[go: up one dir, main page]

JPH0251220B2 - - Google Patents

Info

Publication number
JPH0251220B2
JPH0251220B2 JP58103667A JP10366783A JPH0251220B2 JP H0251220 B2 JPH0251220 B2 JP H0251220B2 JP 58103667 A JP58103667 A JP 58103667A JP 10366783 A JP10366783 A JP 10366783A JP H0251220 B2 JPH0251220 B2 JP H0251220B2
Authority
JP
Japan
Prior art keywords
graphite
reaction
fluorine
weight
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58103667A
Other languages
Japanese (ja)
Other versions
JPS59228362A (en
Inventor
Kazuo Okamura
Satoru Koyama
Tadayuki Maeda
Tsutomu Kamifukikoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP58103667A priority Critical patent/JPS59228362A/en
Priority to EP84106587A priority patent/EP0128560B1/en
Priority to DE8484106587T priority patent/DE3479696D1/en
Publication of JPS59228362A publication Critical patent/JPS59228362A/en
Priority to US06/793,465 priority patent/US4684591A/en
Publication of JPH0251220B2 publication Critical patent/JPH0251220B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明はある特定のフツ化黒鉛よりなる放電特
性の改良れた電池活物質に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a battery active material with improved discharge characteristics, which is made of a specific graphite fluoride.

黒鉛をフツ素化してえられるフツ化黒鉛とし
て、今まで式(CF)nで表わされるものおよび
式(C2F)nで表わされるものが確認されてお
り、またそれらは両者を含む組成物の形態で存在
することも知られている。しかし、その実体は未
だ不明な点が多い。このフツ化黒鉛が電池活物質
としてすぐれた特性を有することはつぎに述べる
ようによく知られている。
As fluorinated graphite obtained by fluorinating graphite, those represented by the formula (CF) n and those represented by the formula (C 2 F) n have been confirmed so far, and they can also be used in compositions containing both. It is also known to exist in the form of However, there are still many aspects of its reality that are unclear. It is well known that this fluorinated graphite has excellent properties as a battery active material, as described below.

たとえば特公昭48−25565号公報には、電池の
正極活写質として固体状のフツ化黒鉛(CFx)n
(ただし0.5≦x≦1)、とくにxが1または1に
近いフツ化黒鉛を用いることにより、活物質とし
ての利用率が高く、電圧の平坦性にすぐれ、かつ
保存寿命の良好な高エネルギー密度の一次電池を
与えることが記載されている。
For example, in Japanese Patent Publication No. 48-25565, solid graphite fluoride (CFx) is used as a positive electrode active material for batteries.
(However, 0.5≦x≦1) In particular, by using graphite fluoride, where x is 1 or close to 1, it has a high utilization rate as an active material, has excellent voltage flatness, and has a high energy density with a good shelf life. It is described that it provides a primary battery.

また特開昭53−102893号公報には、前記式
(C2F)nで表わされる新規フツ化黒鉛(以下、
単に(C2F)nという)およびその製法が記載さ
れており、この(C2F)nは600℃のフツ素雰囲
気下加熱処理を行なつてもフツ素分の増加が認め
られないものであつて、この新規(C2F)nが電
池活物質として用いられることも示唆されてい
る。また特開昭55−28246号公報において、該
(C2F)nが前記式(CF)nで表わされるフツ化
黒鉛(以下、単に(CF)nという)よりも高い
放電電位を示すことが記載されている。
Furthermore, JP-A - 53-102893 discloses a novel graphite fluoride (hereinafter referred to as
Simply referred to as (C 2 F)n) and its manufacturing method are described, and this (C 2 F)n does not show an increase in fluorine content even after heat treatment in a fluorine atmosphere at 600°C. It has also been suggested that this new (C 2 F)n can be used as a battery active material. Furthermore, in JP-A No. 55-28246, it is reported that (C 2 F)n exhibits a higher discharge potential than graphite fluoride (hereinafter simply referred to as (CF)n) represented by the above formula (CF)n. Are listed.

さらに特開昭57−84570号公報には(CF)nと
(C2F)nを混合して電池の正極活物質として用
いることにより、(CF)nの問題点である放電初
期における電圧の一時的な低下が改善されること
が提案されており、また特開昭58−16468号公報
は人造黒鉛をフツ素と反応させてえられる
(C2F)nを主成分とする電池活動質に関するも
ので、そこには好ましい態様として原料として人
造黒鉛を生成物の重量増加がなくなるまでフツ素
と反応させてえられる。
Furthermore, Japanese Patent Application Laid-Open No. 57-84570 discloses that by mixing (CF)n and (C 2 F)n and using it as a positive electrode active material of a battery, the voltage at the early stage of discharge, which is a problem with (CF)n, can be reduced. It has been proposed that temporary deterioration can be improved, and Japanese Patent Application Laid-Open No. 16468/1983 describes a battery active material whose main component is (C 2 F)n, which is obtained by reacting artificial graphite with fluorine. In a preferred embodiment, artificial graphite as a raw material is reacted with fluorine until there is no increase in the weight of the product.

