[go: up one dir, main page]

JPH0252102B2 - - Google Patents

Info

Publication number
JPH0252102B2
JPH0252102B2 JP59106107A JP10610784A JPH0252102B2 JP H0252102 B2 JPH0252102 B2 JP H0252102B2 JP 59106107 A JP59106107 A JP 59106107A JP 10610784 A JP10610784 A JP 10610784A JP H0252102 B2 JPH0252102 B2 JP H0252102B2
Authority
JP
Japan
Prior art keywords
value
engine
atmospheric pressure
throttle valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59106107A
Other languages
Japanese (ja)
Other versions
JPS60249634A (en
Inventor
Shunpei Hasegawa
Noryuki Kishi
Tomoji Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP10610784A priority Critical patent/JPS60249634A/en
Publication of JPS60249634A publication Critical patent/JPS60249634A/en
Publication of JPH0252102B2 publication Critical patent/JPH0252102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は内燃エンジンの高負荷運転時の燃料供
給制御方法に関し、特に高地等の低大気圧条件下
の高負荷運転時にエンジンの運転性能及び排気ガ
ス特性の最適化を図つた燃料供給制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a method for controlling fuel supply during high-load operation of an internal combustion engine, and in particular to a method for controlling the fuel supply of an internal combustion engine during high-load operation under low atmospheric pressure conditions such as at high altitudes. The present invention relates to a fuel supply control method that achieves

発明の技術的背景とその問題点 エンジンの負荷状態を表わす吸気管内絶対圧が
所定判別値以上であるエンジンの高負荷運転時に
エンジンへの混合気をリツチ化して高出力を得る
と共に排気通路に配置された触媒方式等による排
気浄化装置の触媒床温度の過上昇を防止するよう
にした燃料供給制御方法が本出願人により特願昭
57−161413号に開示されている。
Technical background of the invention and its problems During high-load operation of the engine, where the absolute pressure in the intake pipe, which indicates the load state of the engine, is above a predetermined determination value, the air-fuel mixture to the engine is enriched to obtain high output, and the mixture is placed in the exhaust passage. A fuel supply control method that prevents an excessive rise in the temperature of the catalyst bed of an exhaust purification device using a catalyst system, etc.
No. 57-161413.

斯かる燃料供給制御方法において、エンジンを
高地等の低大気圧条件下で運転する場合、大気圧
の低下によりスロツトル弁が全開される高負荷運
転時の吸気管内絶対圧も低下する。そのため、前
記所定判別値を平地運転時等の標準大気圧条件下
で設定すると、高地運転時にエンジンが高負荷運
転時の混合気をリツチ化すべき運転状態にあるに
も拘らず吸気管内絶対圧が前記所定判別値以下と
なつて、混合気のリツチ化が実行されず運転性能
に悪影響を及ぼす。又、エンジンが斯かる高地運
転時の高負荷運転状態にあるとき混合気のリツチ
化が実行されないと排気浄化装置の触媒床温度の
過上昇を招来し、触媒床の寿命にも悪影響を及ぼ
す。
In such a fuel supply control method, when the engine is operated under low atmospheric pressure conditions such as at high altitudes, the absolute pressure in the intake pipe during high-load operation when the throttle valve is fully opened due to the decrease in atmospheric pressure also decreases. Therefore, if the predetermined judgment value is set under standard atmospheric pressure conditions such as when driving on flat ground, the absolute pressure in the intake pipe will decrease even though the engine is in an operating state that should enrich the air-fuel mixture during high-load operation during high-altitude driving. If the value falls below the predetermined determination value, the mixture will not be enriched, which will adversely affect driving performance. Furthermore, if the air-fuel mixture is not enriched when the engine is operating under a high load during high-altitude operation, the temperature of the catalyst bed of the exhaust gas purification device will rise excessively, and the life of the catalyst bed will be adversely affected.

発明の概要 本発明は斯かる不都合を回避せんがためになさ
れたもので吸気通路と、該通路途中に配置された
スロツトル弁とを備える内燃エンジンの燃料供給
制御方法において、大気圧を検出し、エンジン回
転数を検出し、該検出した大気圧値に応じて吸気
通路内の前記スロツトル弁下流側圧力判別値を決
定するとともに、更に該吸気通路内圧力判別値を
前記検出したエンジン回転数値が増加するに応じ
てより低負荷側の値に設定されるように決定し、
前記吸気通路内の前記スロツトル弁下流側圧力を
検出し、該検出した吸気通路内圧力値と前記吸気
通路内圧力判別値とを比較し、前記吸気通路内圧
力検出値が前記吸気通路内圧力判別値より高負荷
側の値であるとき、エンジンに供給される燃料量
を増量補正することを特徴とする内燃エンジンの
高負荷運転時の燃料供給制御方法を提供するもの
である。
SUMMARY OF THE INVENTION The present invention has been made to avoid such inconveniences, and is a fuel supply control method for an internal combustion engine equipped with an intake passage and a throttle valve disposed in the middle of the passage, in which atmospheric pressure is detected, The engine rotational speed is detected, and a pressure discrimination value on the downstream side of the throttle valve in the intake passage is determined according to the detected atmospheric pressure value, and the detected engine rotational value is further increased based on the intake passage pressure discrimination value. to be set to a value on the lower load side depending on the
The downstream pressure of the throttle valve in the intake passage is detected, the detected intake passage pressure value is compared with the intake passage pressure discrimination value, and the intake passage pressure detection value is determined as the intake passage pressure discrimination value. The present invention provides a fuel supply control method during high-load operation of an internal combustion engine, which is characterized by increasing the amount of fuel supplied to the engine when the value is on the high-load side.

