[go: up one dir, main page]

JPH0250928B2 - - Google Patents

Info

Publication number
JPH0250928B2
JPH0250928B2 JP19824081A JP19824081A JPH0250928B2 JP H0250928 B2 JPH0250928 B2 JP H0250928B2 JP 19824081 A JP19824081 A JP 19824081A JP 19824081 A JP19824081 A JP 19824081A JP H0250928 B2 JPH0250928 B2 JP H0250928B2
Authority
JP
Japan
Prior art keywords
parts
resin
group
vinyl
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19824081A
Other languages
Japanese (ja)
Other versions
JPS5898313A (en
Inventor
Naoki Yamamori
Junji Yokoi
Motoyoshi Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP19824081A priority Critical patent/JPS5898313A/en
Publication of JPS5898313A publication Critical patent/JPS5898313A/en
Publication of JPH0250928B2 publication Critical patent/JPH0250928B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は加水分解型樹脂組成物に係り、さらに
詳しくは重合体直鎖中に (式中R1は水素またはメチル基;lおよびmは
0または1〜4の整数;kは0または1;R2
水素、水酸基またはメチル基;R3
The present invention relates to a hydrolyzable resin composition, and more specifically, the present invention relates to a hydrolyzable resin composition, and more specifically, the present invention relates to a hydrolyzable resin composition. (In the formula, R 1 is hydrogen or a methyl group; l and m are 0 or an integer of 1 to 4; k is 0 or 1; R 2 is hydrogen, a hydroxyl group, or a methyl group; R 3 is

【式】または[expression] or

【式】で 示される基;nは0または1〜6の整数;X1
シアノ基、ニトロ基またはハロゲン原子;X2
X4はそれぞれ水素、シアノ基、ニトロ基または
ハロゲン原子) で示される繰返し単位を少なくとも20重量%含
み、分子量3000〜50000の船底塗料樹脂ビヒクル
として有用な加水分解型樹脂組成物の製造法に関
するものである。 本発明者らは、重合体直鎖中に一般式 または (式中R1,R2は水素またはメチル基、mは0ま
たは1〜6の整数、nは1〜8の整数、X1,X2
X3のその少なくとも1つはハロゲンであり、残
りはハロゲンまたは水素) のハロゲン化脂肪酸結合単位の1種以上を有する
重合体または共重合体が海水中で加水分解され、 CX1X2X3(CH2nCOOH で示される海洋性バクテリアに対し強い殺菌性を
有するハロゲン化脂肪酸を生成すると共に、重合
体主鎖は親水性基を得、海水中に溶解するため、
防汚塗料ビヒクルとして極めて有用であることを
見出し、昭和56年6月29日付にて特許出願(発明
の名称「防汚塗料」)した。本発明は上記特願昭
56−101463号発明をさらに進展させたものであ
る。すなわち防汚塗料ビヒクルとして理想的なマ
トリツクス高分子体はその塗膜自体充分な強度を
もち、海水中では適度に加水分解され溶解し、し
かも海中生物に対し毒性を示す例えば上記ハロゲ
ン化脂肪酸の如きものを放出するものである。し
かしながら海水中で塗膜が徐々に加水分解され溶
解するならば防汚剤は必らずしも高分子体中に結
合されている必要はなく単に混入されているだけ
でも長期にわたり安定して溶出し、従来知られて
いる各種の有機あるいは無機系防汚剤が利用でき
る。さらに又塗膜は通常非常に微細な凹凸に富む
ものであるが塗膜形成剤を加水分解型樹脂とすれ
ば水との衝突回数に比例し塗膜の凸部から加水分
解が選択的に進行せしめられた経時的に塗膜の平
滑化、従つて塗膜の水に対する摩擦抵抗減少効果
が得られ船底塗料とした場合燃費の大巾な改善へ
とつながることになる。このように船底塗料分野
に於ては、通常の塗装法で充分な強度をもつ塗膜
を作り、中性雰囲気では加水分解されず、弱アル
カリ性の海水中においては適度の加水分解速度で
徐々に加水分解をうけ溶解するため高分子体を提
供することが極めて望ましく、加水分解の結果と
して海中生物に対する毒物が高分子体から分離放
出されることは好ましい態様にはちがいないが、
これは必らずしも必須ではなく付随的要件ともい
いうることが明らかである。 そもそも高分子体が水溶性であるためには高分
子体分子中にヒドロキシル基、カルボキシル基な
どの親水基がある程度必要であり、その割合が大
でありすぎると樹脂自体容易に水に溶解し船底塗
料のビヒクルとして使用できないことになる。ま
た親水基の存在は水による樹脂の膨潤、剥離等を
誘因するので塗料ビヒクルとしては可及的に親水
基の少ないことが好ましい。このように塗装後に
充分な強度の塗膜を作り、海水中で徐々に溶解す
る船底塗料用の高分子体を得ようとする場合、単
に樹脂中の親水基の割合のみにより溶解速度を制
御しようとすることは極めて困難である。そこで
樹脂中の前記親水基が適当にブロツクされてい
て、通常の中性雰囲気に於ては親水性を示さず弱
アルカリ性のような特定条件下に於て徐々に加水
分解されて遊離の親水基を回復し親水性を発揮す
るものが得られれば上記目的を達成しうる筈であ
る。そこで本発明者らは最も簡単な脂肪酸エステ
ル結合を有する重合体の酢酸ビニル重合体につい
てその加水分解速度を検討した結果、樹脂中にペ
ンダントされているアシルオキシ基は中性あるい
は弱アルカリ性の水中で何ら変化を受けず加水分
解されないが アシル部にハロゲン原子、ニトロ基、シアノ基の
如き電子吸引基(X)を導入するとエステル結合
のカルボキシル基の電子密度が小となり、加水分
