularly shaped portions 2 and 3 are generated at the rear end portion and the rear end portion. The present inventors investigated the fishtails 2 and 3 at the biting end and the biting-through end of the metal slab 11 produced by the above-mentioned width rolling. First, when width rolling is performed with the same rolling direction without reversible rolling from the start pass to the end pass of width rolling, the bite-through end irregularly shaped portion 3 is approximately three times as large as the bite end irregularly shaped portion 2, as shown in Fig. 2b. In reversible rolling, the positions of the bite end and bite-through end are changed alternately in relation to the rolling direction for each pass, so the irregularly shaped parts at the tip and rear ends are approximately equal, and the position of the bite end and bite-through end during unidirectional rolling is approximately equal. It was found that the average crop of the deep end and the open end was 4. For this reason, in the case of reversible rolling, in each pass of reversible rolling, the amount of width reduction at the biting end, which will be the biting-through end in the next pass, is preformed to be larger than other parts, and the width at the biting-through in the next pass is preformed. It was confirmed that by reducing the amount of rolling reduction, the amount of fish tails was significantly improved without hindering the rolling time, such as by setting a preforming pass in which only the edges were width-rolled. The present inventors have discovered a means to perform the above preforming even if the distributed width reduction amount is arbitrarily set in each width rolling pass in which the distributed width reduction amount is set without increasing the number of passes. be. FIG. 3a shows an example of the stand configuration of a width reduction mill, in which a horizontal roll 6 (H) is disposed between two stands of vertical mill rolls 5 (V 1 ) and 7 (V 2 ). The metal slab 1 is reversibly rolled between each roll 5, 6, 7. Figures 3b and 3c illustrate the slab shape during the rolling process. That is, vertical rolls 5, 7
Therefore, when a metal slab is width-rolled with the roll opening constant as described above, fish tails occur at the leading and trailing ends of the slab in the rolling direction, as shown in Figure 3b, and a uniform slab is formed from the leading and trailing ends. long 8,9
Locally increased thickness 10 occurs at both ends of the slab width, which is called a doghorn. If this locally increased thickness increases, it will cause surface flaws on the slab and an increase in rolling power during rolling in the width direction. These factors restrict the amount of slab width that can be rolled, so the thickness of the thickened part is horizontally rolled down by the horizontal rolling mill 6 as shown in Figure 3c, and the thickened part is rolled to the same thickness as other parts, or Reduce the thickness to less than that,
Rolling in the width direction is performed again to reduce the width, and the so-called rolling process shown in FIGS. 3b and 3c is repeated. In this case, the metal slab has a cross-sectional shape where the width center portion is thinner than the width end portions, and as shown in FIG. In addition, the wide reduction rolling process shows complicated rolling behavior, such as the above phenomenon not being observed in the leading and trailing ends 8 and 9. FIG. 4 shows a rolling load curve 12 when a metal slab is width-rolled with a constant rolling reduction (constant roll opening). In the rolling load curve 12 of FIG. 4, first, the rolling load fluctuation amount ΔP s due to the heating furnace skid marks appears conspicuously. That is, in the width rolling process in which the continuous casting process and the hot rolling process are directly connected, the rolling efficiency is required to match the capacity of the preceding and following processes, so the heating time is subject to time constraints and rapid heating is performed. In addition, the end effect area (numerals 8 and 9 in Fig. 3 b and c) is located at the leading and rear ends of the metal slab.
) appears over 1 to 2 m,
A phenomenon is observed in which the rolling load is lighter in that part than in other parts, and the load reduction amount ΔP F at the biting end is larger than the load reduction amount ΔP T at the biting end. Based on these width rolling load patterns, the present inventors believe that if width rolling is performed by fixing the roll opening to a predetermined roll opening to obtain the distributed width reduction amount, the biting end where the rolling load gradually changes from a low level to a higher level can be , the part excluding the biting end and the biting-out end (hereinafter referred to as the steady part) is width-rolled at the maximum rolling load value when width-rolling is performed at the predetermined roll opening degree, or a value close to the lower (one side) thereof, and the part is kept steady. By preforming the metal slab to a narrower width than the front end, fishtails that occur at the leading and trailing ends of the metal slab can be significantly improved. FIG. 1 is an explanatory diagram of a specific rolling method of the present invention. In Fig. 1a, reference numeral 12-1 represents the load curve applied to the width rolling roll when a metal slab is width rolled with a constant rolling reduction amount (constant roll opening).