発明の実施例 以下本発明の実施例を添付図面を参照して説明
する。
Embodiments of the Invention Examples of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の方法が適用された内燃エンジ
ンの燃料供給制御装置の全体構成図であり、符号
1は例えば4気筒の内燃エンジンを示し、エンジ
ン1には吸気管2が接続され、吸気管2の途中に
はスロツトル弁3が設けられている。スロツトル
弁3にはスロツトル弁開度センサ4が連結されて
スロツトル弁の弁開度を電気的信号に変換し電子
コントロールユニツト(以下「ECU」と言う)
5に送るようにされている。
FIG. 1 is an overall configuration diagram of a fuel supply control device for an internal combustion engine to which the method of the present invention is applied. Reference numeral 1 indicates, for example, a four-cylinder internal combustion engine, an intake pipe 2 is connected to the engine 1, and the intake pipe 2 is A throttle valve 3 is provided in the middle of the pipe 2. A throttle valve opening sensor 4 is connected to the throttle valve 3, which converts the opening of the throttle valve into an electrical signal and controls the electronic control unit (hereinafter referred to as "ECU").
It is set to be sent to 5th.

吸気管2のエンジン1とスロツトル弁3間には
燃料噴射弁6が設けられている。この燃料噴射弁
6は吸気管2の図示しない吸気弁の少し上流側に
各気筒ごとに設けられており、各噴射弁は図示し
ない燃料ポンプに接続されていると共にECU5
に電気的に接続されて、ECU5からの信号によ
つて燃料噴射弁の開弁時間が制御される。
A fuel injection valve 6 is provided in the intake pipe 2 between the engine 1 and the throttle valve 3. This fuel injection valve 6 is provided for each cylinder slightly upstream of an intake valve (not shown) in the intake pipe 2, and each injection valve is connected to a fuel pump (not shown) and is connected to an ECU 5.
The valve opening time of the fuel injection valve is controlled by a signal from the ECU 5.

一方、スロツトル弁3の直ぐ下流には管7を介
して絶対圧センサ8が設けられており、この絶対
圧センサ8によつて電気的信号に交換された絶対
圧信号は前記ECU5に送られる。
On the other hand, an absolute pressure sensor 8 is provided immediately downstream of the throttle valve 3 via a pipe 7, and the absolute pressure signal exchanged into an electrical signal by the absolute pressure sensor 8 is sent to the ECU 5.

エンジン本体1にはエンジン水温センサ10が
設けられ、このセンサ10はサーミスタ等から成
り、冷却水が充満したエンジン気筒周壁内に挿着
されて、その検出水温信号をECU5に供給する。
The engine body 1 is provided with an engine water temperature sensor 10, which is made of a thermistor or the like, is inserted into the circumferential wall of the engine cylinder filled with cooling water, and supplies its detected water temperature signal to the ECU 5.

エンジン回転数センサ(以下「Neセンサ」と
言う)11がエンジンの図示しないカム軸周囲又
はクランク軸周囲に取付けられており、Neセン
サ11はTDC信号即ちエンジンのクランク軸の
180゜回転毎に所定のクランク角度位置で1パルス
を出力するものであり、このパルスはECU5に
送られる。エンジン1の排気管13には三元触媒
14が配置され排気ガス中のHC、CO、NOx成
分の浄化作用を行なう。この三元触媒14の上流
側にはO2センサ15が排気管13に挿着されこ
のセンサ15は排気中の酸素濃度を検出しその検
出値信号をECU5に供給する。
An engine rotation speed sensor (hereinafter referred to as "Ne sensor") 11 is installed around the camshaft or crankshaft (not shown) of the engine.
It outputs one pulse at a predetermined crank angle position every 180° rotation, and this pulse is sent to the ECU 5. A three-way catalyst 14 is arranged in the exhaust pipe 13 of the engine 1, and performs a purifying action on HC, CO, and NOx components in the exhaust gas. An O 2 sensor 15 is inserted into the exhaust pipe 13 on the upstream side of the three-way catalyst 14, and this sensor 15 detects the oxygen concentration in the exhaust gas and supplies the detected value signal to the ECU 5.

更に、ECU5には、大気圧を検出するPAセン
サ16が接続されており、ECU5は大気圧セン
サ16からの検出信号を供給される。
Furthermore, a PA sensor 16 that detects atmospheric pressure is connected to the ECU 5, and the ECU 5 is supplied with a detection signal from the atmospheric pressure sensor 16.

ECU5は上述の各種エンジンパラメータ信号
に基いて高負荷運転状態等のエンジン運転状態を
判別すると共に、判別したエンジン運転状態に応
じて以下に示す演算式で与えられる燃料噴射弁6
の燃料噴射時間TOUTを演算する。
The ECU 5 determines engine operating conditions such as high-load operating conditions based on the various engine parameter signals described above, and the fuel injection valve 6 is determined according to the determined engine operating condition by the following calculation formula.
Calculate the fuel injection time T OUT .

TOUT=Ti×KWOT×Ko2×K1+K2 ここにTiは基本燃料噴射時間を示し、この基
本燃料噴射時間Tiは吸気管内絶対圧PBAとエンジ
ン回転数Neに応じて設定される。KWOTは本発明
に係る高負荷運転時のリツチ化係数であつてその
詳細については後述する。KO2はエンジンがクロ
ーズドループ運転領域にあるときO2センサ15
によつて検出される排気ガス中の酸素濃度に応じ
て設定され、エンジンが高負荷運転領域等のオー
プンループ領域にあるとき例えば値1.0に設定さ
れる補正係数である。K1及びK2は前述の各種セ
ンサ、すなわち、スロツトル弁開度センサ4、吸
気管内絶対圧センサ8、エンジン水温センサ1
0、Neセンサ11及び大気圧センサ16からの
エンジンパラメータ信号に応じて演算されるその
他の補正係数又は補正値であつてエンジン運転状
態に応じ、始動特性、排気ガス特性、燃費特性、
エンジン加速特性等の諸特性が最適なものとなる
ように所定の演算式に基いて演算される。
T OUT = Ti × K WOT × Ko 2 × K 1 + K 2 Here, Ti indicates the basic fuel injection time, and this basic fuel injection time Ti is set according to the intake pipe absolute pressure P BA and the engine speed Ne. . K WOT is a enrichment coefficient during high load operation according to the present invention, and its details will be described later. KO 2 detects O2 sensor 15 when the engine is in the closed loop operating region
This is a correction coefficient that is set according to the oxygen concentration in exhaust gas detected by the system, and is set to a value of 1.0, for example, when the engine is in an open loop region such as a high load operation region. K 1 and K 2 are the various sensors mentioned above, namely, the throttle valve opening sensor 4, the intake pipe absolute pressure sensor 8, and the engine water temperature sensor 1.
0, other correction coefficients or correction values calculated according to the engine parameter signals from the Ne sensor 11 and the atmospheric pressure sensor 16, and depending on the engine operating state, starting characteristics, exhaust gas characteristics, fuel efficiency characteristics,
It is calculated based on a predetermined calculation formula so that various characteristics such as engine acceleration characteristics are optimized.