解を受けやすくなつて中性雰囲気では影響されぬ
が、弱アルカリ性の海水中で徐々に脱アシル化が
行なわれ 重合体中にヒドロキシル基が付与されることを見
出した。 さらにまた重合体の水への溶出速度(加水分解
度)は重合体中に含まれる前記の
A group represented by [Formula]; n is 0 or an integer of 1 to 6; X 1 is a cyano group, a nitro group, or a halogen atom;
Relating to a method for producing a hydrolyzable resin composition useful as a resin vehicle for ship bottom paint and having a molecular weight of 3,000 to 50,000 and containing at least 20% by weight of repeating units represented by X 4 (respectively hydrogen, cyano group, nitro group, or halogen atom) It is. The present inventors discovered that the general formula or (In the formula, R 1 and R 2 are hydrogen or methyl groups, m is 0 or an integer of 1 to 6, n is an integer of 1 to 8, X 1 , X 2 ,
A polymer or copolymer having one or more halogenated fatty acid bonding units (at least one of which is a halogen and the remainder are halogens or hydrogen) is hydrolyzed in seawater to form CX 1 X 2 X 3 (CH 2 ) n COOH produces a halogenated fatty acid that has strong bactericidal properties against marine bacteria, and the polymer main chain acquires hydrophilic groups and dissolves in seawater.
It was found to be extremely useful as an antifouling paint vehicle, and a patent application was filed on June 29, 1981 (title of the invention: "Antifouling Paint"). The present invention is based on the above patent application.
This is a further development of the invention of No. 56-101463. In other words, a matrix polymer that is ideal as an antifouling paint vehicle has sufficient strength as a coating film, is moderately hydrolyzed and dissolved in seawater, and is toxic to marine organisms, such as the halogenated fatty acids mentioned above. It emits kimono. However, if the paint film is gradually hydrolyzed and dissolved in seawater, the antifouling agent does not necessarily have to be bound to the polymer; it can be stably eluted over a long period of time even if it is simply mixed in. However, various conventionally known organic or inorganic antifouling agents can be used. Furthermore, paint films are usually rich in very fine irregularities, but if a hydrolyzable resin is used as the film forming agent, hydrolysis will proceed selectively from the convex parts of the paint film in proportion to the number of collisions with water. Over time, the paint film becomes smoother and the frictional resistance of the paint film against water is reduced. When used as a ship bottom paint, this will lead to a significant improvement in fuel efficiency. In this way, in the field of ship bottom coatings, a coating film with sufficient strength is created using normal coating methods, and it does not hydrolyze in a neutral atmosphere, but gradually hydrolyzes at a moderate rate in slightly alkaline seawater. It is highly desirable to provide a polymeric material that undergoes hydrolysis and dissolves, and it is certainly a preferred embodiment that toxic substances for marine organisms are separated and released from the polymeric material as a result of hydrolysis.