Reference numeral 13 indicates the width of the metal slab before rolling, and reference numeral 14 indicates the width of the metal slab after width rolling by the method of the present invention. In the figure, a material to be rolled having a metal slab width of 13 is width-rolled as follows. First, the setup is performed by setting the roll opening of the width rolling roll to the distribution width reduction amount ΔH M-1 of the relevant pass, and adjusting the rolling distance between the biting end and the steady part when the entire length of the metal slab is width rolled at ΔH M-1. Load difference ΔP (P 1 − P 2 )
The width reduction amount ΔH F-1 ( ΔH M-1 + ΔH O-1 ) obtained by adding the width reduction amount ΔH O- 1 corresponding to The load setting value is set to the maximum rolling load value P 1 when the portion of the metal slab excluding the biting end and the biting-through end is width-rolled with a predetermined reduction amount ΔH M-1 . With this, the roll opening degree is expanded only when the actual rolling load value after biting exceeds this set value, and when it becomes less than the set value, the previous opening degree is maintained, and the width reduction amount ΔH is distributed to the corresponding pass. Predetermined roll opening to obtain M-1
If width rolling is carried out in stages until G 1 is reached, and after reaching the predetermined roll opening G 1 , this roll opening is fixed and width rolling is performed with the distributed width reduction amount ΔH M-1 , the slab width pattern 14 is A metal slab is obtained. At this time, the rolling load curve at the biting end becomes 12a-1 because skid marks are also present as in the other cases. That is,
When width-rolling a metal slab, if the roll opening is constant and the reduction amount at the biting edge and other parts is distributed over the pass as in the past, the rolling load at the biting edge will be the curve shown in Figure 4. As shown in Fig. 12, it is smaller than that of other parts, so in the present invention, this difference ΔP F is eliminated and the rolling load is set to be equal to that of other parts, and the reduction amount of the biting end is set to be a reduction corresponding to the difference ΔP F. The amount ΔH O-1 is set larger than the other parts, the roll opening is set up to obtain this value, and rolling is performed to the biting width as described above. The width of the slab rolled in this way is 1
4 is width-rolled in the next reverse pass in the same way as in the previous pass, as shown in Fig. 1b, the bite-through end is preliminarily reduced in width by a larger amount than other parts due to biting rolling in the width rolling of the previous pass. Therefore, only this width reduction amount difference is the light reduction amount (ΔH M-2 − (ΔH F-1 −
ΔH M-1 )). At this time, the rolling load curve becomes 12a-2 (dotted line) at the biting end and the biting through end compared to the load curve 12-2 (dotted chain line) where the rolling reduction amount is constant. By repeating the reversible rolling passes in this way, in each pass after the second pass, the biting end is preformed by strong rolling for the next pass, and the slab is preformed in the rolling direction of the previous pass under strong rolling in the previous pass. Light reduction rolling of the bite-through end is possible within the same pass. Furthermore, as a result of the investigation by the present inventors regarding the width of the finished slab, heavy rolling at the biting edge and light rolling at the biting edge were performed in a pass other than the final pass, and conversely in the final pass.
It has been found that if the rolling is carried out so that the amount of reduction at the leading end and the trailing end does not become large, the insufficient width at the leading end can be resolved. According to the method of the present invention, even when rolling is carried out at the maximum rolling load for the purpose of improving rolling efficiency, the rolling load difference ΔP between the biting end of the metal slab and other parts is used as described above, so that the rolling time is hindered. Clothopulosis can be significantly reduced by improving the fishtail without any problems. Next, an example of a rolling mill apparatus for carrying out the rolling method of the present invention is shown in FIG. In the figure, the rolls 5 and 7 of the vertical rolling mill are supported by chock 16 and are driven in communication with a roll drive shaft. The yoke 16 is integrally connected by a yoke 17, and the yoke 17 exerts a pulling force to the right in the figure by a pullback cylinder device 15 provided in a fixed housing 18 at the center of the rear surface, and each of the mechanical lowering mechanisms It is pressed into contact with a pressure block 20 provided at the tip of the reduction screw 19. The pressure block 20 has a built-in load cell and the like for measuring rolling load. In the mechanical lowering mechanism, each of the aforementioned lowering screws 19 is screwed into a lowering nut 21 which is provided in the fixed housing 18 via a detent so as to be able to move back and forth by a certain distance, and is connected to a worm wheel gear 22 at the rear end. Slide key is engaged. Further, in the hydraulic pressure lowering mechanism, an annular piston 24 is provided surrounding the screw 19.
and an annular cylinder 25, the annular cylinder 25 being placed in the stationary housing 18, while the annular piston 24 is attached to the lowering nut 2.
