JPH0252010A - Cohesion device and cohesion process - Google Patents
Cohesion device and cohesion processInfo
- Publication number
- JPH0252010A JPH0252010A JP15562488A JP15562488A JPH0252010A JP H0252010 A JPH0252010 A JP H0252010A JP 15562488 A JP15562488 A JP 15562488A JP 15562488 A JP15562488 A JP 15562488A JP H0252010 A JPH0252010 A JP H0252010A
- Authority
- JP
- Japan
- Prior art keywords
- injection
- water
- liquid
- treated
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000007924 injection Substances 0.000 claims abstract description 154
- 238000002347 injection Methods 0.000 claims abstract description 154
- 239000007788 liquid Substances 0.000 claims abstract description 137
- 238000002156 mixing Methods 0.000 claims abstract description 126
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 118
- 238000000926 separation method Methods 0.000 claims abstract description 46
- 239000006185 dispersion Substances 0.000 claims abstract description 28
- 239000010419 fine particle Substances 0.000 claims abstract description 27
- 238000005189 flocculation Methods 0.000 claims description 23
- 230000016615 flocculation Effects 0.000 claims description 23
- 230000002776 aggregation Effects 0.000 claims description 22
- 238000004220 aggregation Methods 0.000 claims description 13
- 239000003792 electrolyte Substances 0.000 claims description 13
- 238000005192 partition Methods 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 11
- 238000005054 agglomeration Methods 0.000 claims description 9
- 239000006228 supernatant Substances 0.000 claims description 7
- 238000005345 coagulation Methods 0.000 claims description 4
- 230000015271 coagulation Effects 0.000 claims description 4
- 239000010802 sludge Substances 0.000 abstract description 52
- 244000144992 flock Species 0.000 abstract description 3
- 239000002351 wastewater Substances 0.000 abstract description 3
- 239000003795 chemical substances by application Substances 0.000 abstract 2
- 241001503485 Mammuthus Species 0.000 abstract 1
- 230000001427 coherent effect Effects 0.000 abstract 1
- 239000002689 soil Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 11
- 238000004062 sedimentation Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000013535 sea water Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000003311 flocculating effect Effects 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- -1 alkali metal salt Chemical class 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000008399 tap water Substances 0.000 description 4
- 235000020679 tap water Nutrition 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- 239000010842 industrial wastewater Substances 0.000 description 2
- 239000003978 infusion fluid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 241000206761 Bacillariophyta Species 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241001330002 Bambuseae Species 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 239000003621 irrigation water Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- FKHIFSZMMVMEQY-UHFFFAOYSA-N talc Chemical class [Mg+2].[O-][Si]([O-])=O FKHIFSZMMVMEQY-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は醸造廃液、培養増殖液、浚渫汚泥などの微細
粒子を含む被処理水より微細粒子[微生物(活性汚泥)
、藻類、プランクトン等]を凝集分離する凝集装置およ
び凝集方法に関する。[Detailed Description of the Invention] [Industrial Application Field] This invention is directed to the treatment of microorganisms (activated sludge) from water to be treated containing fine particles such as brewing waste liquid, culture growth liquid, and dredged sludge.
, algae, plankton, etc.] and a flocculation method.
[従来の技術]
被処理水中の微細粒子を被処理水から分離する装置とし
ては沈澱槽が用いられている。沈澱槽は、生物処理水が
供給される給液筒を経て、固液分離室の溢流堰に至る間
に重力の作用下に微細粒子を沈降させ、該微細粒子の凝
集作用は汚泥表面がもつ局所的荷電分布による結合に委
ねられている。[Prior Art] A sedimentation tank is used as a device for separating fine particles in water to be treated from water to be treated. The sedimentation tank allows fine particles to settle under the action of gravity while passing through the liquid supply cylinder where biologically treated water is supplied and reaching the overflow weir of the solid-liquid separation chamber. The bond is dependent on the local charge distribution.
汚染廃水の生物処理において、バルキングの発生により
、活性汚泥が処理水と共に系外に流出することが多い。In biological treatment of contaminated wastewater, activated sludge often flows out of the system together with treated water due to bulking.
その結果曝気槽内の活性汚泥濃度が低下し、処理水質が
悪くなることが多い。As a result, the activated sludge concentration in the aeration tank decreases, often resulting in poor treated water quality.
処理水質の向上、余剰汚泥の低減、処理能力の向上が図
れる活性汚泥の高濃度処理法は、汚泥にバルキングをも
たらしやすく、その結果、活性汚泥の固液分離性能が低
下するから、対策として、生物処理水mを減らし、沈澱
槽から引き抜く汚泥11を増やし、活性汚泥濃度を下げ
ることになる。従って、高濃度処理法を継続運転するこ
とが不可能であった。The high-concentration activated sludge treatment method, which improves treated water quality, reduces excess sludge, and improves treatment capacity, tends to cause bulking in the sludge, which reduces the solid-liquid separation performance of activated sludge, so as a countermeasure, The biologically treated water m is reduced, the sludge 11 extracted from the settling tank is increased, and the activated sludge concentration is reduced. Therefore, it has been impossible to continue operating the high concentration treatment method.
凝集剤の添加を好まない培養液、発酵液にあっては、微
生物を分離するにあたり、膨大な設備費を要する高級分
離機が採用されている。また、広大な地域の浚渫汚泥、
湖沼および海水中の微細粒子、植物プランクトンを除去
するには従来の沈澱槽は性能が低すぎその対策が立たな
かった。For culture solutions and fermentation solutions that do not require the addition of flocculants, high-grade separators that require enormous equipment costs are used to separate microorganisms. In addition, vast areas of dredged sludge,
Conventional sedimentation tanks have too low performance to remove fine particles and phytoplankton from lakes and seawater, and no countermeasures have been taken.
[発明が解決しようとする課:XJ]
この発明はバルキング現象が発生した時でも、凝集剤を
添加することなしに、1−気槽の活性汚泥濃度を1il
LssIo、ooO*g/l以]:の高濃度処理法が、
可能な凝集装置及び凝集方法を提供することにある。[Problem to be solved by the invention:
LssIo, ooO*g/l or more]: The high concentration treatment method is
The object of the present invention is to provide a possible agglomeration device and agglomeration method.
また、本発明は固液分離性能を現在の1,000倍以上
に向−ヒさせ、小!1軽M化を図り、新設の沈澱槽とし
て使用できるのみならず、性能の低い既設の沈澱槽への
適用を図ることができ、従来除去が困難であった湖沼お
よび海水の微細粒子、例えば、植物プランクトン等を、
凝集除去する性能の良い装置を安価で提供することを目
的としている。In addition, the present invention improves solid-liquid separation performance by more than 1,000 times compared to the current level. 1 light M, it can not only be used as a newly installed sedimentation tank, but also be applied to existing sedimentation tanks with low performance. phytoplankton, etc.
The purpose is to provide a device with good performance for removing agglomerates at a low cost.
[課題を解決するための手段]
請求項第1項の凝集装置は、被処理水を供給する給液室
に、被処理水を分散する分散室と分散室内に開口する混
合管を設け、混合管内に注入管を挿入し、注入管吐出口
より注入液を混合管内に注入する流れと、混合管内に流
入してくる被処理水の流れとが接触して、その界面の微
細粒子間に電解質濃度差を生じさせ、それに基づく、反
発電位の低下が、1〜5XIO’mmの衝突困難な微細
粒子間にら、激しい衝突を繰り返さけ、混合管吐出口ま
でに、05〜1m111の巨大フロックを形成した混合
液は、固液分離室に送られ微細粒子のフロックは分離す
る。[Means for Solving the Problems] The agglomeration device according to claim 1 is provided with a dispersion chamber for dispersing the water to be treated and a mixing pipe opening into the dispersion chamber in the liquid supply chamber for supplying the water to be treated, and for mixing. An injection tube is inserted into the tube, and the flow of injected liquid into the mixing tube from the injection tube outlet comes into contact with the flow of the water to be treated flowing into the mixing tube, and electrolytes are formed between the fine particles at the interface. This causes a concentration difference, and the resulting drop in repulsion potential causes repeated violent collisions between fine particles of 1 to 5XIO'mm, which are difficult to collide with, and creates a huge floc of 05 to 1m111 by the mixing tube outlet. The formed liquid mixture is sent to a solid-liquid separation chamber to separate flocs of fine particles.
請求項第13項の凝集方法は、」−記請求項第1項の凝
集装置を使用して、被処理水を微細粒子と、に澄液とに
分離する方法の発明であって、混合管内の混合液(被処
理水と注入液)の流速をIQ< n e< 10″に、
注入液の注入管内の流速を5< n c < 10“に
維持して、混合管内で両液を接触させて凝集作用をほぼ
完了させるらのである。The flocculating method according to claim 13 is an invention of a method for separating treated water into fine particles and a clear liquid using the flocculating device according to claim 1, wherein The flow rate of the mixed liquid (treated water and injection liquid) is set to IQ<ne<10'',
The flow rate of the injection liquid in the injection tube is maintained at 5 < n c <10'', and the two liquids are brought into contact with each other in the mixing tube to almost complete the flocculation action.