It is clear that this is not necessarily essential, but can also be called an incidental requirement. In the first place, for a polymer to be water-soluble, it is necessary to have a certain amount of hydrophilic groups such as hydroxyl groups and carboxyl groups in the polymer molecule, and if the proportion is too large, the resin itself will easily dissolve in water and become water-soluble. It cannot be used as a paint vehicle. Furthermore, since the presence of hydrophilic groups causes swelling and peeling of the resin due to water, it is preferable that the paint vehicle has as few hydrophilic groups as possible. In this way, when trying to create a coating film with sufficient strength after painting and obtain a polymer for ship bottom paint that gradually dissolves in seawater, the dissolution rate should be controlled simply by the proportion of hydrophilic groups in the resin. It is extremely difficult to do so. Therefore, the hydrophilic groups in the resin are appropriately blocked, and do not exhibit hydrophilicity in a normal neutral atmosphere, but are gradually hydrolyzed under specific conditions such as weak alkalinity, resulting in free hydrophilic groups. If we can obtain something that recovers the hydrophilicity and exhibits hydrophilicity, we should be able to achieve the above objective. Therefore, the present inventors investigated the hydrolysis rate of vinyl acetate polymer, which is a polymer having the simplest fatty acid ester bond, and found that the acyloxy groups pendant in the resin do not react at all in neutral or weakly alkaline water. Not subject to change and not hydrolyzed When an electron-withdrawing group (X) such as a halogen atom, nitro group, or cyano group is introduced into the acyl moiety, the electron density of the carboxyl group in the ester bond decreases, making it more susceptible to hydrolysis and not being affected in a neutral atmosphere. Deacylation occurs gradually in slightly alkaline seawater. It has been found that hydroxyl groups are added to the polymer. Furthermore, the elution rate (hydrolysis degree) of the polymer into water is determined by the amount of water contained in the polymer.

【式】の結合濃度、The bond concentration of [formula],

【式】の結合エネルギー、共存OH 基、COOH基等官能基濃度などにより左右され
るが、強度の大なる塗膜をうめるため可及的に遊
離の親水基濃度を抑え、加水分解後に重合体に付
与される親水基により重合体を水溶性ならしめる
ためには、かかる加水分解可能な結合単位の割合
がある臨界値以上となるべき事実を見出した。本
発明はかかる知見に基づきなされたものである。
すなわち本発明に従えば (1) 一般式(1) 〔式中R1は水素またはメチル基;kは0また
は1;lおよびmはそれぞれ0または1〜4の
整数;R2は水素、水酸基またはメチル基;R3
Although it depends on the binding energy of [Formula] and the concentration of functional groups such as coexisting OH groups and COOH groups, in order to create a strong coating film, the concentration of free hydrophilic groups is suppressed as much as possible, and the polymer is formed after hydrolysis. It has been discovered that in order to make a polymer water-soluble due to the hydrophilic groups imparted to it, the proportion of such hydrolyzable bonding units must exceed a certain critical value. The present invention has been made based on this knowledge.