ECU5は上述のようにして求めた燃料噴射時
間TOUTに基いて燃料噴射弁6を開弁させる駆動
信号を燃料噴射弁6に供給する。
The ECU 5 supplies the fuel injection valve 6 with a drive signal to open the fuel injection valve 6 based on the fuel injection time T OUT determined as described above.

第2図は第1図のECU5内部の回路構成を示
す図で、第1図のNeセンサ11からのエンジン
回転数信号は波形整形回路501で波形整形され
た後、TDC信号として中央処理装置(以下
「CPU」という)503に供給されると共にMe
カウンタ502にも供給される。Meカウンタ5
02はNeセンサ11からの前回所定位置信号の
入力時から今回所定位置信号の入力時までの時間
間隔を計数するもので、その計数値Meはエンジ
ン回転数Neの逆数に比例する。Meカウンタ50
2はこの計数値Meをデータバス510を介して
CPU503に供給する。
FIG. 2 is a diagram showing the circuit configuration inside the ECU 5 shown in FIG. 1. The engine rotation speed signal from the Ne sensor 11 shown in FIG. (hereinafter referred to as "CPU") 503 and Me
It is also supplied to counter 502. Me counter 5
02 counts the time interval from when the previous predetermined position signal was input from the Ne sensor 11 to when the current predetermined position signal was input, and the counted value Me is proportional to the reciprocal of the engine rotation speed Ne. Me counter 50
2 transmits this count value Me via the data bus 510.
Supplied to CPU 503.

第1図のスロツトル弁開度センサ4、吸気管内
絶対圧PBAセンサ8、大気圧PAセンサ16等の各
種センサからの夫々の出力信号はレベル修正回路
504で所定電圧レベルに修正された後、マルチ
プレクサ505により順次A/Dコンバータ50
6に供給される。A/Dコンバータ506は前述
の各センサからの出力信号を順次デジタル信号に
変換して該デジタル信号をデータバス510を介
してCPU503に供給する。
After the respective output signals from various sensors such as the throttle valve opening sensor 4, intake pipe absolute pressure P BA sensor 8, and atmospheric pressure P A sensor 16 shown in FIG. , A/D converter 50 sequentially by multiplexer 505
6. The A/D converter 506 sequentially converts the output signals from the aforementioned sensors into digital signals and supplies the digital signals to the CPU 503 via the data bus 510.

CPU503は、更に、データバス510を介
してリードオンリメモリ(以下「ROM」とい
う)507、ランダムアクセスメモリ(RAM)
508及び駆動回路509に接続されており、
RAM508はCPU503での演算結果等を一時
的に記憶し、ROM507はCPU503で実行さ
れる制御プログラム、燃料噴射弁6の基本噴射時
間Tiマツプ、後述する吸気管内絶対圧判別基準
値等を記憶している。CPU503はROM507
に記憶されている制御プログラムに従つて、先ず
基本噴射時間Tiマツプからエンジン回転数Ne及
び吸気管内絶対圧PBAの各検出値に応じた基本噴
射時間Ti値を読出し、次いで前述の各種エンジ
ンパラメータ信号に応じた補正係数値K1,K2
KO2及び高負荷運転時のリツチ化係数KWOTを設
定する。
The CPU 503 further includes a read-only memory (hereinafter referred to as "ROM") 507 and a random access memory (RAM) via a data bus 510.
508 and the drive circuit 509,
The RAM 508 temporarily stores the calculation results of the CPU 503, and the ROM 507 stores the control program executed by the CPU 503, the basic injection time Ti map of the fuel injection valve 6, the reference value for determining the absolute pressure in the intake pipe, etc., which will be described later. There is. CPU503 is ROM507
According to the control program stored in the control program, first, the basic injection time Ti value is read out from the basic injection time Ti map according to each detected value of engine speed Ne and intake pipe absolute pressure P BA , and then the various engine parameters mentioned above are read out. Correction coefficient values K 1 , K 2 , according to the signal
Set KO 2 and the enrichment coefficient K WOT during high load operation.

CPU503は設定した補正係数KWOT等を前記
演算式に適用して燃料噴射弁6の燃料噴射時間
TOUTを演算し、この演算値に基づく制御信号を
データバス510を介して駆動回路509に供給
する駆動回路509は制御信号が入力している間
に亘つて燃料噴射弁6を開弁させる駆動信号を該
噴射弁6に供給する。
The CPU 503 calculates the fuel injection time of the fuel injection valve 6 by applying the set correction coefficient K WOT etc. to the above calculation formula.
The drive circuit 509 calculates T OUT and supplies a control signal based on this calculated value to the drive circuit 509 via the data bus 510, which drives the fuel injection valve 6 to open while the control signal is being input. A signal is supplied to the injection valve 6.

第3図はCPU503によつてTDC信号のパル
ス発生毎に実行される、高負荷運転時のリツチ化
係数KWOTを設定するフローチヤートである。
FIG. 3 is a flowchart for setting the enrichment coefficient K WOT during high load operation, which is executed by the CPU 503 every time a pulse of the TDC signal is generated.

先ず、エンジン回転数Neが所定回転数Nz(例
えば4000rpm)より高い回転数であるか否か、即
ちエンジンが高回転運転領域にあるか否かを判別
する(ステツプ1)。
First, it is determined whether the engine rotational speed Ne is higher than a predetermined rotational speed Nz (for example, 4000 rpm), that is, whether the engine is in a high rotational operating range (step 1).