本発明の凝集装置により処理される被処理水とは培養増
殖液、醸造廃液、浚渫汚泥[藻類(珪藻、藍藻、緑藻、
鞭毛藻)微生物およびそれらの死骸、その他何機物、無
機物を含む]、富栄養化にとらない発生する植物プラン
クトンの多い湖沼水、および海水、かび臭発生源の放線
菌、赤潮鞭毛藻をふくむ湖yil(水、および海水、栽
培養魚場の沈澱堆積汚泥、産業排水(畜舎汚物を含む)
とその生物処理水、生活排水とその生物処理水、し尿と
その生物処理水、お上び/または下水とその生物処理水
をさす。The water to be treated by the flocculation device of the present invention includes culture growth liquid, brewing waste liquid, dredged sludge [algae (diatoms, blue-green algae, green algae,
(including microorganisms, their dead bodies, and other organic and inorganic substances), lake water and seawater with a lot of phytoplankton that are not susceptible to eutrophication, and lakes that contain actinomycetes that cause musty odors and red tide flagellates yil (water, seawater, settled sludge from fish farms, industrial wastewater (including livestock sewage)
and its biologically treated water, domestic wastewater and its biologically treated water, human waste and its biologically treated water, top water and/or sewage and its biologically treated water.
注入液は生物処理上澄液、物理化学処理上澄液、低濃度
汚染産業廃水、海水、水道水、蒸留水、潅かい用水およ
び/または工業用水(湖沼水、河川水、地下水等)がも
ちいられる。さらに、注入液としては凝集剤を含む水溶
液、例えば全回凝集剤(アルミニウム塩、鉄塩、活性ケ
イ酸、マグネシウム塩、カルシウム塩)水溶液、アルカ
リ金属塩水溶液、高分子凝集剤水溶液を用いることもで
きる。The injection liquid can be biological treatment supernatant, physicochemical treatment supernatant, low concentration contaminated industrial wastewater, seawater, tap water, distilled water, irrigation water and/or industrial water (lake water, river water, groundwater, etc.). It will be done. Furthermore, as the injection solution, an aqueous solution containing a flocculant, such as a total flocculant (aluminum salt, iron salt, activated silicic acid, magnesium salt, calcium salt) aqueous solution, alkali metal salt aqueous solution, or polymer flocculant aqueous solution, may be used. can.
本発明の固液分離室とは、凝集したフロックを、沈降濃
縮する沈降分M濃縮する部屋と、浮上濃縮する浮上分離
濃縮する部屋をさす。The solid-liquid separation chamber of the present invention refers to a chamber for concentrating the sedimented flocs by sedimentation and a chamber for flotation concentration for flotation concentration.
以下この発明を添付図に基づいて説明する。The present invention will be explained below based on the accompanying drawings.
第1図は本発明の凝集装置(縦型)である。該凝集装置
において、被処理水2)が供給される部屋を給液室1)
と呼ぶ、給液室に分散室3)を設ける。分散室内に1な
いし複数の混合管5)(第1図では2本図示)を設け、
分散室に両端が開口した混合管5)の一端を設けて被処
理水の供給口とし、他端は固液分離室4)に直接凝集物
を吐出する混合管吐出口+5)とし、複数の混合管に注
入管6)を、それぞれ中心軸を合一 して1本づつ設け
た装置の図である。注入管吐出口14)は混合管下流に
向けて開口している。分散室と固液性#を室の間に隔壁
8)を設けて、注入管吐出口から供給される注入液10
)の流れと、環状部17)から単管部l8)(第4図参
照)に流入する被処理水の流れとが接して流れ、その界
面で、被処理水の微細粒子間に激しい衝突が繰り返され
、混合管を通過する間に巨大フロックを形成する。複数
の混合管の被処理水供給口を同じ水位に維持して、各混
合管の流入水量を均等化する。混合管の本数は被処理水
量と注入液量との混合液7)の総量が、各混合管内を通
過する流速がI O< Re< 105に保つように決
める。注入液の注入管内の流速も5くRe<105に保
持する。FIG. 1 shows the agglomeration device (vertical type) of the present invention. In the flocculation device, the room to which the water to be treated 2) is supplied is called the liquid supply chamber 1).
A dispersion chamber 3) is provided in the liquid supply chamber. One or more mixing tubes 5) (two are shown in FIG. 1) are provided in the dispersion chamber,
One end of the mixing tube 5) with both ends open in the dispersion chamber is provided as a supply port for the water to be treated, and the other end is provided as a mixing tube discharge port +5) for directly discharging the aggregates into the solid-liquid separation chamber 4). This is a diagram of a device in which one injection pipe 6) is provided in the mixing pipe, with their respective central axes aligned. The injection pipe discharge port 14) opens toward the downstream side of the mixing pipe. A partition wall 8) is provided between the dispersion chamber and the solid-liquid chamber, and the injection liquid 10 is supplied from the injection pipe outlet.
) flows in contact with the flow of the water to be treated flowing from the annular part 17) to the single pipe part l8) (see Figure 4), and at the interface, violent collisions occur between the fine particles of the water to be treated. It is repeated to form huge flocs while passing through the mixing tube. The water supply ports of the plurality of mixing pipes are maintained at the same water level to equalize the amount of water flowing into each mixing pipe. The number of mixing tubes is determined so that the total amount of the mixed liquid 7) of the amount of water to be treated and the amount of injection liquid is maintained at a flow rate of I O < Re < 105 passing through each mixing tube. The flow rate of the injection liquid in the injection tube is also maintained at 5 Re<105.
第2図は本発明の凝集装EL(横型)である。縦型と同
様給液室l)に分散室3)を設け、分散室と固液分離室
()との間に混合管5)を設け、肉厚の隔g!8)を混
合管が貫通している。混合管(被処理水)と注入管(注
入液)との配置と、混合管内の流速、注入管内の流速は
縦型と同じ範囲とする。FIG. 2 shows the aggregation device EL (horizontal type) of the present invention. Similar to the vertical type, a dispersion chamber 3) is provided in the liquid supply chamber l), a mixing tube 5) is provided between the dispersion chamber and the solid-liquid separation chamber (), and a wall thickness g! 8) is penetrated by a mixing tube. The arrangement of the mixing pipe (water to be treated) and the injection pipe (injection liquid), the flow velocity in the mixing pipe, and the flow velocity in the injection pipe are in the same range as in the vertical type.
第3図に示す凝集装置は1つの給液室l)に複数の注入
管6)を均等に配置し、被処理水2)が流入する分散室
3)は仕切りfla(注入管吐出口から混合管径X0.
3m以上」二流o11)を想定し、仕切り線の上流側と
する。仕切り線より下流側を混合管5)とし、仕切り線
から注入管吐出口1イ)までを環状部、注入管吐出口か
ら混合管吐出口15)までをm管部とする。In the flocculation device shown in Fig. 3, a plurality of injection pipes 6) are evenly arranged in one liquid supply chamber l), and a dispersion chamber 3) into which the water to be treated 2) flows is divided into a partition fla (for mixing from the injection pipe outlet to Pipe diameter X0.
3m or more" second class o11), on the upstream side of the partition line. The downstream side of the partition line is defined as a mixing tube 5), the area from the partition line to the injection tube outlet 1a) is an annular section, and the area from the injection tube outlet to the mixing tube outlet 15) is an m-tube section.
環状部、lli管部に関する混合管と注入管との配置と
、混合管内の流速、注入管内の流速は上記と同じ範囲と
する。The arrangement of the mixing tube and the injection tube with respect to the annular section and the lli tube section, the flow rate in the mixing tube, and the flow rate in the injection tube are in the same range as above.
第4図に注入液供給管中心軸11)と注入管中心軸12
)と混合管中心軸13)の中心軸が完全に合一にし、注
入管に多孔質材16)を装填した図を示す。中心軸が完
全に合一にすると注入管長を短く出来、固液分離性能を
上げることができる。Figure 4 shows the central axis 11) of the injection liquid supply pipe and the central axis 12 of the injection pipe.
) and the center axis of the mixing tube 13) are completely aligned, and the injection tube is loaded with the porous material 16). When the central axes are completely aligned, the length of the injection tube can be shortened and solid-liquid separation performance can be improved.
第5図は大量の被処理水を処理したいときに採用される
。混合管内jこ2本の注入管それぞれに多孔質材16)
を装填し、混合管と2本の注入管の中心軸を合一した図
である。注入管を並列に混合管に挿入したときに比べ、
凝集効果は大きい。FIG. 5 is adopted when a large amount of water to be treated is desired to be treated. Inside the mixing tube, insert a porous material into each of the two injection tubes (16).