(C2F)nを主成分とする電池活物質が記載さ
れており、それが高い放電電位を示すことが明ら
かにされている。
Battery active materials based on (C 2 F)n have been described and have been shown to exhibit high discharge potentials.

本発明者らはフツ化黒鉛の生成過程について各
種の研究を行なつたところ、黒鉛のフツ素による
フツ素化反応において、反応生成物に未反応黒鉛
が残存している第1反応段階、反応生成物に未反
応黒鉛が存在しないにもかかわらずフツ素化反応
が進行してその結果反応生成物の重量増加または
フツ素含有量の増加が認められる第2反応段階、
およびフツ素化反応を進めても反応生成物に重量
増加またはフツ素含有量の増加が認められず主と
して結晶性が高められると考えられる第3反応段
階の3つの反応段階が存在し、前記各方向記載の
フツ化黒鉛はいずれもほぼ第3反応段階のもので
あることが判明した。本発明者らはさらに各反応
段階でえられたフツ化黒鉛の電池活物質としての
特性についても研究を重ねた結果、前記第2反応
段階でえられるフツ化黒鉛が第3反応段階でえら
れるフツ化黒鉛より100〜200mVも放電電位が高
いという事実、とくに前記特開昭58−16468号公
報において好ましい態様からはずれた範囲におい
てより高い放電電位を示す領域があるという意外
な事実を見出し、本発明を完成するに至つた。
The present inventors conducted various studies on the production process of fluorinated graphite, and found that in the fluorination reaction of graphite with fluorine, the first reaction stage in which unreacted graphite remains in the reaction product; a second reaction stage in which the fluorination reaction proceeds despite the absence of unreacted graphite in the product, resulting in an increase in the weight or fluorine content of the reaction product;
There are three reaction stages: and a third reaction stage, in which no increase in weight or fluorine content is observed in the reaction product even if the fluorination reaction is progressed, and the crystallinity is mainly thought to be increased. It was found that all of the fluorinated graphite described in the directions were almost at the third reaction stage. The present inventors further researched the characteristics of the graphite fluoride obtained in each reaction step as a battery active material, and found that the graphite fluoride obtained in the second reaction step was obtained in the third reaction step. We discovered the surprising fact that the discharge potential is 100 to 200 mV higher than that of graphite fluoride, and in particular, in the above-mentioned Japanese Patent Application Laid-Open No. 16468/1983, we discovered the surprising fact that there is a region that shows a higher discharge potential in a range that deviates from the preferred embodiment. The invention was completed.

すなわち本発明は、黒鉛をフツ素化してえられ
るフツ化黒鉛であつて、 (1) それが実質的に未反応黒鉛を含まず、 (2) それをフツ素で再度フツ素化すると生成物に
重量増加またはフツ素含有量の増加が認められ
るという条件を満足することを特徴とする電池
活物質に関する。
That is, the present invention provides fluorinated graphite obtained by fluorinating graphite, which (1) contains substantially no unreacted graphite, and (2) when it is refluorinated with fluorine, the product The present invention relates to a battery active material that satisfies the condition that an increase in weight or an increase in fluorine content is observed in the battery active material.

黒鉛のフツ素化反応生成物に、かかる条件を満
足する前記第2反応段階のような独特のフツ化黒
鉛の領域が存在するということは、本発明者らに
よつて初めて見出されたものであり、従来の第1
反応段階および第3段階でえられるフツ化黒鉛と
前記(1)および(2)の点において異なる。
It was discovered for the first time by the present inventors that the graphite fluorination reaction product has a unique fluorinated graphite region such as the second reaction stage that satisfies such conditions. , and the conventional first
It differs from the fluorinated graphite obtained in the reaction step and the third step in the above points (1) and (2).