ステツプ1の判別結果が否定(No)の場合、
即ち、エンジンが低回転運転領域にある場合、大
気圧検出値PAに応じた第1の吸気管内絶対圧判
別基準値PBAWOT1iをROM507から読み出す(ス
テツプ2)。第4図は第1吸気管内絶対圧判別基
準値PBAWOT1iと大気圧PAとの関係を示すテーブル
図で、大気圧検出値PAが値PA1(例えば650mmHg)
以下のときには判別基準値として値PBAWOT11(例
えば610mmHg)が、値PA1乃至値PA2(例えば720mm
Hg)の間にあるときには値PBAWOT12(例えば660
mmHg)が、値PA2以上のときには値PBAWOT13(例
えば705mmHg)が夫々読み出される。
If the determination result of step 1 is negative (No),
That is, when the engine is in the low-speed operation region, the first intake pipe absolute pressure determination reference value P BAWOT1i corresponding to the detected atmospheric pressure value P A is read from the ROM 507 (step 2). Figure 4 is a table showing the relationship between the absolute pressure discrimination reference value P BAWOT1i in the first intake pipe and the atmospheric pressure P A , where the detected atmospheric pressure value P A is the value P A1 (for example, 650 mmHg).
In the following cases, the value P BAWOT11 (e.g. 610mmHg) is used as the discrimination reference value, and the value P A1 to P A2 (e.g. 720mmHg) is used as the discrimination reference value.
Hg) when the value P BAWOT12 (e.g. 660
mmHg) is greater than or equal to the value P A2 , the value P BAWOT13 (for example, 705 mmHg) is read out.

次いで、吸気管内絶対圧検出値PBAがステツプ
2で読み出した第1の判別基準値PBAWOT1iより大
きいか否かを判別する(ステツプ3)。第5図は
エンジン高負荷運転領域を説明するグラフで、例
えば、大気圧PAが標準大気圧である760mmHgで
ある場合、前述のように第1吸気管内絶対圧判別
基準値として値PBAWOT13が設定され、吸気管内絶
対圧PBAがこの判別基準値PBAWOT13以上であると
きエンジンが高負荷運転領域にあると判断され
る。同様に、例えば大気圧PAが、680mmHg及び
640mmHgであるとき判別基準値として夫々値
PBAWOT12,PBAWOT11が設定され、吸気管内絶対圧
PBAが各判別基準値以上の領域が夫々の高負荷運
転領域である。
Next, it is determined whether or not the intake pipe absolute pressure detection value P BA is larger than the first determination reference value P BAWOT1i read out in step 2 (step 3). Figure 5 is a graph explaining the engine high load operating region. For example, when the atmospheric pressure P A is the standard atmospheric pressure of 760 mmHg, the value P BAWOT13 is used as the reference value for determining the absolute pressure in the first intake pipe as described above. When the intake pipe absolute pressure P BA is equal to or higher than this determination reference value P BAWOT13 , it is determined that the engine is in a high load operating region. Similarly, for example, atmospheric pressure P A is 680 mmHg and
When the value is 640mmHg, each value is used as the discrimination reference value.
P BAWOT12 and P BAWOT11 are set, and the absolute pressure in the intake pipe is
The regions in which P BA is greater than or equal to each discrimination reference value are the respective high-load operation regions.

ステツプ3の判別結果が否定(No)の場合、
エンジンは高負荷運転領域にないと判断して係数
変数値XWOTPを値1.0に設定する(ステツプ4)。
一方、ステツプ3の判別結果が肯定(Yes)の場
合、エンジンは高負荷運転域にあると判断してス
テツプ5に進み、大気圧検出値PAに応じた係数
変数値XWOTPを設定する。第6図は係数変数値
XWOTPiと大気圧PAとの関係を示すテーブル図で第
4図の場合と同様に同じ大気圧判別値PA1及びPA2
に対して係数変数値として3段階、すなわち値
XWOTP1(例えば値1.1)、値XWOTP2(例えば値1.15)、
値XWOTP3(例えば値1.2)が設定されている。斯く
設定されているテーブルから大気圧検出値PA
応じた値XWOTPiを読み出し、該読出値XWOTPiを係
数変数値XWOTPとする。
If the determination result in step 3 is negative (No),
It is determined that the engine is not in the high load operating range, and the coefficient variable value X WOTP is set to the value 1.0 (step 4).
On the other hand, if the determination result in step 3 is affirmative (Yes), it is determined that the engine is in a high load operating range, and the process proceeds to step 5, where a coefficient variable value X WOTP is set in accordance with the detected atmospheric pressure value PA . Figure 6 is the coefficient variable value
X A table diagram showing the relationship between WOTPi and atmospheric pressure P A. Same atmospheric pressure discrimination values P A1 and P A2 as in Figure 4.
For the coefficient variable value, there are three stages, i.e., the value
X WOTP1 (e.g. value 1.1), value X WOTP2 (e.g. value 1.15),
The value X WOTP3 (for example, the value 1.2) is set. A value X WOTPi corresponding to the detected atmospheric pressure value P A is read from the table set in this manner, and the read value X WOTPi is set as the coefficient variable value X WOTP .

スロツトル弁3が所定判別開度値以上に開弁さ
れた場合、運転者はエンジンの加速を意図してい
るのであつて斯かる場合には前記ステツプ3でエ
ンジンが高負荷運転状態にないと判断される場合
であつても混合気をリツチ化して高出力を得るよ
うにするのが望ましい。そこで、ステツプ6に進
み、大気圧PAに応じた後述するスロツトル弁開
度判別値θWOTpi及び基準値θWOT1iをROM507か
ら読み出す。第7図はスロツトル弁開度判別値
θWOTpiと大気圧PAとの関係を示すテーブル図で大
気圧検出値PAが値PA1(650mmHg)以下のときに
は判別値として値θWOTpi(例えば70゜)が、値PA1
至値PA2(720mmHg)の間にあるときには値θWOTp2
(例えば60゜)が、値PA2以上のときには値θWOTp3
(例えば50゜)が夫々読み出される。
If the throttle valve 3 is opened beyond the predetermined opening value, the driver intends to accelerate the engine, and in this case, it is determined in step 3 that the engine is not in a high-load operating state. Even in such cases, it is desirable to enrich the air-fuel mixture to obtain high output. Therefore, the process proceeds to step 6, where a throttle valve opening determination value θ WOTpi and a reference value θ WOT1i , which will be described later, are read from the ROM 507 in accordance with the atmospheric pressure PA . Figure 7 is a table showing the relationship between the throttle valve opening discrimination value θ WOTpi and the atmospheric pressure P A. When the detected atmospheric pressure value P A is less than the value P A1 (650 mmHg), the discrimination value is set to the value θ WOTpi (for example, 70 mmHg).゜) is between the value P A1 and the value P A2 (720 mmHg), the value θ WOTp2
(for example, 60°) is greater than or equal to the value P A2 , the value θ WOTp3
(for example, 50°) are read out respectively.