It is in contact with the back of 1. Reference numeral 26 is a liquid chamber gap formed by the piston 24 and the cylinder 25. When the hydraulic oil in this gap 26 is discharged, the lowering nut 21 and the annular piston 24 are also moved back by the pulling force of the pullback cylinder device 15, and the gap is closed. The right end of the piston 24 comes into contact with the bottom of the cylinder 25. In the figure, IO is the liquid chamber gap 2 of the annular cylinder 25.
6 side, the piping connects hydraulic oil with a pressure higher than the pulling force of the pullback cylinder device 15 to a source and a discharge pit in a switchable manner, and supplies and discharges the hydraulic oil to and from the liquid chamber gap 26, and is connected to a control valve. B V and oil pressure detector P n are interposed. Control valve B V has manual ON-OFF control,
It is possible to switch to automatic control in which an opening oil drain operation is performed when the working oil pressure in the liquid chamber gap 26 detected by the oil pressure detector P n reaches a set pressure, and a closing operation is performed when the pressure is less than the set pressure. Next, the operation for carrying out the method of the present invention will be described. Setup just before starting the width reduction pass Manually turn control valve B V fully open (ON).
With the piping IO connected to the discharge pit,
The setting of the roll opening degree to obtain the set rolling reduction amount excluding the biting end, that is, the rolling reduction amount ΔH M shown in FIG. Rotate the reduction screw 19 and remove the yoke 17.
This is done by moving forward or backward. At the start of this operation, the hydraulic oil in the liquid chamber gap 26 is discharged from the pipe IO, and the gap disappears. After setting the roll opening degree, the piping IO is switched to the hydraulic oil source, and hydraulic oil with a pressure slightly higher than the traction hydraulic pressure of the pullback cylinder device 15 is supplied into the liquid chamber gap 26 for the forward stroke length of the piston 24. [In other words, 1/2 of the width reduction amount corresponding to the maximum rolling load difference between the biting end and the steady portion determined in advance] is supplied to the piston 24, the reduction nut 21, and the reduction screw 1.
9. Via the pressure block 20, yoke 17, and choke 16, move the vertical roll 5 to the left side, that is, forward, against the traction force of the predetermined hydraulic pressure of the pullback cylinder device 15, and stop it at the opening degree at the time of biting. Set and after this setting control valve B V manually
OFF (closed), then switch to automatic control and set the oil pressure setting value for opening operation as the oil pressure corresponding to the predicted maximum rolling load value when width rolling the stationary part of the metal slab with the distributed width reduction amount. . Roll opening degree control after set-up 1 When the tip of the metal slab is caught between the vertical rolls 5 set up as described above, the hydraulic pressure in the liquid chamber gap 26 that rises due to this is detected by the hydraulic pressure detector P n , When this reaches the set oil pressure corresponding to the maximum rolling load value, the control valve B V opens and drains the oil, and closes when the rolling part becomes high temperature such as the non-skid mark area and the load is reduced and the oil pressure falls below the set oil pressure. The operation is automatically carried out by retracting the piston 24, retracting the vertical rolls 5, and performing width rolling while controlling the roll opening degree to be enlarged step by step. In this way, when the piston 24 approaches and abuts the bottom B of the cylinder 25, the roll opening matches the target roll opening for width rolling the steady portion by the distributed width reduction amount. At this time, the hydraulic oil in the liquid chamber gap 26 is exhausted, and the expansion control is automatically stopped. 2. Thereafter, width rolling is performed with the roll opening degree being fixed and set to match the target roll opening degree until the roll is cut through. The above-described width rolling operation per pass is repeated for each pass except at least the final pass to achieve width rolling to the target finished width. (Example) Next, an example of the present invention will be shown. The rolling conditions are as shown in Table 1 , and a continuous cast slab of 280 mm thickness and 1800
Target slab dimensions from mm width: 250mm thickness, 600mm, 970mm,
Various sizes were manufactured with widths of 1190mm, 1400mm, and 1585mm.
【表】【table】
【表】
表2は各種スラブ幅ごとの本発明法と従来法、
即ち前述の特公昭51−35383号公報に開示されて
いる片パス可逆圧延法と比較して対比したもので
ある。尚、クロツプ・ロス減少率は圧下量を変化
させず一定の圧下量で圧延した場合と本発明法及
び従来の上記片パス可逆圧延法を採用した場合の
改善割合である。表2の実施例より明らかな様
に、従来法はパス回数が増加し圧延温度が低下が
著るしいため、スクリユー開度制御が不可能とな
り噛戻し圧延をおこないロール開度を再設定する
必要が生じ圧延不可能なケースが生じた。[Table] Table 2 shows the inventive method and conventional method for various slab widths.