すなわち本発明の電池活物質は、粉末X線回折
法により分析するとき未反応黒鉛のピーク
((002)面の回折角2θが26.5度付近)が認められ
ないものである。未反応黒鉛が残存している前記
第1反応段階のフツ化黒鉛には遊離のフツ素が吸
蔵されており、放電電位は高いがその遊離のフツ
素が電池の性能を損なう原因となるため、電池活
物質としては実用上問題が残るばあいがある。
That is, the battery active material of the present invention is one in which no peak of unreacted graphite (diffraction angle 2θ of the (002) plane is around 26.5 degrees) is observed when analyzed by powder X-ray diffraction. Free fluorine is occluded in the fluorinated graphite of the first reaction stage in which unreacted graphite remains, and although the discharge potential is high, the free fluorine causes damage to the performance of the battery. There are cases where practical problems remain as battery active materials.

さらに本発明の電池活物質は、フツ素でフツ素
化反応を行なうとその生成物に重量増加またはフ
ツ素含有量の増加が認められるものである。
Furthermore, when the battery active material of the present invention is subjected to a fluorination reaction with fluorine, an increase in weight or an increase in fluorine content is observed in the product.

なお本明細書において、重量増加とは約1%
(重量%、以下同様)以上、好ましくは3%以上
重量増加することであり、またフツ素含有量の増
加はフツ素含有量が約0.5%以上、好ましくは1.5
%以上増加することである。
Note that in this specification, weight increase is approximately 1%.
(wt%, the same applies hereinafter) or more, preferably 3% or more, and the increase in fluorine content is about 0.5% or more, preferably 1.5% or more.
% or more.

前記重量増加またはフツ素含有量の増加をみる
ためのフツ素によるフツ素化反応の条件は、本発
明におけるフツ化黒鉛の製造時に採用したのと同
一の反応温度、圧力およびフツ素濃度が採用され
る。
The conditions for the fluorination reaction with fluorine to observe the weight increase or increase in fluorine content are the same reaction temperature, pressure, and fluorine concentration as those used in the production of fluorinated graphite in the present invention. be done.

本発明の電池活物質を再度フツ素化すると重量
増加またはフツ素含有量の増加が認められるとい
うことの考えられる1つの理由は、従来知られて
いるいわゆる安定化状態にある(C2F)nとは異
なり、(C2F)nから(CF)nに変化しうるいわ
ゆる遷移状態の新規な(C2F)nが混在している
ためであると推定される。また本発明における前
記放電電位の向上は、かかる遷移状態の(C2F)
nの存在によるものと考えられ、従来のフツ化黒
鉛を放電電位が本発明のものに比べて低い理由は
そこに含まれている(C2F)nが安定化状態にあ
るためと考えられる。
One possible reason why an increase in weight or fluorine content is observed when the battery active material of the present invention is re-fluorinated is due to the conventionally known so-called stabilization state (C 2 F). This is presumed to be due to the presence of a new (C 2 F) n in a so-called transition state that can change from (C 2 F) n to (CF) n, unlike n. Further, the improvement in the discharge potential in the present invention is achieved by (C 2 F) in the transition state.
This is thought to be due to the presence of n, and the reason why the discharge potential of conventional graphite fluoride is lower than that of the present invention is thought to be that the (C 2 F)n contained therein is in a stabilized state. .

本発明の電池活物質はフツ素含有量48〜58%、
なかんづく50〜56%の前記フツ化黒鉛であるのが
好ましい。フツ素含有量の下限の48%という値は
放電電圧との関連では重要な限界ではないが、48
%未満のときは一般に反応生成物に吸蔵された遊
離のフツ素が存在するため望ましくない。58%を
超えるときは目的とする放電電圧の向上効果がえ
られない。
The battery active material of the present invention has a fluorine content of 48 to 58%,
In particular, 50 to 56% of the fluorinated graphite is preferred. Although the lower limit of fluorine content of 48% is not an important limit in relation to the discharge voltage,
When it is less than %, it is generally undesirable because free fluorine is occluded in the reaction product. When it exceeds 58%, the desired effect of improving the discharge voltage cannot be obtained.

本発明の電池活物質は、フツ化黒鉛部分に基づ
く粉末X線回折における(001)面の回折角(2θ)
が9.9〜14.5度にピークが現われ、ばあいによつ
ては10度付近に(C2F)nを示すピークまたはシ
ヨルダーが現われることがある。
The battery active material of the present invention has a diffraction angle (2θ) of the (001) plane in powder X-ray diffraction based on the graphite fluoride portion.
A peak appears at 9.9 to 14.5 degrees, and in some cases a peak or shoulder indicating (C 2 F)n may appear around 10 degrees.