第8図は基準値θWOT1iと大気圧PAとの関係を示
すテーブル図で第7図と同様に同じ大気圧判別値
PA1及びPA2に対して基準値は3段階、すなわち
θWOT11(例えば75゜)、θWOT12(例えば65゜)、θWO
T13
(例
えば55゜)が設定されている。
Figure 8 is a table diagram showing the relationship between the reference value θ WOT1i and atmospheric pressure P A , which is the same atmospheric pressure discrimination value as in Figure 7.
There are three standard values for P A1 and P A2 , namely θ WOT11 (e.g. 75°), θ WOT12 (e.g. 65°), θ WO
T13
(eg 55°) is set.

次いで、スロツトル弁3の弁開度値θTHがステ
ツプ6で読出した判別値θWOTpiより大きいか否か
を判別する(ステツプ7)。前記第5図には大気
圧が760mmHg、680mmHg、640mmHgの場合に設定
される各スロツトル弁開度判別値θWOTpiが太実線
で例示されており、スロツトル弁3の弁開度θTH
がこれらの判別値θWOTpiより大きい領域が各大気
圧条件下でのスロツトル弁全開運転領域であるこ
とを示す。この様に大気圧PAの低下に伴つてス
ロツトル弁開度判別値θWOTpiを大きい値に設定す
るのは以下の理由に依る。即ち、エンジンが高地
等の低大気圧条件下で運転される場合には一吸気
行程で吸入される吸入空気重量流量は平地運転時
のそれに比べて低下するので平地運転時と同じ出
力を得るにはスロツトル弁をより大きく踏み込む
必要がある。このため高地運転時にはエンジンが
スロツトル弁全開運転領域にあつて混合気がリツ
チ化される頻度が増加するために一酸化炭素
(CO)等の排気ガス特性の悪化を招来する。そこ
でスロツトル弁開度判別値θWOTpiを大気圧PAの低
下に伴つて大きい値に設定し、高地運転時にクロ
ーズドループ制御が行なわれる運転領域を拡大す
ることによつて排気ガス特性及び運転性能の最適
化を図らんとするのである。
Next, it is determined whether the valve opening value θTH of the throttle valve 3 is larger than the determination value θWOTpi read out in step 6 (step 7). In FIG. 5, each throttle valve opening discrimination value θ WOTpi set when the atmospheric pressure is 760 mmHg, 680 mmHg, and 640 mmHg is illustrated by a thick solid line, and the valve opening θ TH of the throttle valve 3 is shown as an example.
indicates that the region where is larger than these discriminant values θ WOTpi is the throttle valve fully open operation region under each atmospheric pressure condition. The reason why the throttle valve opening determination value θ WOTpi is set to a large value as the atmospheric pressure P A decreases is as follows. In other words, when the engine is operated under low atmospheric pressure conditions such as at high altitudes, the weight flow rate of intake air taken in one intake stroke is lower than when operating on flat ground, so it is difficult to obtain the same output as when operating on flat ground. It is necessary to press the throttle valve even further. For this reason, when driving at high altitudes, the engine is in the throttle valve fully open operating range and the air-fuel mixture is enriched more frequently, resulting in deterioration of exhaust gas characteristics such as carbon monoxide (CO). Therefore, by setting the throttle valve opening discrimination value θ WOTpi to a larger value as the atmospheric pressure P A decreases and expanding the operating range in which closed-loop control is performed during high-altitude driving, exhaust gas characteristics and driving performance can be improved. The aim is to achieve optimization.

ステツプ7の判別結果が否定(No)の場合、
エンジンはスロツトル弁全開運転域にないと判断
して係数変数値XWOT〓を値1.0に設定する(ステツ
プ8)。一方、ステツプ7の判別結果が肯定
(Yes)の場合、エンジンはスロツトル弁全開運
転域にあると判断して、ステツプ9に進み、大気
圧検出値PAに応じた後述する係数変数値XWOTi
ROM507から読み出す。
If the determination result in step 7 is negative (No),
It is determined that the engine is not in the throttle valve fully open operation range, and the coefficient variable value X WOT 〓 is set to the value 1.0 (Step 8). On the other hand, if the determination result in step 7 is affirmative (Yes), it is determined that the engine is in the throttle valve fully open operation range, and the process proceeds to step 9, where the coefficient variable value X WOT , which will be described later, corresponds to the detected atmospheric pressure value Pi
Read from ROM507.

第9図は係数変数値XWOTiと大気圧PAとの関係
を示すテーブル図で大気圧検出値PAが値PA1以下
のときには係数変数値として値XWOT1(例えば値
1.1)が、値PA1乃至値PA2の間にあるときには値
XWOT2(例えば値1.15)が、値PA2以上のときには
値XWOT3(例えば値1.2)が夫々読み出される。こ
のように係数変数値XWOTiを大気圧の低下に伴つ
て小さい値に設定するのは大気圧低下に従つて三
元触媒14に流入する単位時間当りの排気ガス量
が減少して触媒床温度が過上昇する虞がなくなる
こと、及び高地運転時の排気ガス特性の改善、特
に一酸化炭素(CO)の排出量を抑制する必要が
あることによる。XWOTi値を斯く設定することに
より、ステツプ6で大気圧PAに応じた判別値
θWOTpiを設定することと相俟つて高地運転時の排
気ガス特性及び運転性能をより一層適化すること
が出来る。
Figure 9 is a table diagram showing the relationship between the coefficient variable value X WOTi and the atmospheric pressure P A. When the detected atmospheric pressure value P A is less than the value P A1 , the value X WOT1 (for example, the value
1.1) is between the value P A1 and the value P A2 , the value
When X WOT2 (for example, the value 1.15) is greater than or equal to the value P A2 , the value X WOT3 (for example, the value 1.2) is read out. The reason why the coefficient variable value This is due to the fact that there is no risk of excessive rise in bed temperature, and it is necessary to improve exhaust gas characteristics during high-altitude operation, especially to suppress carbon monoxide (CO) emissions. X WOT 〓 By setting the i value in this way, together with setting the discriminant value θ WOTpi according to the atmospheric pressure P A in step 6, the exhaust gas characteristics and driving performance during high-altitude driving can be further optimized. I can do it.