It is a diagram in which the central axes of the mixing tube and two injection tubes are aligned with each other. Compared to when the injection tube is inserted into the mixing tube in parallel,
The agglomeration effect is large.
固液分離性能が向上するのは、被処理水中の微細粒子が
、注入液と接して、(0’、1−50)X 10−’m
m(7)微細粒子間に電解質濃度差が生じ、それに基づ
く、反発電位の低下が、微細粒子間に激しい凝集作用を
もたらし、混合凝集作用が繰り返され混合管下流に向か
って巨大フロックを形成する。従ってバルキング汚泥で
も、巨大フロックを形成することになる。−船釣に両液
の電解質(イオン)t5度差の大きい時に、凝集微細粒
子間、フロック粒子間の結合力は強いようである。望ま
しくは、注入液と被処理水の電解質濃度差が0.1mg
/1以上であるとフロックを形成しやすくなり、IQm
g/1以上あるとフロック形成能力は強い。2X lo
’ag/1以上でもフロックを形成するが、薬剤費が大
きくなり経済的でない。被処理水が海水の場合に、注入
液に多価金属塩を使用すると多価金属塩濃度はアルカリ
金属塩のlO〜1/200でおなじ凝集効果を上げるこ
とができるから、2x IQ’mg/l以下に収めるこ
とができる。The solid-liquid separation performance improves when the fine particles in the water to be treated come into contact with the injection liquid, (0', 1-50)
m(7) A difference in electrolyte concentration occurs between fine particles, and the resulting drop in repulsion potential causes a strong agglomeration effect between the fine particles, and the mixing aggregation effect is repeated to form a huge floc toward the downstream of the mixing tube. . Therefore, even bulking sludge will form huge flocs. - When fishing by boat, when the electrolyte (ion) t5 degree difference between the two solutions is large, the bonding force between aggregated fine particles and floc particles seems to be strong. Preferably, the difference in electrolyte concentration between the injection solution and the water to be treated is 0.1 mg.
/1 or more, it becomes easier to form flocs, and IQm
When the ratio is g/1 or more, the floc-forming ability is strong. 2X lo
Although flocs can be formed even when the amount exceeds 'ag/1, the cost of the drug increases and it is not economical. When the water to be treated is seawater, if a polyvalent metal salt is used in the injection solution, the same coagulation effect can be achieved at a polyvalent metal salt concentration of lO to 1/200 of that of an alkali metal salt, so 2x IQ'mg/ It can be kept within 1.
混合管内の流速がRe>105になれば、フロックは形
成しない、Re < IO’lこなれば、フロックは形
成する。10>Reになれば、1本あたりの混合管処理
mが少なく、処理コストが大になる。形成したフロック
は混合管内の流速が105< Re < 105になっ
て一旦破壊されることがあっても、Re<105に保持
すればフロックは形成する。注入液の注入管内、または
それからの吐出速度がRe>105になれば、フロック
を形成しない、Re < 20’1.:m持すれば、フ
ロックの成長は促進される。Re<5なれば、1本あた
りの注入管処理量が少なく、処理コストが大になる。If the flow rate in the mixing tube is Re>105, no flocs will be formed, and if Re<IO'l, flocs will be formed. If 10>Re, the amount of processing m per mixing tube will be small and the processing cost will be high. Even if the formed flocs are once destroyed when the flow velocity in the mixing tube becomes 105<Re<105, the flocs will still be formed if Re<105 is maintained. If the injection velocity of the injection liquid into or from the injection tube is Re>105, no flocs will be formed; Re<20'1. : If it is kept for 30 minutes, the growth of flocs will be promoted. If Re<5, the amount of injection tubes to be processed per tube will be small and the processing cost will be high.
注入液量は被処理水にたいし2001以下、望ましくは
30〜IIである。1z以下では凝集効果は低い、20
0に以上でもフロック形成能力は変わらない、2002
をこえると、固液分離室への負荷が大きすぎ、注入液が
増加しただけの効果は認められない。The amount of injected liquid is 200 1/2 or less, preferably 30 to 1/2, relative to the water to be treated. Below 1z, the aggregation effect is low, 20
The floc formation ability remains unchanged even when the temperature exceeds 0, 2002
If it exceeds , the load on the solid-liquid separation chamber will be too large, and the effect of increasing the amount of injected liquid will not be observed.
分散室上固液分離室の間に隔壁を設ける場合は、混合管
は隔壁を貫通して配置し、混合管の両端は両室に1iJ
J口し、総ての被処理水の微細粒子は、混合管を通過す
ることになり、混合管内で1ないし複数の注入管から吐
出する注入液に必ず接するようにすると、被処理水中の
vlt細粒子IJの衝突が容易となり、混合管内でフロ
ックを形成する。隔壁を設けない場合は、混合管内を流
れる被処理水の微細粒子と、複数の注入管から吐出され
る注入液は、必ずしも接するとは限らない。また隣接す
る注入管から吐出する注入液が、形成した電解質濃度差
に打ち消すように干渉しあい、@細粒子間の衝突は低減
し、隔壁を設けた場合に較べ、フロック形成能力は低い
。しかし隔壁が無くても、注入液を供給している場合は
、注入液を止めた場合より固液分離性能は遥かに高い。When a partition is provided between the solid-liquid separation chamber above the dispersion chamber, the mixing tube is placed through the partition, and both ends of the mixing tube are connected to both chambers with a pressure of 1 iJ.
All the fine particles of the water to be treated pass through the mixing pipe, and if they are made to come into contact with the injection liquid discharged from one or more injection pipes in the mixing pipe, the VLT in the water to be treated will be reduced. Collision of the fine particles IJ becomes easier and flocs are formed within the mixing tube. When no partition is provided, the fine particles of the water to be treated flowing through the mixing tube and the injection liquid discharged from the plurality of injection tubes do not necessarily come into contact with each other. In addition, the injection liquid discharged from adjacent injection tubes interferes with each other to cancel out the formed electrolyte concentration difference, reducing collisions between @ fine particles, and the floc formation ability is lower than in the case where partition walls are provided. However, even without a partition wall, when the injection liquid is being supplied, the solid-liquid separation performance is much higher than when the injection liquid is stopped.
本発明の混合管内に、Iないし複数の注入管吐出口を開
口させる場合、1本の混合管内に第3図のように複数の
注入管を並列に設ける場合と、第5図のように混合管内
に多段に役けられた注入管の吐出口が開口する場合があ
げられる。1本の混合管に1本の注入管を設ける場合に
くらべ、複数の注入管を多段に設ける場合は、例えば、
注入管の最外側上段吐出口から金属塩凝集剤を含む注入
液を、中心部最下段の注入管吐出口から金属塩凝集剤ま
たは高分子凝集剤を含む注入液を注入する場合のように
、異種の注入液を別の注入管吐出口から注入するのに適
している。また複数の注入管を並列に設ける場合、隣接
する注入管から吐出する注入液が、干渉して一旦形成し
た微細粒子上の電解質濃度差を打ち消すことがおこり、
フロック形成能が低くなる。In the case where I or a plurality of injection tube discharge ports are opened in the mixing tube of the present invention, there are two cases in which a plurality of injection tubes are provided in parallel in one mixing tube as shown in FIG. An example of this is when the discharge port of an injection tube that is used in multiple stages inside the tube opens. Compared to the case where one injection pipe is provided in one mixing pipe, when multiple injection pipes are provided in multiple stages, for example,
As in the case where the injection liquid containing the metal salt flocculant is injected from the uppermost discharge port on the outermost side of the injection tube, and the injection liquid containing the metal salt flocculant or polymer flocculant is injected from the lowermost injection tube discharge port in the center, Suitable for injecting different types of injection liquids from different injection tube outlets. Furthermore, when multiple injection tubes are installed in parallel, the injection liquid discharged from adjacent injection tubes may interfere and cancel out the difference in electrolyte concentration on the fine particles once formed.
Floc-forming ability decreases.
注入液供給管中心軸11)と注入管中心軸12)とを合
一する場合とは、注入管中心軸に注入管入口と注入管吐
出口の2点で、中心軸に垂直な2平面と、注入液供給管
中心軸の延長線3(1) 2つの交点が、注入管中心軸
と2平面との2交点をそれぞれ中心とし、注入管内径の
0.2倍で描く2つの円内にあることをさす。注入液供
給管中心軸と注入管中心軸とが、上述の注入管中心軸に
垂直な2平面との交点とが一致すると(以後宋全に合一
すると呼称する)、注入管の長さを短くできる。注入管
中心軸と混合管中心軸13)とが合一する場合とは、注
入管の入口と吐出口の2点で中心軸に垂直な2平而と注
入管の中心軸との2交点を中心とし、注入管内径の0.