That is, according to the present invention, (1) General formula (1) [In the formula, R 1 is hydrogen or a methyl group; k is 0 or 1; l and m are each 0 or an integer of 1 to 4; R 2 is hydrogen, a hydroxyl group, or a methyl group; R 3
teeth

【式】または[expression] or

【式】で示される基;nは0または 1〜6の整数;X1はシアノ基、ニトロ基また
はハロゲン原子;X2〜X4は各々水素、シアノ
基、ニトロ基またはハロゲン原子を表わす〕 で示されるビニル誘導体20〜100wt%と、α,β
−エチレン性不飽和単量体80〜0wt%を、不活性
溶剤中ラジカル重合開始剤の存在下に共重合させ
分子量3000〜50000の樹脂組成物を得ることを特
徴とする加水分解型樹脂組成物の製造法が提供せ
られる。 本発明方法に於て反応原料として用いられる一
般式(1)のビニル誘導体 中k=0のものは例えばモノクロル酢酸ビニル、
シアノ酢酸ビニル、トリクロル酢酸ビニル、ジク
ロル酢酸ビニル、クロルジフルオル酢酸ビニル、
2−クロルプロピオン酸ビニル、o,m,p−ク
ロル安息香酸ビニル、p−シアノ安息香酸ビニ
ル、p−ニトロ安息香酸ビニル、2,4−ジクロ
ル安息香酸ビニル、2,3,4,5−テトラクロ
ル安息香酸ビニル等大部分が既存のモノマーで容
易に入手可能である。 またk=1のものは式 (式中R1は水素またはメチル基;lおよびmは
それぞれ0または1〜4の整数;R2は水素、メ
チル基または水酸基であり;XはR2が水素また
はメチル基の場合は水酸基で、R2が水酸基の場
合は水素であり;またXはR2とで環状オキシド
を作ることができる) で示される(メタ)アクリル酸のヒドロキシまた
は環状オキシド含有アルキルエステルに式
R3COOH で示されるカルボン酸またはその反応性誘導体を
作用せしめることにより容易に合成せられるもの
であつて、その代表例としてはシアノ酢酸、クロ
ル酢酸、m−ニトロ安息香酸、フルオル酢酸等と
グリシジル(メタ)アクリレート、2−ヒドロキ
シエチル(メタ)アクリレート、ヒドロキシプロ
ピル(メタ)アクリレート等の反応生成物があげ
られる。 また上記のビニル誘導体モノマー(1)と共重合せ
しめられるα,β−エチレン性不飽和単量体はア
クリル酸およびメタアクリル酸のアルキルエステ
ル類、ビニル系単量体例えば塩化ビニル、酢酸ビ
ニル、メチルビニルエーテル、ブタジエン、シク
ロヘキセン、スチレン系化合物等であり、またヒ
ドロキシル基あるいはカルボキシル基等を有する
不飽和単量体であつてもかまわない。 このビニル誘導体とα,β−エチレン性不飽和
単量体が特定の割合で、不活性溶剤中過酸化ベン
ゾイル、アゾビスイソブチロニトリル等のラジカ
ル重合開始剤の存在下、分子量3000〜50000の重
合体組成物となるまで共重合せしめられる。ビニ
ル誘導体中k=0のもの例えばモノクロ酢酸ビニ
ルとα,β−不飽和単量体例えば酢酸ビニル等を
共重合させることは既に多くの文献に記載され公
知である。しかしながら従来知られていた技術は
全てモノクロル酢酸ビニルを、不飽和単量体を主
原料とするエラストマーの架橋性ポリマーの原料
として利用するものであつて、例えば特公昭47−
13372;特公昭49−36822;特公昭49−38026;特
開昭49−92177;特開昭50−96645号等に記載の如
く、α−ハロゲンアルカンカルボ酸ビニルの使用
量は単量体全量のたかだか0.1〜15wt%に限定さ
れこれ以上に増量することは共重合体の反応特性
上好ましくないものと考えられていたのである。
しかるに本発明に於ては電子吸引基例えばハロゲ
ンの担持されたアシル基を有する前記一般式(1)の
ビニル誘導体が重合体直鎖中にくみこまれ得られ
た共重合体はそのまま塗料ビヒクルとして使用さ
れ、弱アルカリ性の海水中で加水分解されて共重
合体に親水基を付与する目的で利用されるもので
あるから、単量体全量中に占める割合は多ければ
多い程、加水分解後の樹脂の溶解性に寄与するこ
ととなり、またその割合が少なければ樹脂に対し
充分な溶解性を与えず発明目的に合致しないこと
となる。本発明者らは電子吸引基を担持するアシ
ルオキシあるいはベンゾイルオキシ部を有する前
記のビニル誘導体Iが単量体全量の20〜100wt
%、より好ましくは40〜100wt%を占める場合
に、加水分解後、樹脂が海水中に溶解して本発明
目的を達成しうることを見出し本発明を完成させ
たものであつてこの点に於て従来技術とは明確に
区別せられる。また電子吸引基を有するベンゾイ
ルオキシ部を有するビニル誘導体、あるいは一般
式Iのk=1の化合物等をα,β−不飽和単量体
にラジカル重合させ加水分解型樹脂組成物を得る
ことは知られていない。このようにして本発明に
於ては前記のビニル誘導体とα,β−エチレン性
不飽和単量体を特定割合で共重合させ、樹脂ビヒ
クルとして有用な分子量約3000〜50000程度、好
ましくは5000〜20000の重合体組成物を得るもの
である。 既に述べた如く本発明方法により得られる樹脂
組成物はそのまま船底塗料用の樹脂ビヒクルとし
て用いられ、塗装により中性雰囲気では加水分解
されず安定でかつ充分な強度の塗膜を与えるが、
海水中では徐々に加水分解され、R3COOHを分
離放出すると共に樹脂自体は親水基を得て溶解す
る特徴をもつ。 従つてα,β−エチレン性不飽和単量体にはヒ
ドロキシ基、カルボキシル基等の親水基を必要と
せず、また塗膜安定性からはむしろ親水基を含ま
ぬことの方が好ましいが、樹脂が海水中で加水分
解されるまでは樹脂自体が溶解あるいは著るしい
膨潤等を生じない程度に於て、α,β−エチレン
性不飽和単量体に親水基を担持することは許容せ
られ、また特にビニル誘導体Iの量が少ない場合