ステツプ9で読み出されたXWOTi値は前記ステ
ツプ6で読み出した判別値θWOTpi及び基準値θWOT1i
と共に第10図に示す係数変数値XWOT〓一スロツ
トル弁開度θTHテーブルに適用され、スロツトル
弁開度検出値θTHに対する係数変数値XWOT〓が求め
られる(ステツプ10)。即ち、係数変数値XWOT〓は
スロツトル弁開度検出値θTHが判別値θWOTpiから基
準値θWOT1iまで増大するのに伴つて値1.0からステ
ツプ9で読出した値XWOTiまで漸増し、基準値
θWOT1iに到達した後は読出値XWOTiに等しい値を
採る。このようにスロツトル弁開度値θTHに応じ
て混合気を徐々にリツチ化させる理由は、始終操
作されるアクセルペダルの踏込量、すなわちスロ
ツトル弁開度値θTHが微少変化した際に空燃比が
急変して運転シヨツクが生じることのないよう
に、スロツトル弁全開運転領域と該領域以外の領
域との間の移行を円滑化する必要があるからであ
る。
X WOT read out in step 9 = i value is the discriminant value θ WOTpi and reference value θ WOT1i read out in step 6
This is also applied to the coefficient variable value X WOT = -throttle valve opening θ TH table shown in FIG . That is, the coefficient variable value X WOT 〓 gradually increases from the value 1.0 to the value X WOTi read in step 9 as the throttle valve opening detection value θ TH increases from the discrimination value θ WOTpi to the reference value θ WOT1i . , after reaching the reference value θ WOT1i , it takes a value equal to the read value X WOTi . The reason why the air-fuel mixture is gradually enriched according to the throttle valve opening value θ TH is that the air-fuel ratio This is because it is necessary to smooth the transition between the throttle valve fully open operating range and other ranges so that an operating shock does not occur due to a sudden change in the throttle valve.

次いで、前記ステツプ4又は5で設定された係
数変数値XWOTPがステツプ8又は10で求めた係数
変数値XWOT〓より大きいか否かを判別して(ステ
ツプ11)、大きい方の係数変数値をリツチ化係数
KWOTの値とする。即ち、ステツプ11の判別結果
が肯定(Yes)の場合には係数変数値XWOTPをリ
ツチ化係数値KWOTとし(ステツプ12)、否定
(No)の場合には係数変数値XWOT〓をリツチ化係
数値KWOTとする(ステツプ13)。
Next, it is determined whether the coefficient variable value X WOTP set in step 4 or 5 is greater than the coefficient variable value X WOT 〓 determined in step 8 or 10 (step 11), and the larger coefficient variable value is determined. The enrichment coefficient
Let be the value of K WOT . That is, if the determination result in step 11 is affirmative (Yes), the coefficient variable value The conversion coefficient value is set to K WOT (Step 13).

ステツプ1の判別の答が肯定(Yes)すなわち
エンジンが所定回転数Nz以上の高回転数で運転
されていると判別された場合には、前記ステツプ
2と同様に大気圧検出値PAに応じた第2の吸気
管内絶対圧判別基準値PBAWOT2iをROM507から
読み出す(ステツプ14)。第11図は第2吸気管
内絶対圧判別基準値PBAWOT2iと大気圧PAとの関係
を示すテーブル図で、第4図の場合と同様に同じ
大気圧判別値PA1及びPA2に対して判別基準値とし
て3段階、すなわち判別基準値PBAWOT21(例えば
450mmHg)、PBAWOT22(例えば520mmHg)、PBAWOT23
(例えば600mmHg)が設定されている。斯く設定
されているテーブルから大気圧検出値PAに応じ
た値PBAWOT2iが読み出される。尚、この読出値
PBAWOT2iは同一大気圧に対応する第1の判別基準
値PBAWOT1iより小さい値に設定されている(第5
図)。
If the answer to the determination in step 1 is affirmative (Yes), that is, if it is determined that the engine is being operated at a high rotational speed higher than the predetermined rotational speed Nz, the engine The second intake pipe absolute pressure determination reference value P BAWOT2i is read from the ROM 507 (step 14). Figure 11 is a table diagram showing the relationship between the absolute pressure discrimination reference value P BAWOT2i in the second intake pipe and the atmospheric pressure P A , and as in the case of Figure 4, for the same atmospheric pressure discrimination values P A1 and P A2 . There are three levels of discrimination standard value, namely, discrimination standard value P BAWOT21 (e.g.
450mmHg), P BAWOT22 (e.g. 520mmHg), P BAWOT23
(for example, 600mmHg). A value P BAWOT2i corresponding to the detected atmospheric pressure value P A is read out from the table set in this manner. Furthermore, this read value
P BAWOT2i is set to a value smaller than the first discrimination reference value P BAWOT1i corresponding to the same atmospheric pressure (the fifth
figure).