2倍で描く2つの川内に、混合管中心軸と上記の2平面
との交点があることをさす。注入管中心軸と混合管中心
軸とが、注入管中心軸に垂直な2平面との交点とが一致
する(以後完全に合一すると呼称する)場合は凝集効果
が大きく、混合管の長さを短く出来る。When the injection liquid supply tube center axis 11) and the injection tube center axis 12) are brought together, the injection tube center axis has two points, the injection tube inlet and the injection tube outlet, and two planes perpendicular to the center axis. , Extension line 3 (1) of the central axis of the injection liquid supply tube The two intersections are centered on the two intersections of the central axis of the injection tube and the two planes, and are drawn within two circles drawn at 0.2 times the inner diameter of the injection tube. refer to something When the center axis of the injection liquid supply tube and the center axis of the injection tube coincide with the intersections of the two planes perpendicular to the center axis of the injection tube mentioned above (hereinafter referred to as merging with Songquan), the length of the injection tube can be determined. It can be made shorter. The case where the central axis of the injection tube and the central axis of the mixing tube 13) meet means that the two intersections of the two points perpendicular to the central axis and the central axis of the injection tube are the two points of the inlet and outlet of the injection tube. Center, and the inner diameter of the injection tube is 0.
This indicates that there is an intersection between the center axis of the mixing tube and the above two planes in the two rivers drawn at double the angle. When the center axis of the injection tube and the center axis of the mixing tube coincide with the intersections of two planes perpendicular to the center axis of the injection tube (hereinafter referred to as complete union), the aggregation effect is large, and the length of the mixing tube is can be made shorter.
混合管の長さは被処理水が注入管と接する環状部17)
の長さと、注入管吐出口から混合管吐出口までの長さ、
すなわち単管ffi1g)の長さの和とする。The length of the mixing pipe is the annular part 17) where the water to be treated comes into contact with the injection pipe.
and the length from the injection tube outlet to the mixing tube outlet,
In other words, it is the sum of the lengths of the single tubes ffi1g).
環状部の長さは、混合管内径の0.3〜80倍の長さを
要し、単管部の長さは混合管内径の0.1〜20倍の長
さを要する。注入管吐出口から混合管内径の20倍の点
(混合管吐出口)から固液分M室までの長さの管は、混
合管吐出口と固液分離室とを接続する連結管と呼称し、
混合管長さに含めない。原状部の長さが混合管内径の0
.3倍以下であると、また弔管部の長さが0.1倍以下
である場合には、フロック形成能は認められない。環状
部長さが混合管内径の80倍以上になると、また単管部
の長さが混合管内径の20倍以上であれば、混合管人口
の形状、被処理水の粘度、管の摩損係数による影響は少
なく、フロック形成能は発揮されるが、混合管が長くな
り過ぎ経済的でない。The length of the annular portion must be 0.3 to 80 times the inner diameter of the mixing tube, and the length of the single tube portion must be 0.1 to 20 times the inner diameter of the mixing tube. The length of the tube from the injection tube outlet to a point 20 times the inner diameter of the mixing tube (mixing tube outlet) to the solid-liquid separation chamber is called a connecting tube that connects the mixing tube outlet and the solid-liquid separation chamber. death,
Not included in mixing pipe length. The length of the original part is 0 of the inner diameter of the mixing pipe.
.. If the length is 3 times or less, or if the length of the tube portion is 0.1 times or less, no floc-forming ability is observed. If the annular length is 80 times or more the inner diameter of the mixing pipe, or if the length of the single pipe part is 20 times or more the inner diameter of the mixing pipe, it will depend on the shape of the mixing pipe population, the viscosity of the water to be treated, and the friction coefficient of the pipe. Although the influence is small and the flocculation ability is exhibited, the mixing tube becomes too long and is not economical.
混合管の長さは長ければ長いほど、混合管の管径、人口
の形状、活性汚泥の凝集力と、注入液の水質と注入方法
に影響されにくい。望ましくは0.1〜10mがよい。The longer the length of the mixing tube, the less it will be affected by the diameter of the mixing tube, the shape of the population, the cohesive force of activated sludge, the quality of the water to be injected, and the injection method. The length is preferably 0.1 to 10 m.
0.1m以下で凝集しうるには混合管内径は0.01m
以下が必要である。混合管内径がこれ以下になれば、1
本当たりの処理量が少なく、コスト高となる。また10
m以上でも凝集するには何等差し支えないが、10m以
上になれば、注入管長を含めた凝集装置が巨大化し、経
済的でない。この混合管の長さは直管であることが望ま
しい。The inner diameter of the mixing pipe must be 0.01 m to be able to aggregate within 0.1 m.
The following is required: If the inner diameter of the mixing tube is less than this, 1
The amount of processing per book is small, resulting in high costs. 10 more
There is no problem in agglomerating if the length is more than 10 m, but if it is more than 10 m, the aggregating device including the length of the injection pipe becomes huge and is not economical. The length of this mixing tube is preferably a straight tube.
混合管内径が0.01〜5mとする。0.01m以下は
処理液量が多いと圧力損失が大きくコスト高となる。The inner diameter of the mixing tube is 0.01 to 5 m. If the length is 0.01 m or less, if the amount of processing liquid is large, the pressure loss will be large and the cost will be high.
5m以上になると、混合管長が長くなりすぎて装置が大
きくなり経済的でない。If the length exceeds 5 m, the length of the mixing pipe becomes too long, making the apparatus large and uneconomical.
分散室と固液分離室の間に設ける混合管は、第2図)の
水平方向、斜め方向、第1図)の上下方向に接続しても
、本発明の凝集作用は混合管内の流速に大きい影響を受
けるが、混合管の方向が異なっても、固液分離性能に差
は認められない。Even if the mixing tube installed between the dispersion chamber and the solid-liquid separation chamber is connected horizontally or diagonally as shown in Fig. 2), or vertically as shown in Fig. However, there is no difference in solid-liquid separation performance even if the direction of the mixing tube is different.
分散室に開口する複数の混合管の被処理水の流入口を、
同じ水位(縦型)に設けると、混合管内に流入する液量
が均等化し、混合管許容流出を&を持しやすく、固液分
離性能が低下する混合管を無くすることができる。The inlets of the water to be treated in the multiple mixing pipes opening into the dispersion chamber are
If they are provided at the same water level (vertical type), the amount of liquid flowing into the mixing tube will be equalized, the mixing tube will tend to have a permissible outflow of &, and it is possible to eliminate the mixing tube that deteriorates solid-liquid separation performance.
注入管径をdm(外径)、混合管径をDm(内径)でし
めす。環状部17)の幅(D−d)mが狭いと、被処理
水の環状部への流入液量が不均一となり、フロック形成
能を低下させ、固液分離性能を低下させる。均一流入し
得る注入管外径は混合管内径の0.97倍以下でなけれ
ばならない。注入管外径が混合管内径の0.01倍以下
になれば、被処理水口にたいする注入液Mを35として
も、注入管吐出口14)の速度は330倍となり、その
流速はRe > 105となり、フロック形成能を低下
させ、固液分離性能は低くなる。The diameter of the injection pipe is indicated by dm (outer diameter), and the diameter of the mixing pipe is indicated by Dm (inner diameter). If the width (D-d)m of the annular portion 17) is narrow, the amount of water to be treated flowing into the annular portion will be non-uniform, reducing floc formation ability and solid-liquid separation performance. The outer diameter of the injection tube must be 0.97 times or less than the inner diameter of the mixing tube to allow uniform inflow. If the outside diameter of the injection tube is 0.01 times or less than the inside diameter of the mixing tube, even if the injection liquid M to the water port to be treated is 35, the velocity of the injection tube discharge port 14) will be 330 times, and the flow rate will be Re > 105. , the ability to form flocs decreases, and the solid-liquid separation performance decreases.
分散室と固液分離室が、独立して2室が用層をおいて存
在しても、混合管と連結管とで接続出来る。Even if the dispersion chamber and the solid-liquid separation chamber are two independent chambers separated by a layer, they can be connected by a mixing tube and a connecting tube.
注入管6)内に多孔質材16)を装填するにあたり、そ
の装填位置は注入管吐出口より上流側に、注入管径の1
倍以上の距離に設ける方が、整流効果が大きく、凝集性
能の向上に影響するところが大きい。適切な位置に適切
な多孔質材を設ければ、注入液供給管中心軸と、注入管
中心軸の合一を必要としないし、注入液量を減らし、注
入管長と混合管長を短く出来る。また、混合管内の流速
は、多孔質材を使用すると、多孔質材を使用しないとき
のReの10倍、すなわち、Re= 105まで大きく
しても巨大フロックは形成する。When loading the porous material 16) into the injection tube 6), the loading position is located upstream from the injection tube outlet, at a point 1 of the injection tube diameter.
The rectification effect is greater when the distance is more than twice that, and it has a large effect on improving the flocculation performance. By providing an appropriate porous material at an appropriate position, it is not necessary to unite the center axis of the injection liquid supply pipe with the center axis of the injection pipe, and the amount of injection liquid can be reduced, and the length of the injection pipe and the mixing pipe can be shortened. Furthermore, when a porous material is used, even if the flow velocity in the mixing tube is increased to 10 times the Re when no porous material is used, that is, Re=105, giant flocs are formed.