には、むしろα,β−エチレン性不飽和単量体に
ある程度親水基を担持させ、ビニル誘導体Iの加
水分解に由来する親水基と当初よりα,β−不飽
和単量体に担持される親水基の相互作用により加
水分解後の樹脂を水溶性ならしめることが好まし
いことも確かめられている。 以下実施例により本発明を説明する。特にこと
わりなき限り部とある重量部である。 又本願明細書に於て樹脂の分子量は数平均分子
量(Gell Parmiluation Chromatographyで測
定)である。 実施例 1 還流器、攪拌機、滴下ロートを備えた3頚フラ
スコ中にキシロール40部を加え、80℃に保ち、こ
こへ酢酸ビニル20部、モノクロル酢酸ビニル80
部、アゾビスイソブチロニトリル10部を5時間に
わたり滴下した。滴下2時間後、メチルイソブチ
ルケトン10部とアゾビスイソブチロニトリル0.2
部を加え、90℃に昇温し、2時間反応させた。粘
度Z1、固型分65.2%(樹脂の分子量11000)のワ
ニスAが得られた。 実施例 2 p−クロル安息香酸ビニル80部、酢酸ビニル20
部を用いたほかは実施例1と同様方法で粘度Z、
固型分64.8%(樹脂の分子量10500)の樹脂溶液
を得た。これをワニスBとする。 実施例 3 p−シアノ安息香酸ビニル80部、酢酸ビニル20
部を用いたほかは実施例1と同様方法で粘度Z1
固型分65.0%の樹脂溶液(樹脂の分子量11000)
を得た。これをワニスCとする。 実施例 4 2,4−ジクロル安息香酸ビニル80部、酢酸ビ
ニル20部を用いたほかは実施例1と同様方法で粘
度Y、固型分64.7%の樹脂溶液(樹脂の分子量
9800)を得た。これをワニスDとする。 実施例 5 p−ニトロ安息香酸ビニル80部、酢酸ビニル20
部を用いたほかは実施例1と同様方法で、粘度
Z1、固型分65.1%の樹脂溶液(樹脂の分子量
10000)が得られた。これをワニスEとする。 実施例 6 シアノ酢酸ビニル80部、酢酸ビニル20部を用い
たほかは実施例1と同様方法で粘度X、固型分
64.2%の樹脂溶液(樹脂の分子量9200)を得た。
これをワニスFとする。 実施例 7 トリクロル酢酸ビニル20部、モノクロル酢酸ビ
ニル40部、酢酸ビニル30部、スチレン10部を用い
たほかは実施例1と同様方法で、粘度Z1、固型分
64.4%の樹脂溶液(樹脂の分子量13000)を得た。
これをワニスGとする。 実施例 8 2−クロルプロピオン酸ビニル80部、酢酸ビニ
ル20部を用いたほかは実施例1と同様方法で粘度
X、固型分64.0%の樹脂溶液(樹脂の分子量
8800)が得られた。これをワニスHとする。 尚下記製造例1〜3は本発明で使用せられる一
般式(1)のビニル誘導体の製造例である。 製造例 1 還流器、攪拌器を備えた3頚フラスコにグリシ
ジルメタクリレート55部、シアノ酢酸45部、モノ
エタノールアミン0.2部、ハイドロキノン0.3部、
ジメチルホルムアミド40部を加え、120℃で2時
間、空気をバブリングさせながら反応させ、次に
この反応物を水中に注入し、NaHCO3水溶液で
中和した。中和後、充分に水洗し、反応生成物を
エーテル抽出し、抽出液より溶媒を除き、減圧蒸
留によりシアノ酢酸のビニルエステル化物(一般
式1、R1=CH3、k=1、l=1、m=1、R2
=OH、R3=CN−CH2−)65部を得た。これを
モノマーAとする。 製造例 2 グリシジルメタクリレート55部とm−ニトロ安
息香酸75部を用いたほかは製造例1と同様方法で
m−ニトロ安息香酸のビニルエステル化物(一般
式1、R1=CH3、k=l=m=1、R2=OH、
[Formula]; n is 0 or an integer of 1 to 6; X 1 is a cyano group, a nitro group, or a halogen atom; 20-100wt% of the vinyl derivative represented by α, β
- A hydrolyzable resin composition characterized by copolymerizing 80 to 0 wt% of an ethylenically unsaturated monomer in an inert solvent in the presence of a radical polymerization initiator to obtain a resin composition with a molecular weight of 3,000 to 50,000. A manufacturing method is provided. Vinyl derivative of general formula (1) used as a reaction raw material in the method of the present invention Among them, those with k=0 are, for example, monochlorovinyl acetate,
Vinyl cyanoacetate, vinyl trichloroacetate, vinyl dichloroacetate, vinyl chlordifluoroacetate,
Vinyl 2-chloropropionate, vinyl o,m,p-chlorobenzoate, vinyl p-cyanobenzoate, vinyl p-nitrobenzoate, vinyl 2,4-dichlorobenzoate, 2,3,4,5-tetrachlor Most of the monomers, such as vinyl benzoate, are readily available as existing monomers. Also, for k=1, the formula (In the formula, R 1 is hydrogen or a methyl group; l and m are each 0 or an integer of 1 to 4; R 2 is hydrogen, a methyl group, or a hydroxyl group; X is a hydroxyl group when R 2 is hydrogen or a methyl group; , when R 2 is a hydroxyl group, it is hydrogen; and X can form a cyclic oxide with R 2 ).