本発明に用いる原料黒鉛としては、たとえば天
然黒鉛、人造黒鉛、人造鱗状黒鉛(たとえばロザ
ン社製XSシリーズ、Tシリーズなど)などがあ
げられる。
Examples of the raw material graphite used in the present invention include natural graphite, artificial graphite, and artificial scaly graphite (for example, XS series, T series, etc. manufactured by Rozan Co., Ltd.).

本発明の電池活物質は、通常、原料黒鉛をフツ
素ガス(必要に応じフツ素ガスは希釈ガスと混合
して用いられる)によりフツ素化して製造される
が、とくにこれに制限されない。
The battery active material of the present invention is usually produced by fluorinating raw material graphite with fluorine gas (the fluorine gas is mixed with a diluent gas if necessary), but is not particularly limited thereto.

フツ素ガスまたはフツ素ガスと希釈ガスとの混
合ガスは、フツ素ガスの分圧が0.1〜1atmとなる
ように反応器に室温で導入される。温度は室温か
ら徐々に昇温し、目的とする反応温度すなわち
300〜500℃、好ましくは300〜450℃に保存する。
Fluorine gas or a mixed gas of fluorine gas and diluent gas is introduced into the reactor at room temperature so that the partial pressure of fluorine gas is 0.1 to 1 atm. The temperature is gradually raised from room temperature until the desired reaction temperature, i.e.
Store at 300-500°C, preferably 300-450°C.

本発明の電池活物質を製造するためのフツ素化
反応は、たとえばあらかじめ同一条件でフツ素化
反応を行なつて反応開始時から未反応黒鉛が存在
しなくなつたときまでの反応時間および生成物の
フツ素含有量増加または重量増加が生じなくなつ
たときまでの反応時間を確認しておき、それら再
反応時間の間で反応を停止するか、または生成物
のサンプリングを一定時間毎に行ない、そのサン
プルについて別途粉末X線回折法による未反応黒
鉛の有無を調べかつ同条件でフツ素化反応を行な
つて重量増加およびフツ素含有量の増加の有無を
調べて反応を停止すればよい。
The fluorination reaction for producing the battery active material of the present invention is carried out in advance under the same conditions, and the reaction time from the start of the reaction until the time when unreacted graphite ceases to exist and the amount of graphite produced is determined. Check the reaction time until no increase in the fluorine content or weight of the product occurs, and either stop the reaction during the re-reaction time or sample the product at regular intervals. The sample should be separately examined for the presence of unreacted graphite by powder X-ray diffraction, and the fluorination reaction can be performed under the same conditions to check for an increase in weight and fluorine content, and then the reaction can be stopped. .

反応時間は原料黒鉛の結晶化度、粒子径、フツ
素ガスの圧力、反応温度などにより変わるが、通
常反応温度380℃では15〜100時間である。この反
応時間は従来のフツ化黒鉛を製造するばあいの同
温度での反応時間100〜200時間の1/2〜1/10であ
り、生産効率を大幅に向上せしめることができ
る。
The reaction time varies depending on the crystallinity of the raw material graphite, particle size, fluorine gas pressure, reaction temperature, etc., but is usually 15 to 100 hours at a reaction temperature of 380°C. This reaction time is 1/2 to 1/10 of the conventional reaction time of 100 to 200 hours at the same temperature when producing fluorinated graphite, and production efficiency can be greatly improved.

原料黒鉛は通常反応温度で脱気し、水分を除去
しておくことが好ましい。
The raw material graphite is preferably degassed at the normal reaction temperature to remove moisture.

フツ素ガスと混合する希釈ガスとしてはフツ素
および黒鉛と反応しないガスを用いる。具体例と
しては、たとえばチツ素ガス、パーフルオロカー
ボン、希ガスなどがあげられる。
As the diluent gas to be mixed with the fluorine gas, a gas that does not react with fluorine and graphite is used. Specific examples include nitrogen gas, perfluorocarbon, rare gas, and the like.

本発明の電池活物質にバインダ、導電材を配合
して電極材がえられる。それらの配合割合は、フ
ツ化黒鉛10部(重量部、以下同様)、バインダ1
〜4部、導電材0.5〜2部であるのが好ましい。
An electrode material can be obtained by blending a binder and a conductive material with the battery active material of the present invention. Their blending ratio is 10 parts of fluorinated graphite (by weight, the same applies hereinafter), 1 part of binder.
-4 parts, preferably 0.5-2 parts of the conductive material.

バインダとしては、たとえばポリテトラフルオ
ロエチレン(PTFE)などがあげられ、導電材と
してはたとえばアセチレンブラツク、ケツチエン
ブラツクなどの高電気導電性のカーボンブラツク
あるいは天然黒鉛などがあげられる。
Examples of the binder include polytetrafluoroethylene (PTFE), and examples of the conductive material include highly conductive carbon black such as acetylene black and Kettien black, or natural graphite.