多孔質材は抗菌性の高分子繊維、無機質繊維を素材とし
、厚み10mmとしたとき100〜10.(100g/
*”の不織布、抗菌性の0.01〜:Js露気気泡径連
続微細気泡)よりなる高分子樹脂スポンジ、0.01〜
5■鵬径の粉粒体、0、O1〜3鳳醜穴径の金属製、無
機製、高分子樹脂製の多孔板、織物、編み物、網、膜、
これら:+:材をそれぞれ単独または層状に組み合わせ
たらのかあげられる。多孔竹材の装填高さを0.1〜5
00m5、水道水管内平均速度sx 10−’m/se
eにおける圧力損失を10〜10.000mmに収める
のが望ましい。圧力R1失がI 0ratn以下は整流
効果がなく 、10,000aIII以とは所要動力が
大きく不経済である。The porous material is made of antibacterial polymer fibers and inorganic fibers, and has a thickness of 100 to 10 mm when the thickness is 10 mm. (100g/
*” non-woven fabric, antibacterial 0.01~: polymeric resin sponge made of Js (continuous fine bubbles), 0.01~
Powder and granular materials with a diameter of 5 ■, metal, inorganic, and polymeric resin porous plates with a hole diameter of 0, O1 to 3, woven fabrics, knitted fabrics, nets, membranes,
These: +: Materials can be used alone or in combination in layers. Loading height of porous bamboo material from 0.1 to 5
00m5, average speed in the tap water pipe sx 10-'m/se
It is desirable that the pressure loss at e is within 10 to 10,000 mm. If the pressure R1 loss is less than I0ratn, there is no rectifying effect, and if it is more than 10,000aIII, the required power is large and uneconomical.
実施例−1
本発明の第3図に示した凝集装置を使用して、うどん加
工廃水80aJ7日の被処理水(NaC1含i[78m
g/l)を分離した。沈澱槽の水面積負荷12I++’
/ ta”日、給液室(=分散室管径11.7m、管長
0.3m混合管径0.7m 、管長1.5m)に直径0
.075m5長さ1.05mの注入管30本を挿入した
。注入液を注入しない時の被処理水(@気槽の活性汚泥
)(7)MLSSA880mg/l、SV+t。Example 1 Using the flocculation apparatus shown in FIG.
g/l) was separated. Sedimentation tank water area load 12I++'
/ ta'' day, the liquid supply chamber (=dispersion chamber pipe diameter 11.7 m, pipe length 0.3 m, mixing pipe diameter 0.7 m, pipe length 1.5 m) had a diameter of 0.
.. Thirty injection tubes with a length of 1.05 m and a length of 075 m5 were inserted. Water to be treated when no injection liquid is injected (@activated sludge in air tank) (7) MLSSA 880 mg/l, SV+t.
=98であった。そのときの固液分離室の活性汚泥の界
面は、水面下0.35m、溢流水汚泥濃度は4〜18+
*g/lであった。一方、注入液14.5m’7日を2
4時間継続注入した後の活性汚泥の界面は、水面下1.
7mに下がり、溢流水汚泥濃度は2〜5B/lであった
。その間の混合液の混合管内の流れはRe1580〜1
780に維持した。注入液は河川水(COD2mg/
L NaC1含有fft1.2mg/l) IQ(1g
’1J7JL’り。=98. At that time, the activated sludge interface in the solid-liquid separation chamber was 0.35 m below the water surface, and the overflow water sludge concentration was 4 to 18+
*g/l. On the other hand, 14.5 m of infusion solution was added for 7 days.
After continuous injection for 4 hours, the interface of activated sludge is 1.
7 m, and the overflow water sludge concentration was 2 to 5 B/l. The flow of the mixed liquid in the mixing tube during that time is Re1580~1
It was maintained at 780. The injection solution is river water (COD2mg/
L NaCl content fft1.2mg/l) IQ (1g
'1J7JL'ri.
実施例−2
第1図と同じ形式の凝集装置(混合管直径9cm、長さ
Igocmに、注入管直径7.5cm、長さ160cm
を挿入し、完全に合一させ、環状部長さ120cmとす
る)を使用してうどん加工廃水を生物処理して得た活性
汚泥には、僅かにバルキング現象が認められる。塩化ナ
トリウム36a+g/lの被処理水(@気槽の活性汚泥
)の11Lss4]30mg/l、SV+to” 97
であった。固液分離室に対し水面積負荷12II15/
1!日で処理し、注入液を注入しないときの固液分離室
の活性汚泥の界面は、水面下0.77m1溢流水のSS
濃度14B/lであった。注入液として河川水(COD
2mg/ I )に塩化ナトリウムを加え、その含佇f
it 70mg/ !の液を被処理水量の10%を24
時間継続注入した、混合管内の流速Re= 1750〜
1840、固液分離室の水面積負荷25m’/+”日で
処理すると、溢流水の汚泥濃度は2mg/l以下を示し
、活性汚泥の界面を水面下1.7mに維持したときの返
送汚泥濃度は19850IAg/lを得た。上記条件を
同じにしたまま、注入液の混合管内への注入を中止し、
2時IX″、J後溢流水の汚泥濃度は23g+sg/l
に、活性1’5泥の界面は水面下0.5mに浮Jl、継
続運転は不可能となったが、注入液を注入して2時間後
浴流水のlり泥r度は4mg/lに回復していた。この
ようにバルキング現象のみとめられるtη泥でも、完全
に固液分離が出来た。Example-2 A flocculating device of the same type as in Fig. 1 (mixing tube diameter 9 cm, length Igocm, injection tube diameter 7.5 cm, length 160 cm)
A slight bulking phenomenon is observed in the activated sludge obtained by biologically treating udon processing wastewater using a sludge (inserted and completely combined to form an annular length of 120 cm). Sodium chloride 36a+g/l of treated water (@activated sludge in air tank) 11Lss4] 30mg/l, SV+to” 97
Met. Water area load for solid-liquid separation chamber 12II15/
1! The interface of the activated sludge in the solid-liquid separation chamber when the injection liquid is not injected is 0.77 m1 below the water surface.
The concentration was 14 B/l. River water (COD) as injection liquid
Add sodium chloride to 2mg/I) and its content f
it 70mg/! 10% of the amount of water to be treated is 24
Flow rate Re = 1750 in the mixing tube, continuously injected for a period of time
1840, when treated with a water area load of 25 m'/+'' days in the solid-liquid separation chamber, the sludge concentration in the overflow water was less than 2 mg/l, and the returned sludge when the activated sludge interface was maintained at 1.7 m below the water surface. The concentration was 19,850 IAg/l.While keeping the above conditions the same, injection of the injection solution into the mixing tube was stopped,
2 o'clock IX'', the sludge concentration of the overflow water after J is 23g+sg/l
The interface of the active 1'5 mud floated 0.5 m below the water surface, making continuous operation impossible, but 2 hours after injecting the injection liquid, the mud r degree of the bath water was 4 mg/l. He had recovered. In this way, complete solid-liquid separation was possible even with tη mud, which only shows a bulking phenomenon.
表−1
71人液囁
被処理液量
な し
0.1
な し
0.1
実施例−3
チップ加熱抽出液を中和処理後生物処理(NaCIZ8
7mg/l)している活性汚泥に、糸状性細菌の発生に
よるバルキング現象(SV、、。;99)が顕著に認め
られる。この時の被処理水の汚泥濃度(@気槽汚泥濃溢
流液
汚泥0度
14o+g/1
2〃以F
238!)
4 〃
12aA’/mTl
25 〃
25 〃
25 〃
水面積C’J 6:j
度)は2.49Kg/m3を示している。固液分離室(
沈澱槽)にだいし水面積負荷61m′/lIl′日で処
理した時に、深さ3.5mの固液分離室(沈澱槽)の汚
泥界面は水面下0.65mにあり、溢流水の5Sct度
は28mg/lであった。この同じ被処理水をヂ1図と
同じ型式の凝集装置(混合管直径12cm 、長さ18
0cmに注入管直径9cm、長さIgOc−を挿入し、
完全に合一させ、垣状部の長さ120cmとする)に注
入液(海水)を被処理水の6%供給し、混合管内の流速
Re= 2340とし、水面積負荷35m’/m’日で
処理すると、溢流水の汚泥濃度は2 mg/l以下を示
し、活性汚泥の界面を水面下1.7mに維持したときの
返送汚泥濃度は9570mg/lを得た。このように糸
状性細菌によるバルキング汚泥でも、完全に固液分離が
出来た。この水面積負荷35I11311f日のままで
注入液6zの供給を中止し、1時間後の溢流水のSS濃
度は580〜640mg/lを示した。Table-1 Volume of 71 human fluids to be treated None 0.1 None 0.1 Example-3 Biological treatment after neutralization of chip heated extract (NaCIZ8
7mg/l), a bulking phenomenon (SV,...;99) due to the generation of filamentous bacteria is clearly observed. Sludge concentration of the water to be treated at this time (@air tank sludge concentrated overflow liquid sludge 0 degrees 14o+g/1 2〃F 238!) 4 〃 12aA'/mTl 25 〃 25 〃 25 〃 Water area C'J 6: j degree) is 2.49Kg/m3. Solid-liquid separation chamber (
When treated with a water area load of 61 m'/lIl' day, the sludge interface in the solid-liquid separation chamber (settling tank) with a depth of 3.5 m is 0.65 m below the water surface, and the overflow water is 5 Sct degree. was 28 mg/l. This same water to be treated was collected using a flocculation device of the same type as shown in Figure 1 (mixing pipe diameter 12 cm, length 18 cm).