次いで、吸気管内絶対圧検出値PBAがステツプ
14で読み出した第2の判別基準値PBAWOT2iより大
きいか否かを判別する(ステツプ15)。ステツプ
15の判別結果が否定(No)の場合、エンジンは
高負荷運転域にないと判断してリツチ化係数
KWOTの値を直接値1.0に設定する(ステツプ16)。
一方、ステツプ15の判別結果が肯定(Yes)の場
合、エンジンは高負荷運転域にあると判断してス
テツプ17に進み、前記ステツプ5と同様に大気圧
検出値PAに応じた係数変数値XWOTPiを前記第6図
のテーブルから読み出し、該読出値XWOTPiをリツ
チ化係数値KWとする(ステツプ18)。
Next, the intake pipe absolute pressure detection value P BA is
It is determined whether or not the second determination reference value P BAWOT2i read out in step 14 is greater than the second determination reference value P BAWOT2i (step 15). step
If the determination result in step 15 is negative (No), it is determined that the engine is not in the high load operation range, and the enrichment coefficient is
Set the value of K WOT directly to the value 1.0 (step 16).
On the other hand, if the determination result in step 15 is affirmative (Yes), it is determined that the engine is in the high-load operating range, and the process proceeds to step 17, in which, as in step 5, the coefficient variable value is determined according to the detected atmospheric pressure value P A. X WOTPi is read from the table shown in FIG. 6, and the read value X WOTPi is set as the enrichment coefficient value K W (step 18).

尚、エンジン高回転運転領域では前記第2の吸
気管内絶対圧判別基準値PBAWOT2iは同一の大気圧
に対応する第1の判別基準値PBAWOT1iより小さい
値に設定されているのでスロツトル弁全開運転領
域が高負荷運転領域内に略含まれる。従つて、高
回転運転領域においてはエンジンがスロツトル弁
全開運転領域にあるか否かを判別して該領域にあ
るとき混合気をリツチ化するステツプ(前記ステ
ツプ6乃至10)を設ける必要がない。
In addition, in the engine high speed operation region, the second intake pipe absolute pressure discrimination reference value P BAWOT2i is set to a smaller value than the first discrimination reference value P BAWOT1i corresponding to the same atmospheric pressure, so the throttle valve is operated at full throttle. The area is approximately included in the high load operation area. Therefore, in the high-speed operating range, there is no need to provide a step (steps 6 to 10) for determining whether or not the engine is in the fully open throttle valve operating range and enriching the air-fuel mixture when the engine is in that range.

又、前記第1及び第2の吸気管内絶対圧判別値
PBAWOT1i,PBAWOT2i、第4図等に示す大気圧基準値
PA1,PA2はエンジンの高負荷運転域又はスロツト
ル弁全開運転域への突入時と離脱時とで異つた値
に設定し、ヒステリシス特性を持たせて燃料供給
制御を安定化させるようにしてもよい。
Further, the first and second intake pipe absolute pressure discrimination values
P BAWOT1i , P BAWOT2i , atmospheric pressure reference values shown in Figure 4, etc.
P A1 and P A2 are set to different values when entering and exiting the engine's high-load operating range or throttle valve fully open operating range, and are provided with hysteresis characteristics to stabilize fuel supply control. Good too.