That is, this is a comparison with the one-pass reversible rolling method disclosed in Japanese Patent Publication No. 51-35383 mentioned above. Incidentally, the crop loss reduction rate is the improvement rate when rolling is performed with a constant reduction amount without changing the reduction amount, and when the method of the present invention and the conventional single-pass reversible rolling method described above are adopted. As is clear from the examples in Table 2, in the conventional method, the number of passes increases and the rolling temperature drops significantly, making it impossible to control the screw opening and requiring back-rolling to reset the roll opening. This resulted in cases where rolling was impossible.
【表】【table】
【表】
(注) −印は温度低下で圧延不可
(効果)
連続鋳造工程と熱間圧延工程を直結するプロセ
ス下の幅圧延機への従来法による歩留向上圧延法
の適用は圧延時間を大幅に阻害するため不可能で
ある。
本発明法によると噛込み端はその他部位より幅
圧下量を多くとることが出来、且つ噛込み端とそ
の他部位の荷重差を活用しているため、最大圧延
荷重相当圧延量で圧延する場合においても、圧延
時間を阻害することなく実施可能であり、金属ス
ラブの先端部及び後端部でのフイシユテール発生
量を生産性よく大幅に減少させることができ、工
業上非常に有用な効果が奏される。[Table] (Note) − indicates that rolling is not possible due to temperature drop (effect) The application of the conventional yield-improving rolling method to a width rolling mill in a process that directly connects the continuous casting process and hot rolling process is due to the rolling time This is not possible as it would greatly hinder the process. According to the method of the present invention, it is possible to take a larger amount of width reduction at the biting end than in other parts, and because the difference in load between the biting edge and other parts is utilized, when rolling with a rolling amount equivalent to the maximum rolling load, This method can also be carried out without interfering with the rolling time, and the amount of fish tails generated at the leading and trailing ends of the metal slab can be significantly reduced with good productivity, resulting in a very useful effect industrially. Ru.
第1図a,bは本発明の具体的な圧延方法の説
明図、第2図aは金属スラブを幅方向に圧延した
場合に発生するフイシユテールの状態の説明図、
第2図bはフイシユテール重量と総幅圧下量の関
係を示す図、第3図aは幅圧下圧延機のスタンド
構成の一例を示す図、第3図b,cは圧延過程の
スラブ形状の説明図、第4図は金属スラブを幅方
向に一定の圧下量で圧延した場合の圧延荷重曲線
図、第5図は本発明を実施する圧延機装置例を示
す図である。
Figures 1a and b are explanatory diagrams of a specific rolling method of the present invention, and Figure 2a is an explanatory diagram of the state of fish tails that occur when a metal slab is rolled in the width direction.
Figure 2b is a diagram showing the relationship between the weight of the fishtail and the total width reduction amount, Figure 3a is a diagram showing an example of the stand configuration of a width reduction mill, and Figures 3b and c are explanations of the slab shape during the rolling process. FIG. 4 is a rolling load curve diagram when a metal slab is rolled with a constant reduction amount in the width direction, and FIG. 5 is a diagram showing an example of a rolling mill apparatus for implementing the present invention.