Insert an injection tube with a diameter of 9 cm and a length of IgOc- into the
6% of the water to be treated is supplied with the injection liquid (seawater) to the wall (the length of the wall is 120 cm), the flow rate in the mixing pipe is Re = 2340, and the water area load is 35 m'/m' day. When treated, the sludge concentration in the overflow water was 2 mg/l or less, and when the activated sludge interface was maintained at 1.7 m below the water surface, the returned sludge concentration was 9570 mg/l. In this way, complete solid-liquid separation was possible even with bulking sludge caused by filamentous bacteria. The supply of injection liquid 6z was stopped while this water area load remained at 35I11311f days, and the SS concentration in the overflow water after 1 hour showed 580 to 640 mg/l.
再び水面積負荷35m’/m″日のままで注入液を被処
理水の6%供給すると、4時間後の溢流水の5S15度
は2mg7’l以下に回復した。When the injection liquid was supplied again at 6% of the water to be treated while the water area load remained at 35 m'/m'' day, the 5S15 degree of the overflow water after 4 hours was restored to 2 mg 7'l or less.
表−2
注入液/被処理水 水面積負荷
ll13/日/m’/日 II′J/lm′日な
し 60.06 35
な し 350.06 3
5
実施例−4
図−1と同じ型式の凝集装置を利用して、沼の浚渫汚泥
を処理した。1本の混合管(径? 、 5c+n)に、
1本の注入管径(6cm)を挿入し、混合管中心軸と注
入管中心軸とを完全に合一にした。A)注入管に多孔質
材[プロピレン不織布(厚み10mmでl080g/m
りを厚み15+nm3枚を層状に重ね計45+amとす
る]を注入管吐出口より上流側50cmに充填して整流
層を設けた。B)注入管に整流層無しとした。注入管全
長160cmとし、混合管に挿入した。混合管は単管部
長さ80ci環状部長さ120cm全長200c11と
し、分散室と固液分離室との間に設けた。浚渫汚泥し水
分(乾m基1)ato3、強熱減量31%、TOCI
30mg/g乾泥、ろ過液Cl−1,6mg/l]と注
入液との混合液を混合管1本あたり56m’7日(溢流
水汚泥濃度
mg/ 1
2 以下
580〜640
2 以下
Re = 1.lX IO″′)を分散室に供給し、注
入管1本あ?、:1)816’/[3を注入水として河
川水(COD2mg/ 1) l: Fe(3価) S
tag/ Iを加えて供給した。 C)Pa(3価)2
5mg/lの注入液0.11を浚渫汚泥0.61に加え
、凝結槽で90G/secの力を4分間加え、フロック
はろ過によって除去した。ろ過は粒子径0.8mmの砂
粒を厚さ12cmに充填したろ床に18m/時のろ過速
度で処理した。ろ過液中のSS5度と固液分離室に濃縮
した浚渫汚泥濃度と溢流上澄液中のSS濃度を表−3に
示す。Table-2 Injected liquid/Water to be treated Water area load 113/day/m'/day II'J/lm' day None 60.06 35 None 350.06 3
5 Example 4 Dredged sludge from a marsh was treated using the same type of flocculation device as shown in Figure 1. In one mixing tube (diameter?, 5c+n),
One injection tube diameter (6 cm) was inserted, and the center axis of the mixing tube and the center axis of the injection tube were completely aligned. A) Porous material [propylene nonwoven fabric (thickness 10 mm, l080 g/m
A rectifying layer was provided by filling 50 cm upstream from the injection tube outlet with three sheets of 15+ nm thick layered to make a total of 45+ am. B) There was no rectifying layer in the injection tube. The injection tube had a total length of 160 cm and was inserted into the mixing tube. The mixing tube had a single tube length of 80 cm, an annular portion length of 120 cm, and a total length of 200 cm, and was installed between the dispersion chamber and the solid-liquid separation chamber. Dredged sludge moisture (dry m group 1) ato3, ignition loss 31%, TOCI
A mixed solution of 30 mg/g dry mud, filtrate Cl-1.6 mg/l] and injection liquid was added to each mixing pipe for 56 m'7 days (overflow water sludge concentration mg/12 or less 580 to 640 2 or less Re = 1. Supply 1X IO″') to the dispersion chamber, and use one injection pipe: 1) River water (COD 2mg/1) using 816'/[3 as injection water l: Fe (trivalent) S
tag/I was added and fed. C) Pa (trivalent)2
0.11 of the 5 mg/l injection solution was added to 0.61 of the dredged sludge, a force of 90 G/sec was applied for 4 minutes in a coagulation tank, and flocs were removed by filtration. Filtration was carried out at a filtration speed of 18 m/hour through a filter bed filled with sand grains having a particle size of 0.8 mm to a thickness of 12 cm. Table 3 shows the SS5 degree in the filtrate, the concentration of dredged sludge concentrated in the solid-liquid separation chamber, and the SS concentration in the overflow supernatant.
表−3
ぬ縮凌渫汚泥濃度 上澄液SS濃度
ろ過液SS濃縮
Δ 32.400〜41,600mg/l I〜
3111g/lB 21 、300−30.600
mg/ l I 8〜23(la+g/ ICI
、 5a+g/ 1
実施例−5
し尿膜離液(COD2060n+g/l、BOD525
0mg/l、Cl−2300mg/L)をCI 150
0mg/lの希釈水(海水含む河川水)で6倍希釈し、
生物処理した被処理水(MLSS5600mg/l、C
0D180+ag/l、BODISOmg/l)を第1
図に示した凝集装f1!2(混合管内径9ca+、 1
80cmに注入管6cm、 150cmを種太し、注入
管、混合管の中心軸を合一にし、環状部長さ12c鵡と
する)を使用した。注入管に多孔質材(平均径0.2m
mの砂粒を属調6C11に充填)を吐出口上流側0.6
mに装填した。注入液は水道水、希釈水C115001
1g/lをそれぞれ被処理水の75注入した。混合液の
流速はRe= 4510〜4B(10、固液分a室に対
する平均水面積負荷35fflff/llt日で処理し
たときの溢流水のSS濃度、返送汚泥濃度を表−4に示
す。Table-3 Condensation sludge concentration Supernatant liquid SS concentration Filtrate SS concentration Δ 32.400 to 41,600 mg/l I~
3111g/lB 21 , 300-30.600
mg/l I 8-23 (la+g/ICI
, 5a+g/1 Example-5 Allantoic syneresis (COD2060n+g/l, BOD525
CI 150
Diluted 6 times with 0 mg/l dilution water (river water including seawater),
Biologically treated water (MLSS5600mg/l, C
0D180+ag/l, BODISOmg/l) as the first
The flocculation device f1!2 shown in the figure (mixing pipe inner diameter 9ca+, 1
An injection tube of 6 cm and a 150 cm diameter were added to the 80 cm length, and the center axes of the injection tube and the mixing tube were aligned to make an annular portion of length 12 cm. Porous material for injection pipe (average diameter 0.2 m)
6C11 filled with sand grains of 0.6 mm on the upstream side of the discharge port.
Loaded into m. Injection liquid: tap water, dilution water C115001
75 injections of 1 g/l each of the water to be treated were made. The flow rate of the mixed liquid was Re = 4510 to 4B (10). Table 4 shows the SS concentration of the overflow water and the returned sludge concentration when treated with an average water area load of 35 fflff/llt day for the solid-liquid separation chamber A.
表−4
注入液 返送汚泥濃度 溢流水SS濃度水道水
12600mg/l 1邦/1希択水 12
300mg/l I〜2mg/l[発明の効果J
この発明は、上記のように構成したものである。Table-4 Injected liquid Returned sludge concentration Overflow water SS concentration Tap water
12600mg/l 1 country/1 selected water 12
300 mg/l I to 2 mg/l [Effect of the invention J This invention is constructed as described above.