本発明の電池活物質を電池に用いるばあい、本
発明の電池活物質を正極とし、負極にたとえばリ
チウム、マグネシウム、カルシウム、アルミニウ
ムを単独またはこれらを主成分とする合金を用い
ることが好ましい。電解質としては用いる負極の
種類にもよるが、通常非水系を用いる。
When the battery active material of the present invention is used in a battery, it is preferable to use the battery active material of the present invention as a positive electrode and to use, for example, lithium, magnesium, calcium, aluminum alone or an alloy containing these as main components for the negative electrode. Although it depends on the type of negative electrode used as the electrolyte, a non-aqueous electrolyte is usually used.

つぎに実施例をあげて本発明の電池活物質を説
明するが、本発明はかかる実施例のみに限定され
るものではない。
Next, the battery active material of the present invention will be explained with reference to Examples, but the present invention is not limited to these Examples.

実施例1および比較例1 人造黒鉛(平均粒子径15μ)10.0gを反応器に
入れ380℃で30分間脱気して水分を除去したのち、
室温に冷却した。
Example 1 and Comparative Example 1 10.0 g of artificial graphite (average particle size 15μ) was placed in a reactor and degassed at 380°C for 30 minutes to remove water.
Cooled to room temperature.

ついでフツ素ガス(90%)を1atmで反応器に
導入し、380℃にまで昇温して16時間反応せしめ
た。生成物は黒褐色の粉末状であり、そのフツ素
含有量は52.8%、重量は21.1gであつた。このも
のを粉末X線回折法によつて分析したところ黒鉛
に基づく回折線は認められず、(001)面の回折角
2θ(以下、単にθという)において10.54度にピー
クが現われた。
Next, fluorine gas (90%) was introduced into the reactor at 1 atm, the temperature was raised to 380°C, and the reaction was carried out for 16 hours. The product was a dark brown powder with a fluorine content of 52.8% and a weight of 21.1 g. When this material was analyzed by powder X-ray diffraction, no diffraction lines based on graphite were observed, and the diffraction angle of the (001) plane was
A peak appeared at 10.54 degrees at 2θ (hereinafter simply referred to as θ).

さらにこの生成物を10.00gとり、これを同一
条件で再度フツ素変反応を進めたところ、再フツ
素変の反応開始から114時間後に重量が10.33g
(重量増加3.3%)でフツ素含有量が54.5%(フツ
素含有量増加1.7%)であつて、2θの10.90度にピ
ークを有する生成物がえられた。それ以後フツ素
化反応を行なつても重量増加もフツ素含有量の増
加も認められなかつた。なお、前記114時間後に
えられた生成物を比較例1のフツ化黒鉛とする。
Furthermore, 10.00 g of this product was taken and subjected to the fluorine modification reaction again under the same conditions, and the weight was 10.33 g 114 hours after the start of the fluorine modification reaction.
A product with a fluorine content of 54.5% (weight increase of 3.3%) and a peak at 10.90 degrees of 2θ was obtained. No increase in weight or fluorine content was observed even when fluorination reactions were carried out thereafter. The product obtained after 114 hours is referred to as the fluorinated graphite of Comparative Example 1.

ついでこれらの生成物10部、PTFE3部および
アセチレンブラツク1部を充分混練してニツケル
網上にプレスし、表面積1.57cm2の正極を作製し
た。負極としてはリチウムのブロツクから表面積
1cm2、厚さ1mmに切り出し、それをニツケル網で
保持したものを用い、電解質には1モル/のホ
ウフツ化リチウムのγ−ブチロラクトン溶液を用
いた。放電電圧の測定は25℃にて10KΩの定抵抗
放電で行なつた。えられた端子電圧の経時変化を
第1図に示す。
Then, 10 parts of these products, 3 parts of PTFE, and 1 part of acetylene black were thoroughly kneaded and pressed onto a nickel mesh to prepare a positive electrode with a surface area of 1.57 cm 2 . The negative electrode used was a lithium block cut out with a surface area of 1 cm 2 and a thickness of 1 mm and held in a nickel mesh, and the electrolyte was a 1 mol/gamma-butyrolactone solution of lithium borofluoride. The discharge voltage was measured at 25°C with a constant resistance discharge of 10KΩ. Figure 1 shows the change in terminal voltage obtained over time.