発明の効果 以上詳述したように本発明の内燃エンジンの高
負荷運転時の燃料供給制御方法に依れば、大気圧
を検出し、エンジン回転数を検出し、該検出した
大気圧値に応じて吸気通路内圧力判別値を決定す
るとともに、更に該吸気通路内圧力判別値を前記
検出したエンジン回転数値が増加するに応じてよ
り低負荷側の値に設定されるように決定し、吸気
通路内の前記スロツトル弁下流側圧力を検出し、
該検出した吸気通路内圧力値と前記吸気通路内圧
力判別値とを比較し、前記吸気通路内圧力検出値
が前記吸気通路内圧力判別値より高負荷側の値で
あるとき、エンジンに供給される燃料量を増量補
正するようにしたので高地等の低大気圧条件下の
エンジン運転においても、平地運転時と同等な運
転性能を得ることが出来ると共に全エンジン回転
数領域に亘つて排気浄化装置の温度過上昇の防止
を図ることが出来る。
Effects of the Invention As detailed above, according to the fuel supply control method of the present invention during high-load operation of an internal combustion engine, atmospheric pressure is detected, engine rotation speed is detected, and the detected atmospheric pressure is In addition, the intake passage pressure discrimination value is determined to be set to a value on the lower load side as the detected engine rotational value increases, and the intake passage pressure discrimination value is detecting the downstream pressure of the throttle valve in the
The detected intake passage pressure value is compared with the intake passage pressure discrimination value, and when the intake passage pressure detection value is on the higher load side than the intake passage pressure discrimination value, the intake passage pressure is supplied to the engine. Since the amount of fuel is increased, even when the engine is operated under low atmospheric pressure conditions such as at high altitudes, it is possible to obtain the same driving performance as when driving on flat ground, and the exhaust purification system can be used throughout the entire engine speed range. It is possible to prevent the temperature from rising excessively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した燃料供給制御装置の
全体構成図、第2図は第1図の電子コントロール
ユニツト(ECU)の内部構成を示す回路図、第
3図は本発明に係る高負荷運転時のリツチ化係数
値KWOTを設定する手順を示すフローチヤート、
第4図は大気圧PAと低回転運転時に適用される
第1の吸気管内絶対圧判別基準値PBAWOT1iとの関
係を示すテーブル図、第5図は高負荷運転領域を
示すグラフ、第6図は大気圧PAと係数変数値
XWOTPiとの関係を示すテーブル図、第7図は大気
圧PAとスロツトル弁開度判別値θWOTpiとの関係を
示すテーブル図、第8図は大気圧PAと基準値
θWOT1iとの関係を示すテーブル図、第9図は大気
圧PAと係数変数値XWOTiとの関係を示すテーブル
図、第10図はスロツトル弁開度θTHと係数変数
値XWOT〓との関係を示すテーブル図、第11図は
大気圧PAと高回転運転時に適用される第2の吸
気管内絶対圧判別基準値PBAWOT2iとの関係を示す
テーブル図である。 1……内燃エンジン、2……吸気通路、3……
スロツトル弁、4……スロツトル弁開度センサ、
5……電子コントロールユニツト、6……燃料噴
射弁、14……三元触媒、16……大気圧セン
サ。
Fig. 1 is an overall configuration diagram of a fuel supply control device to which the present invention is applied, Fig. 2 is a circuit diagram showing the internal configuration of the electronic control unit (ECU) of Fig. 1, and Fig. 3 is a high load according to the present invention. Flowchart showing the procedure for setting the enrichment coefficient value K WOT during operation,
Fig. 4 is a table diagram showing the relationship between atmospheric pressure P A and the first intake pipe absolute pressure discrimination reference value P BAWOT1i applied during low speed operation, Fig. 5 is a graph showing the high load operation region, and Fig. 6 is a graph showing the high load operation region. The figure shows atmospheric pressure P A and coefficient variable values.
Figure 7 is a table diagram showing the relationship between atmospheric pressure P A and throttle valve opening determination value θ WOTpi , and Figure 8 is a table diagram showing the relationship between atmospheric pressure P A and reference value θ WOT1i . Figure 9 is a table diagram showing the relationship between atmospheric pressure P A and coefficient variable value X WOTi . Figure 10 is a table diagram showing the relationship between throttle valve opening θ TH and coefficient variable value X WOT 〓 FIG. 11 is a table diagram showing the relationship between the atmospheric pressure P A and the second intake pipe absolute pressure discrimination reference value P BAWOT2i applied during high-speed operation. 1...Internal combustion engine, 2...Intake passage, 3...
Throttle valve, 4...Throttle valve opening sensor,
5...Electronic control unit, 6...Fuel injection valve, 14...Three-way catalyst, 16...Atmospheric pressure sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気通路と、該通路途中に配置されたスロツ
トル弁とを備える内燃エンジンの燃料供給制御方
法において、大気圧を検出し、エンジン回転数を
検出し、該検出した大気圧値に応じて吸気通路内
の前記スロツトル弁下流側圧力判別値を決定する
とともに、更に該吸気通路内圧力判別値を前記検
出したエンジン回転数値が増加するに応じてより
低負荷側の値に設定されるように決定し、前記吸
気通路内の前記スロツトル弁下流側圧力を検出
し、該検出した吸気通路内圧力値と前記吸気通路
内圧力判別値とを比較し、前記吸気通路内圧力検
出値が前記吸気通路内圧力判別値より高負荷側の
値であるとき、エンジンに供給される燃料量を増
量補正することを特徴とする内燃エンジンの高負
荷運転時の燃料供給制御方法。
1. In a fuel supply control method for an internal combustion engine that includes an intake passage and a throttle valve disposed in the middle of the passage, atmospheric pressure is detected, engine rotational speed is detected, and the intake passage is controlled according to the detected atmospheric pressure value. The throttle valve downstream pressure discrimination value is determined, and the intake passage pressure discrimination value is further determined to be set to a value on the lower load side as the detected engine rotational value increases. , detecting the pressure downstream of the throttle valve in the intake passage, comparing the detected intake passage pressure value with the intake passage pressure discrimination value, and determining whether the detected intake passage pressure value is the intake passage pressure; 1. A fuel supply control method during high-load operation of an internal combustion engine, characterized by increasing the amount of fuel supplied to the engine when the value is on the high-load side of the discrimination value.
JP10610784A 1984-05-25 1984-05-25 Fuel feed control in high-load operation in internal-combustion engine Granted JPS60249634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10610784A JPS60249634A (en) 1984-05-25 1984-05-25 Fuel feed control in high-load operation in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10610784A JPS60249634A (en) 1984-05-25 1984-05-25 Fuel feed control in high-load operation in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS60249634A JPS60249634A (en) 1985-12-10
JPH0252102B2 true JPH0252102B2 (en) 1990-11-09

Family

ID=14425260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10610784A Granted JPS60249634A (en) 1984-05-25 1984-05-25 Fuel feed control in high-load operation in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS60249634A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219626A (en) * 1988-07-06 1990-01-23 Toyota Motor Corp Fuel injection control device for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156431A (en) * 1980-05-06 1981-12-03 Hitachi Ltd Air/fuel ratio control device
JPS5828549A (en) * 1981-07-28 1983-02-19 Toyota Motor Corp Altitude correction method for fuel supply amount of vehicle internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156431A (en) * 1980-05-06 1981-12-03 Hitachi Ltd Air/fuel ratio control device
JPS5828549A (en) * 1981-07-28 1983-02-19 Toyota Motor Corp Altitude correction method for fuel supply amount of vehicle internal combustion engine

Also Published As

Publication number Publication date
JPS60249634A (en) 1985-12-10

Similar Documents

Publication Publication Date Title
JPH0246788B2 (en)
US4503829A (en) Fuel supply control method for internal combustion engines under high load conditions
JPH0745840B2 (en) Air-fuel ratio atmospheric pressure correction method for internal combustion engine
JPS6257813B2 (en)
JP3973390B2 (en) Intake pressure detection method for internal combustion engine
JPH0686829B2 (en) Air-fuel ratio feedback control method for internal combustion engine
JPH11101144A (en) Fuel supply control device for internal combustion engine
JPH0252102B2 (en)
JPH0251054B2 (en)
JP2002180876A (en) Air-fuel ratio controller for internal combustion engine
JPS6256338B2 (en)
JPH01130031A (en) Fuel-cut controlling method for engine
JP2615561B2 (en) Fuel injection amount control device for internal combustion engine
JP2623469B2 (en) Air-fuel ratio feedback control method for an internal combustion engine
JPS6193247A (en) Accelerating fuel supply controlling method in internal-combustion engine
JPS6267251A (en) Air-fuel ratio feedback controlling method for internal combustion engine
JP4446873B2 (en) Air-fuel ratio control device for internal combustion engine
JPS614842A (en) Fuel supply feedback control under cooling of internal-combustion engine
JPS6181536A (en) Method of controlling feed of fuel during idle running of internal-combustion engine
JPS6267265A (en) Exhaust reflux controlling method for internal combustion engine
JPH0510493B2 (en)
JPH068740U (en) Fuel control device for internal combustion engine
JPH0694849B2 (en) Exhaust gas recirculation control method for internal combustion engine
JPS5985439A (en) Fuel supply control for internal-combustion engine with supercharger
JPS6345445A (en) Air-fuel ratio controller for internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term