混合管内で被処理水が注入管吐出口から流出する注入液
と接すると、その界面で、粒子径が1〜5×10”am
の衝突が困難な微細粒子間に衝突凝集がおこり、更に衝
突して数秒で0.5〜l+mmの巨大フロックを混合管
内で形成する。その固液分離能力が大きく、水面積負荷
で比較すると、従来の沈澱槽で5腸3/ll′日で処理
しているバルキング汚泥を100h+’/C日以上で固
液分離処理出来る。また本発明の凝集装置は小形軽重で
あるから、据え付けは簡単で、既設の沈澱槽に設置して
固液分離性能カを数倍に向上さすことが出来る。When the water to be treated comes into contact with the injection liquid flowing out from the injection pipe outlet in the mixing pipe, the particle size is 1 to 5 x 10" am at the interface.
Collision aggregation occurs between fine particles that are difficult to collide with, and further collisions occur to form huge flocs of 0.5 to 1+mm in size within the mixing tube within a few seconds. Its solid-liquid separation capacity is large, and when compared in terms of water area load, bulking sludge, which is processed in a conventional settling tank at 5 ml/l' day, can be solid-liquid separated in more than 100 h+'/C day. Furthermore, since the flocculating apparatus of the present invention is small and light, it is easy to install and can be installed in an existing settling tank to improve the solid-liquid separation performance several times.
多発するバルキング汚泥の処理に対応しえない既設の沈
澱槽の給液筒、または給液筒の外側から堰までの間に、
本発明の凝集装置を設け、バルキング汚泥を経常時と同
じ水面積負荷で処理(20〜30m’/m1日)しても
、処理放流水中のSS濃度は2tag/l以下、返送汚
泥濃度10,000mg/lで処理することが出来るか
ら、高濃度活性汚泥法を採用出来る事になった。The liquid supply cylinder of an existing settling tank that cannot handle the bulking sludge that occurs frequently, or between the outside of the liquid supply cylinder and the weir.
Even if the flocculation device of the present invention is installed and bulking sludge is treated with the same water area load as normal (20 to 30 m'/m per day), the SS concentration in the treated effluent is 2 tag/l or less, the return sludge concentration is 10, 000mg/l, it became possible to adopt the high-concentration activated sludge method.
本発明の凝集装置は被処理水中の電解質を、被処理水中
の微細粒子の凝集液として利用出来るから、薬剤費は軽
減出来る。Since the flocculating apparatus of the present invention can utilize the electrolyte in the water to be treated as a flocculating liquid for fine particles in the water to be treated, the cost of chemicals can be reduced.
本発明の凝集装置にはアルカリ金属塩を凝集剤として含
む注入液を使用できるから、多価金属塩を忌み嫌う微生
物、沈降分離の困難な微生物の凝集分離が可能である。Since the coagulation device of the present invention can use an injection solution containing an alkali metal salt as a coagulant, it is possible to coagulate and separate microorganisms that dislike polyvalent metal salts and microorganisms that are difficult to separate by sedimentation.
さらに多価金属塩を凝集剤として含む注入液を使用する
にあたり、混合管内に注入する注入液濃度は、従来の凝
集装置の凝集液添加方法で添加する凝集液濃度の約数分
の■と同じ固液分離性能をしめし、凝集剤費が少なくて
済む。Furthermore, when using an injection solution containing a polyvalent metal salt as a flocculant, the concentration of the injection solution injected into the mixing tube is approximately a fraction of the concentration of the flocculant added using the flocculant addition method of a conventional flocculation device. It exhibits solid-liquid separation performance and requires less flocculant cost.
従来の凝集装置は衝突のための高速撹はん室を要したが
、本発明の凝凝集装置は注入液と被処理水とを混合管内
で接するだけで、微細粒子の衝突がおこり、巨大フロッ
クを形成するから、衝突のための動力、高速撹はん室、
フロック成長室は不要である。Conventional flocculation equipment required a high-speed stirring chamber for collision, but the flocculation equipment of the present invention simply brings the injected liquid and the water to be treated into contact in the mixing pipe, and collisions of fine particles occur, resulting in huge flocs. From forming the power for collision, high-speed stirring chamber,
A flock growth chamber is not required.
分散室と固液分子:a室の間を混合管で横方向、斜め方
向、垂直方向に接続しても、また独立して離れた分散室
と固液分離性能を混合管と連結管とで接続しても、混合
管内で巨大フロックの形成が完了してしまうから、混合
管内、連結管内の流速をRe<105であれば、フロッ
クを破壊しないから接続方向、接続方法に関係なく、固
液分離性能に差は認められない。Dispersion chamber and solid-liquid molecules: Even if chamber a is connected horizontally, diagonally, or vertically with a mixing tube, the dispersion chamber and solid-liquid separation performance can be separated independently using a mixing tube and a connecting tube. Even if the connection is made, the formation of giant flocs will be completed in the mixing tube, so if the flow rate in the mixing tube and connecting tube is Re<105, the flocs will not be destroyed, so regardless of the connection direction or connection method, solid-liquid No difference was observed in separation performance.
固液分離室の汚泥と上澄液との界面が画然とし13;混
合管中心軸
ているから、流入汚泥を、その沈降堆積速度に見合った
速度で自動的に引き抜くことが出来るので、運転管理が
容易である。The interface between the sludge and the supernatant liquid in the solid-liquid separation chamber is clearly defined13; the center axis of the mixing tube allows the inflowing sludge to be automatically drawn out at a speed commensurate with its sedimentation rate, making it easier to operate. Easy to manage.
第1図は本発明の凝集装置(縦型)の断面図である。
72図は本発明の凝集装置(横型)の断面図である。
第3図は本発明の注入管を混合管内に多数設けた凝集装
置の断面図である。
第4図は本発明の注入液供給管中心軸と注入管中心軸と
混合管中心軸が完全に合一した断面図である。
第5図は混合管に多孔質材を装填した注入管の吐出口が
多段に開口した断面図である。
1:給液室 2:被処理水 3:分散室 4:固液分離
室 5:混合管 6:注入管 7:混合液8:隔壁
9:注入液供給管 10:注入液11:注入液供給
管中心軸 12:注入管中心軸15:混合管吐出口
18:単管部FIG. 1 is a sectional view of the agglomeration device (vertical type) of the present invention. FIG. 72 is a sectional view of the aggregation device (horizontal type) of the present invention. FIG. 3 is a sectional view of a condensing device in which a large number of injection tubes according to the present invention are provided in a mixing tube. FIG. 4 is a cross-sectional view in which the central axis of the injection liquid supply tube, the central axis of the injection tube, and the central axis of the mixing tube of the present invention are completely merged. FIG. 5 is a cross-sectional view showing a mixing tube filled with a porous material and a discharge port of an injection tube opened in multiple stages. 1: Liquid supply chamber 2: Water to be treated 3: Dispersion chamber 4: Solid-liquid separation chamber 5: Mixing pipe 6: Injection pipe 7: Mixed liquid 8: Partition wall
9: Injection liquid supply pipe 10: Infusion liquid 11: Injection liquid supply pipe center axis 12: Injection pipe center axis 15: Mixing pipe outlet 18: Single pipe part
Claims (1)
に被処理水を分散させる分散室3)と、一端が分散室に
、他端が固液分離室に開口した1ないし複数本の混合管
5)を設け、さらに該混合管内に注入液を注入する注入
管6)を1ないし複数本設けた構造を有することを特徴
とする微細粒子を含む被処理水から微細粒子と上澄液と
に分離する凝集装置。 2)分散室3)と固液分離室4)とを水平方向、斜め方
向、上下方向に配置し、その間に混合管5)を設けた構
造を有する請求項第1項記載の凝集装置。 3)分散室3)と固液分離室4)との間を混合管5)と
連結管とで結合した請求項第1項または第2項記載の凝
集装置。 4)分散室3)と固液分離室4)との間に隔壁8)を設
け、この隔壁を貫通させて混合管5)を設けた構造を有
する請求項第1項ないし第3項記載の凝集装置。 5)注入管6)に注入液を供給する供給管9)を設けた
請求項第1項ないし第4項記載の凝集装置。 6)注入液供給管9)と注入管6)の中心軸を合一にし
た請求項第5項記載の凝集装置。 7)注入管6)と混合管5)の中心軸を合一にした請求
項第1項記載の凝集装置。 8)注入管6)に多孔質材16)を装填した構造を有す
る請求項第1項記載の凝集装置。 9)混合管内径が0.01〜5m、混合管長さ0.1〜
10mの範囲内にある請求項第1項記載の凝集装置。 10)混合管5)の環状部17)の長さを、混合管内径
の0.3〜80倍、単管部18)の長さを、混合管内径
の0.1〜20倍とする請求項第1項記載の凝集装置。 11)注入管径(外径)は、混合管径(内径)の0.0
1〜0.97倍とする請求項第1項記載の凝集装置。 12)複数の混合管に流入する被処理水の流入口を同じ
水位とする請求項第1項記載の凝集装置。 13)請求項第1項記載の凝集装置を用いて、微細粒子
を含む被処理水から微細粒子と上澄液を分離するにあた
り、混合管内の混合液の流れは10<Re<10^5、
注入液の注入管内の流れは5<Re<10^4の範囲に
保持することを特徴とする被処理水から微細粒子を分離
する凝集方法。 14)注入液量は被処理水量の1〜200%とする請求
項第13項記載の凝集方法。 15)注入液中の電解質濃度と被処理水中の電解質濃度
との差を0.1mg/lないし2×10^5mg/lの
範囲とする請求項第13項記載の凝集方法。 16)注入液中の電解質濃度が被処理水中の電解質濃度
より低い請求項第15項記載の凝集方法。 17)注入液中の電解質濃度が被処理水中の電解質濃度