実施例2および比較例2 原料黒鉛として人造黒鉛(平均粒径20μ)10.0
gを用いたほかは実施例1と同じ条件でフツ素化
反応を行ない、16時間後反応を停止して本発明の
電池活物質をえた。このものは黒褐色の粉末であ
り、未反応黒鉛の存在は認められず、そのフツ素
含有量は51.8%、重量は20.7gであつた。このも
のを粉末X線回折法によつて分析したところ黒鉛
に基づく回折線は認められず、2θにおいて11.41
度にピークが現われた。
Example 2 and Comparative Example 2 Artificial graphite (average particle size 20μ) 10.0 as raw material graphite
The fluorination reaction was carried out under the same conditions as in Example 1 except that g was used, and the reaction was stopped after 16 hours to obtain a battery active material of the present invention. This product was a blackish brown powder, no unreacted graphite was observed, the fluorine content was 51.8%, and the weight was 20.7g. When this material was analyzed by powder X-ray diffraction method, no diffraction lines based on graphite were observed, and at 2θ, 11.41
A peak appeared.

さらにこれを10.00gとり、同一条件で再度フ
ツ素化反応を進めたところ、再フツ素化の反応開
始から113時間に重量が10.30g(重量増加3.0%)
でフツ素含有量が54.0%(フツ素含有量増加2.2
%)であつて2θの11.59度にピークを有する生成
物がえられた。それ以後フツ素化反応を行なつて
も重量増加もフツ素含有量の増加も認められなか
つた。前記113時間後にえられた生成物を比較例
2のフツ化黒鉛とする。
Furthermore, when 10.00 g of this was taken and the fluorination reaction was carried out again under the same conditions, the weight was 10.30 g (3.0% weight increase) 113 hours after the start of the re-fluorination reaction.
The fluorine content is 54.0% (the fluorine content increases by 2.2
%) and having a peak at 11.59 degrees 2θ was obtained. No increase in weight or fluorine content was observed even when fluorination reactions were carried out thereafter. The product obtained after the 113 hours was referred to as fluorinated graphite of Comparative Example 2.

実施例2および比較例2でそれぞれえられた生
成物を用いて実施例1と同様にして電池を作製
し、それらの端子電圧の経時変化を測定した。結
果を第2図に示す。
Batteries were produced in the same manner as in Example 1 using the products obtained in Example 2 and Comparative Example 2, and changes in terminal voltage over time were measured. The results are shown in Figure 2.

実施例3および比較例3 原料黒鉛として天然黒鉛(平均粒径10μ)10.0
gを用いたほかは実施例1と同じ条件でフツ素化
反応を行ない17時間後に反応を停止して本発明の
電池活物質をえた。このものは黒褐色粉末状であ
り、未反応黒鉛の存在は認められず、そのフツ素
含有量は49.5%、重量は19.8gであつた。このも
のを粉末X線回折法によつて分析したところ黒鉛
に基づく回折線は認められず、2θにおいて10.41
度にピークが現われた。
Example 3 and Comparative Example 3 Natural graphite (average particle size 10μ) 10.0 as raw material graphite
The fluorination reaction was carried out under the same conditions as in Example 1 except that g was used, and the reaction was stopped after 17 hours to obtain a battery active material of the present invention. This product was in the form of a blackish brown powder, no unreacted graphite was observed, the fluorine content was 49.5%, and the weight was 19.8g. When this material was analyzed by powder X-ray diffraction, no graphite-based diffraction lines were observed, and 10.41
A peak appeared.

さらにこれを10.00gとり、同一条件で再度フ
ツ素化反応を進めたところ、反応開始から110時
間後に重量が10.36g(重量増加3.6%)でフツ素
含有量が51.5%(フツ素含有量増加2.0%)であ
つて2θの10.10度にピークを有する生成物がえら
れた。それ以後フツ素化反応を行なつても重量増
加もフツ素含有量の増加も認められなかつた。前
記110時間後にえられた生成物を比較例3のフツ
化黒鉛とする。
Further, 10.00 g of this was taken and the fluorination reaction was carried out again under the same conditions. 110 hours after the start of the reaction, the weight was 10.36 g (3.6% increase in weight) and the fluorine content was 51.5% (increase in fluorine content. 2.0%) and a peak at 10.10 degrees 2θ was obtained. No increase in weight or fluorine content was observed even when fluorination reactions were carried out thereafter. The product obtained after the 110 hours was referred to as fluorinated graphite of Comparative Example 3.