Claims (1)
定められた圧延パススケジユールに沿つて金属ス
ラブを圧延して目標仕上幅を得る熱間幅圧延方法
において、最終パスを除く所定パスの幅圧延の際
に、金属スラブの噛込み時のロール開度を、当該
所定パスの配分幅圧下量に、該配分幅圧下量で幅
圧延した際の該スラブの噛込み端部と定常部との
圧延荷重差に相当する幅圧下量を加えた幅圧下量
を得るロール開度に設定し、かつ圧延荷重設定値
を当該所定パスの定常部を該配分幅圧下量で幅圧
延する際の最大圧延荷重予測値を設定して金属ス
ラブを噛込み、この設定値を超えると設定値以下
になるまで油圧圧下機構を作動させてロール開度
を拡大しながら幅圧延し、ロール開度が当該所定
パスの配分幅圧下量を得るロール開度になつた以
降は該油圧圧下機構の作動を停止し、機械的圧下
機構により該ロール開度を固定して幅圧延するこ
とを特徴とする金属スラブの熱間幅圧延方法。1 In a hot width rolling method in which a vertical rolling mill and a horizontal rolling mill are operated reversibly to roll a metal slab along a predetermined rolling pass schedule to obtain a target finished width, the width of a predetermined pass excluding the final pass is During rolling, the roll opening degree at the time of biting of the metal slab is set to the distributed width reduction amount of the predetermined pass, and the difference between the biting end and the steady portion of the slab when width rolling is performed with the distributed width reduction amount. Set the roll opening to obtain the width reduction amount by adding the width reduction amount corresponding to the rolling load difference, and set the rolling load setting value to the maximum rolling when width rolling the steady part of the predetermined pass with the distributed width reduction amount. A predicted load value is set and the metal slab is bitten, and when this set value is exceeded, the hydraulic rolling mechanism is operated until the roll opening is expanded until it becomes less than the set value, and the width is rolled, and the roll opening is changed to the corresponding predetermined path. The method of heating a metal slab is characterized in that the hydraulic rolling mechanism is stopped operating after the roll opening is reached to obtain a distributed width reduction of , and width rolling is carried out with the roll opening being fixed by a mechanical rolling mechanism. Width rolling method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20067284A JPS6178502A (en) | 1984-09-27 | 1984-09-27 | Hot width rolling method for metal slabs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20067284A JPS6178502A (en) | 1984-09-27 | 1984-09-27 | Hot width rolling method for metal slabs |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6178502A JPS6178502A (en) | 1986-04-22 |
JPH0252561B2 true JPH0252561B2 (en) | 1990-11-14 |
Family
ID=16428314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20067284A Granted JPS6178502A (en) | 1984-09-27 | 1984-09-27 | Hot width rolling method for metal slabs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6178502A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2650485A1 (en) * | 1989-08-01 | 1991-02-08 | Diaz Andre | FOOD CHAIR, MOLD AND PROCESS FOR PRODUCING THE SAME |
JP5720391B2 (en) * | 2011-04-13 | 2015-05-20 | 株式会社Ihi | Edger |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS521382A (en) * | 1975-06-24 | 1977-01-07 | Hitachi Constr Mach Co Ltd | Oil pressure controller |
JPS6137302A (en) * | 1984-07-30 | 1986-02-22 | Nippon Steel Corp | Hot width rolling method for metal slabs |
-
1984
- 1984-09-27 JP JP20067284A patent/JPS6178502A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS521382A (en) * | 1975-06-24 | 1977-01-07 | Hitachi Constr Mach Co Ltd | Oil pressure controller |
JPS6137302A (en) * | 1984-07-30 | 1986-02-22 | Nippon Steel Corp | Hot width rolling method for metal slabs |
Also Published As
Publication number | Publication date |
---|---|
JPS6178502A (en) | 1986-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR960002400B1 (en) | Strip casting unit with down-stream multi-stand continuous rolling mill | |
DE1452117C3 (en) | Process and rolling train for hot rolling slabs | |
DE69736208T2 (en) | Method and device for producing hot-rolled steel strip | |
RU2005102828A (en) | METHOD AND CAST-ROLLING UNIT FOR SEMI-INFINITE OR INFINITE ROLLING OF A METAL, IN PARTICULAR, CONTINUOUSLY CAST STEEL WORK, WHICH AFTER CRYSTALLIZATION DOES NOT IN CASE | |
RU2138345C1 (en) | Method of operation of continuous casting plant and plant for continuous casting | |
CA1170086A (en) | Process for reducing the width of a flat metal product by rolling | |
JPH0252561B2 (en) | ||
CS238357B2 (en) | Metallic half-finished product production method and equipment for its execution | |
RU2297889C2 (en) | Hot rolling plant | |
US1865443A (en) | Method and apparatus for continuous casting of steel billets | |
CN101310029A (en) | Method and finishing train for hot-rolling starting material | |
US4148349A (en) | Method for controlling slippage between rolls and a slab in a continuous compression casting apparatus | |
US5238049A (en) | Adjustable flow control device for continuous casting of metal strip | |
JPS6160202A (en) | Hot rolling method for metal slabs | |
JPH0413043B2 (en) | ||
JPH0636922B2 (en) | Hot width rolling method for metal slabs | |
CA1325326C (en) | Method of producing a steel strip having a thickness of less than 10 mm | |
JPS5937121B2 (en) | Hot rolling method for steel billet | |
JPH0675722B2 (en) | Hot width rolling method for metal slabs | |
JPS5849321B2 (en) | Metal slab width rolling method | |
KR100775269B1 (en) | Manufacturing method of carbon steel wire for tire cord | |
SU1678468A1 (en) | Ingot rolling method | |
DE2824076C2 (en) | ||
RU2140830C1 (en) | Method for making rolled bars in aggregate for combination casting and rolling | |
RU2300431C1 (en) | Wide strip hot rolling process |