より高い請求項第15項記載の凝集方法。[Claims] 1) Consisting of a liquid supply chamber 1) and a solid-liquid separation chamber 4), a dispersion chamber 3) for dispersing the water to be treated in the liquid supply chamber, one end serving as the dispersion chamber, and the other end serving as the dispersion chamber. Fine particles characterized by having a structure in which one or more mixing tubes 5) are provided that open to a solid-liquid separation chamber, and one or more injection tubes 6) are further provided for injecting an injection liquid into the mixing tubes. A flocculation device that separates treated water containing fine particles and supernatant liquid. 2) The flocculation apparatus according to claim 1, having a structure in which the dispersion chamber 3) and the solid-liquid separation chamber 4) are arranged horizontally, diagonally, and vertically, and a mixing tube 5) is provided between them. 3) The flocculation device according to claim 1 or 2, wherein the dispersion chamber 3) and the solid-liquid separation chamber 4) are connected by a mixing tube 5) and a connecting tube. 4) A structure according to any one of claims 1 to 3, characterized in that a partition wall 8) is provided between the dispersion chamber 3) and the solid-liquid separation chamber 4), and a mixing pipe 5) is provided through the partition wall. Flocculation device. 5) The aggregation device according to any one of claims 1 to 4, further comprising a supply pipe 9) for supplying the injection liquid to the injection pipe 6). 6) The aggregation device according to claim 5, wherein the central axes of the injection liquid supply pipe 9) and the injection pipe 6) are aligned. 7) The aggregation device according to claim 1, wherein the central axes of the injection pipe 6) and the mixing pipe 5) are aligned. 8) The aggregation device according to claim 1, having a structure in which the injection pipe 6) is loaded with a porous material 16). 9) Mixing tube inner diameter 0.01~5m, mixing tube length 0.1~
The agglomerating device according to claim 1, which is within a range of 10 m. 10) Request that the length of the annular portion 17) of the mixing tube 5) is 0.3 to 80 times the inner diameter of the mixing tube, and the length of the single tube portion 18) is 0.1 to 20 times the inner diameter of the mixing tube. The agglomeration device according to item 1. 11) The injection pipe diameter (outer diameter) is 0.0 of the mixing pipe diameter (inner diameter).
The aggregation device according to claim 1, wherein the agglomeration device is 1 to 0.97 times. 12) The flocculation device according to claim 1, wherein the inlets of the water to be treated flowing into the plurality of mixing pipes are set at the same water level. 13) When separating fine particles and supernatant liquid from water to be treated containing fine particles using the flocculation device according to claim 1, the flow of the mixed liquid in the mixing tube is 10<Re<10^5,
A coagulation method for separating fine particles from water to be treated, characterized in that the flow of the injection liquid in the injection pipe is maintained in the range of 5<Re<10^4. 14) The flocculation method according to claim 13, wherein the amount of injected liquid is 1 to 200% of the amount of water to be treated. 15) The flocculation method according to claim 13, wherein the difference between the electrolyte concentration in the injection solution and the electrolyte concentration in the water to be treated is in the range of 0.1 mg/l to 2×10^5 mg/l. 16) The aggregation method according to claim 15, wherein the electrolyte concentration in the injection liquid is lower than the electrolyte concentration in the water to be treated. 17) The aggregation method according to claim 15, wherein the electrolyte concentration in the injection liquid is higher than the electrolyte concentration in the water to be treated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63155624A JPH0716563B2 (en) | 1987-06-25 | 1988-06-22 | Aggregating device and method |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62-158519 | 1987-06-25 | ||
JP15851987 | 1987-06-25 | ||
JP62-172471 | 1987-07-09 | ||
JP62-278095 | 1987-11-02 | ||
JP63-110926 | 1988-05-06 | ||
JP63155624A JPH0716563B2 (en) | 1987-06-25 | 1988-06-22 | Aggregating device and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0252010A true JPH0252010A (en) | 1990-02-21 |
JPH0716563B2 JPH0716563B2 (en) | 1995-03-01 |
Family
ID=26483573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63155624A Expired - Lifetime JPH0716563B2 (en) | 1987-06-25 | 1988-06-22 | Aggregating device and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0716563B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04108502A (en) * | 1990-08-27 | 1992-04-09 | Kazuji Fukunaga | Flocculation and device therefor |
JPH04126503A (en) * | 1990-05-25 | 1992-04-27 | Kazuji Fukunaga | Method and device for flocculation |
JPH0724217A (en) * | 1993-06-28 | 1995-01-27 | Kazuji Fukunaga | Flocculating and concentrating device and method |
WO1999037377A1 (en) * | 1998-01-26 | 1999-07-29 | Kazuji Fukunaga | Coagulating/condensing device and method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52142856A (en) * | 1976-04-28 | 1977-11-29 | Souichi Nagahara | Silter |
JPS5551410A (en) * | 1978-10-10 | 1980-04-15 | Dorr Oliver Inc | Coagulant distributer for feed cylinder |
-
1988
- 1988-06-22 JP JP63155624A patent/JPH0716563B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52142856A (en) * | 1976-04-28 | 1977-11-29 | Souichi Nagahara | Silter |
JPS5551410A (en) * | 1978-10-10 | 1980-04-15 | Dorr Oliver Inc | Coagulant distributer for feed cylinder |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04126503A (en) * | 1990-05-25 | 1992-04-27 | Kazuji Fukunaga | Method and device for flocculation |
JPH04108502A (en) * | 1990-08-27 | 1992-04-09 | Kazuji Fukunaga | Flocculation and device therefor |
JPH0724217A (en) * | 1993-06-28 | 1995-01-27 | Kazuji Fukunaga | Flocculating and concentrating device and method |
WO1999037377A1 (en) * | 1998-01-26 | 1999-07-29 | Kazuji Fukunaga | Coagulating/condensing device and method |
US6416213B1 (en) * | 1998-01-26 | 2002-07-09 | Kazuji Fukunaga | Device and method with spiral mixing pipe for coagulating/condensing waste water |
Also Published As
Publication number | Publication date |
---|---|
JPH0716563B2 (en) | 1995-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4724085A (en) | Method for the clarification of sewage and other wastes | |
CN207330611U (en) | A kind of coal chemical industry high slat-containing wastewater Zero-discharge treating process system | |
US6416668B1 (en) | Water treatment process for membranes | |
CN103739124B (en) | A kind of efficient water treatment device and water treatment method | |
Vigneswaran et al. | Physicochemical treatment processes for water reuse | |
KR20080045166A (en) | Water Purification Apparatus and Methods | |
AU2006227100A1 (en) | Activated sludge process wtth ballasted flocculation | |
KR20160029272A (en) | a simple structured wastewater treatment system using multi step aerating floation method and the wastewater treatment method | |
AU675406B2 (en) | Apparatus for treatment of effluent | |
CN212246585U (en) | Back flush wastewater backflow flocculation filter equipment | |
KR20160032067A (en) | a simple structured wastewater treatment system using multi step aerating floation method and the wastewater treatment method | |
CN216946616U (en) | Magnetic coagulation-flocculation reaction device and high-turbidity wastewater ultrafiltration treatment system | |
CN105948351A (en) | Water treatment system and method | |
CN106517591A (en) | Reverse osmosis concentration treatment system and method | |
CN211595255U (en) | High-concentration sewage deep purification and recycling system | |
CN208071529U (en) | A kind of electroplating wastewater zero system | |
CN205061779U (en) | Novel deposit depositing reservoir | |
KR20010034104A (en) | Coagulating/condensing device and method | |
JPH0252010A (en) | Cohesion device and cohesion process | |
CN111547898A (en) | Back flush wastewater backflow flocculation filter equipment | |
CN111908663A (en) | A kind of high salinity mine water enhanced pretreatment system and method | |
JPH0729119B2 (en) | Solid-liquid separation method and apparatus for solid-liquid separation of dredging sludge | |
CN214088061U (en) | Zinc-containing wastewater recycling treatment system | |
CN213834816U (en) | Fracturing flow-back fluid pretreatment device | |
JP2552542B2 (en) | Solid-liquid separation method |