実施例3および比較例3でそれぞれえられた生
成物を用いて実施例1と同様にして電池を作製
し、それらの端子電圧の経時変化を測定した。結
果を第3図に示す。
Batteries were produced in the same manner as in Example 1 using the products obtained in Example 3 and Comparative Example 3, and changes in their terminal voltages over time were measured. The results are shown in Figure 3.

第1〜3図から明らかなように本発明の電池活
物質は前記第3反応段階でえられるものよりも高
い放電電位を示す。
As is clear from FIGS. 1 to 3, the battery active material of the present invention exhibits a higher discharge potential than that obtained in the third reaction stage.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図はそれぞれ実施例1と比較例1、実
施例2と比較例2および実施例3と比較例3でそ
れぞれえられた電池活物質を用いた電池の端子電
圧の経時変化を示すグラフである。
Figures 1 to 3 show changes over time in terminal voltage of batteries using the battery active materials obtained in Example 1 and Comparative Example 1, Example 2 and Comparative Example 2, and Example 3 and Comparative Example 3, respectively. It is a graph.

Claims (1)

【特許請求の範囲】 1 黒鉛をフツ素でフツ素化してえられるフツ素
含有量が48〜58重量%のフツ化黒鉛であつて、 (1) それが実質的に未反応黒鉛を含まず、 (2) それを前記フツ素化と同一の反応温度、圧力
およびフツ素濃度条件で再度フツ素化すると生
成物に重量増加またはフツ素含有量の増加が認
められる という条件を満足することを特徴とする電池活物
質。
[Scope of Claims] 1. Fluorinated graphite with a fluorine content of 48 to 58% by weight, which is obtained by fluorinating graphite with fluorine, and (1) it does not substantially contain unreacted graphite. (2) satisfies the condition that when it is fluorinated again under the same reaction temperature, pressure, and fluorine concentration conditions as in the fluorination, an increase in weight or fluorine content is observed in the product; Characteristic battery active materials.
JP58103667A 1983-06-09 1983-06-09 battery active material Granted JPS59228362A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58103667A JPS59228362A (en) 1983-06-09 1983-06-09 battery active material
EP84106587A EP0128560B1 (en) 1983-06-09 1984-06-08 Active materials for batteries
DE8484106587T DE3479696D1 (en) 1983-06-09 1984-06-08 Active materials for batteries
US06/793,465 US4684591A (en) 1983-06-09 1985-10-29 Active materials for batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58103667A JPS59228362A (en) 1983-06-09 1983-06-09 battery active material

Publications (2)

Publication Number Publication Date
JPS59228362A JPS59228362A (en) 1984-12-21
JPH0251220B2 true JPH0251220B2 (en) 1990-11-06

Family

ID=14360134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58103667A Granted JPS59228362A (en) 1983-06-09 1983-06-09 battery active material

Country Status (1)

Country Link
JP (1) JPS59228362A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855992B2 (en) 2001-07-24 2005-02-15 Motorola Inc. Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
US6885065B2 (en) 2002-11-20 2005-04-26 Freescale Semiconductor, Inc. Ferromagnetic semiconductor structure and method for forming the same
US6916717B2 (en) 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US6965128B2 (en) 2003-02-03 2005-11-15 Freescale Semiconductor, Inc. Structure and method for fabricating semiconductor microresonator devices
US6992321B2 (en) 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US7005717B2 (en) 2000-05-31 2006-02-28 Freescale Semiconductor, Inc. Semiconductor device and method
US7020374B2 (en) 2003-02-03 2006-03-28 Freescale Semiconductor, Inc. Optical waveguide structure and method for fabricating the same
US7019332B2 (en) 2001-07-20 2006-03-28 Freescale Semiconductor, Inc. Fabrication of a wavelength locker within a semiconductor structure
US7045815B2 (en) 2001-04-02 2006-05-16 Freescale Semiconductor, Inc. Semiconductor structure exhibiting reduced leakage current and method of fabricating same
US7067856B2 (en) 2000-02-10 2006-06-27 Freescale Semiconductor, Inc. Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
US7105866B2 (en) 2000-07-24 2006-09-12 Freescale Semiconductor, Inc. Heterojunction tunneling diodes and process for fabricating same
US7161227B2 (en) 2001-08-14 2007-01-09 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices for detecting an object
US7169619B2 (en) 2002-11-19 2007-01-30 Freescale Semiconductor, Inc. Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
US7211852B2 (en) 2001-01-19 2007-05-01 Freescale Semiconductor, Inc. Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US7342276B2 (en) 2001-10-17 2008-03-11 Freescale Semiconductor, Inc. Method and apparatus utilizing monocrystalline insulator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028169A (en) * 1983-07-22 1985-02-13 Daikin Ind Ltd Active material of battery
KR101222246B1 (en) 2011-01-10 2013-01-16 삼성에스디아이 주식회사 Case for battery and rechargeable battery including the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175436A (en) * 1978-08-28 1979-11-27 Burlington Industries, Inc. Wet/dry bulb hygrometer with automatic wick feed
JPS5816468A (en) * 1981-07-22 1983-01-31 Central Glass Co Ltd Cell active substance

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067856B2 (en) 2000-02-10 2006-06-27 Freescale Semiconductor, Inc. Semiconductor structure, semiconductor device, communicating device, integrated circuit, and process for fabricating the same
US7005717B2 (en) 2000-05-31 2006-02-28 Freescale Semiconductor, Inc. Semiconductor device and method
US7105866B2 (en) 2000-07-24 2006-09-12 Freescale Semiconductor, Inc. Heterojunction tunneling diodes and process for fabricating same
US7211852B2 (en) 2001-01-19 2007-05-01 Freescale Semiconductor, Inc. Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
US7045815B2 (en) 2001-04-02 2006-05-16 Freescale Semiconductor, Inc. Semiconductor structure exhibiting reduced leakage current and method of fabricating same
US6992321B2 (en) 2001-07-13 2006-01-31 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices utilizing piezoelectric materials
US7019332B2 (en) 2001-07-20 2006-03-28 Freescale Semiconductor, Inc. Fabrication of a wavelength locker within a semiconductor structure
US6855992B2 (en) 2001-07-24 2005-02-15 Motorola Inc. Structure and method for fabricating configurable transistor devices utilizing the formation of a compliant substrate for materials used to form the same
US7161227B2 (en) 2001-08-14 2007-01-09 Motorola, Inc. Structure and method for fabricating semiconductor structures and devices for detecting an object
US7342276B2 (en) 2001-10-17 2008-03-11 Freescale Semiconductor, Inc. Method and apparatus utilizing monocrystalline insulator
US6916717B2 (en) 2002-05-03 2005-07-12 Motorola, Inc. Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US7169619B2 (en) 2002-11-19 2007-01-30 Freescale Semiconductor, Inc. Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
US6885065B2 (en) 2002-11-20 2005-04-26 Freescale Semiconductor, Inc. Ferromagnetic semiconductor structure and method for forming the same
US6965128B2 (en) 2003-02-03 2005-11-15 Freescale Semiconductor, Inc. Structure and method for fabricating semiconductor microresonator devices
US7020374B2 (en) 2003-02-03 2006-03-28 Freescale Semiconductor, Inc. Optical waveguide structure and method for fabricating the same

Also Published As

Publication number Publication date
JPS59228362A (en) 1984-12-21

Similar Documents

Publication Publication Date Title
JPH0251220B2 (en)
JP3930574B2 (en) Electrochemical cell
EP0554906B1 (en) Nonaqueous electrolyte secondary cell and process for production of positive electrode active material therefor
EP0184679B1 (en) Process for producing a graphite fluoride for use in an electrochemical cell
JP3221352B2 (en) Method for producing spinel-type lithium manganese composite oxide
EP1873847A1 (en) Cathode active material and process for producing the same
US4681823A (en) Lithium/fluorinated carbon battery with no voltage delay
DE4215130A1 (en) A MATERIAL CONTAINING MANGANE DIOXIDE AND THE USE THEREOF IN AN ELECTROCHEMICAL CELL
EP0154331A2 (en) Lithium-manganese dioxide cell
EP0349675A2 (en) Non-aqueous electrolyte cell
FR2531574A1 (en) ELECTROCHEMICAL AND ELECTROLYTE BATTERIES FOR THESE BATTERIES
US4737423A (en) Cathode active material for metal of CFX battery
US4684591A (en) Active materials for batteries
KR100753384B1 (en) Non-aqueous electrolyte and lithium secondary battery
US4686161A (en) Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
US4765968A (en) Fluorinated carbon composition for use in fabricating a Li/CFx battery cathode
US4560631A (en) Organic electrolyte cells
EP0194408A1 (en) High energy density battery cathode composition
JPH0221099B2 (en)
JPS6313268A (en) battery active material
US6106977A (en) Lithium secondary cells and methods for preparing active materials for negative electrodes
JPS5987762A (en) Organic electrolyte battery
US4401737A (en) Protective active nitrides as additives to nonaqueous cathode materials
JPS6028169A (en) Active material of battery
JPH10172570A (en) Lithium secondary battery and its positive electrode active material