It can be easily synthesized by reacting a carboxylic acid represented by R 3 COOH or its reactive derivative, and representative examples include cyanoacetic acid, chloroacetic acid, m-nitrobenzoic acid, fluoroacetic acid, etc. and glycidyl Examples include reaction products such as (meth)acrylate, 2-hydroxyethyl (meth)acrylate, and hydroxypropyl (meth)acrylate. Further, the α,β-ethylenically unsaturated monomer copolymerized with the vinyl derivative monomer (1) mentioned above includes alkyl esters of acrylic acid and methacrylic acid, vinyl monomers such as vinyl chloride, vinyl acetate, methyl These include vinyl ether, butadiene, cyclohexene, styrene compounds, etc., and may also be unsaturated monomers having hydroxyl groups, carboxyl groups, etc. This vinyl derivative and the α,β-ethylenically unsaturated monomer are combined in a specific ratio in an inert solvent in the presence of a radical polymerization initiator such as benzoyl peroxide or azobisisobutyronitrile to produce a polymer with a molecular weight of 3,000 to 50,000. They are copolymerized to form a polymer composition. Copolymerization of vinyl derivatives with k=0, such as monochlorovinyl acetate, and α,β-unsaturated monomers, such as vinyl acetate, has already been described in many documents and is well known. However, all conventionally known techniques utilize monochlorovinyl acetate as a raw material for crosslinkable polymers for elastomers whose main raw materials are unsaturated monomers.
13372; JP 49-36822; JP 49-38026; JP 49-92177; JP 50-96645, etc., the amount of vinyl α-halogenalkanecarboxylate used is based on the total amount of monomers. It was limited to 0.1 to 15 wt% at most, and increasing the amount beyond this was considered undesirable in view of the reaction characteristics of the copolymer.
However, in the present invention, the vinyl derivative of general formula (1) having an electron-withdrawing group, such as an acyl group carrying a halogen, is incorporated into a linear polymer chain, and the resulting copolymer is used as it is as a paint vehicle. It is hydrolyzed in slightly alkaline seawater and used for the purpose of imparting hydrophilic groups to the copolymer. If the proportion is small, it will not provide sufficient solubility to the resin and will not meet the purpose of the invention. The present inventors have discovered that the vinyl derivative I having an acyloxy or benzoyloxy moiety carrying an electron-withdrawing group contains 20 to 100 wt of the total amount of monomers.
%, more preferably 40 to 100 wt%, the resin dissolves in seawater after hydrolysis and the object of the present invention can be achieved. It can be clearly distinguished from the prior art. Furthermore, it is known that a hydrolyzable resin composition can be obtained by radical polymerizing a vinyl derivative having a benzoyloxy moiety having an electron-withdrawing group or a compound of general formula I where k=1 to an α,β-unsaturated monomer. It has not been done. In this way, in the present invention, the vinyl derivative and the α,β-ethylenically unsaturated monomer are copolymerized in a specific ratio, and the molecular weight useful as a resin vehicle is about 3,000 to 50,000, preferably 5,000 to 5,000. 20,000 polymer compositions are obtained. As already mentioned, the resin composition obtained by the method of the present invention can be used as it is as a resin vehicle for ship bottom paint, and when painted, it will not be hydrolyzed in a neutral atmosphere and will provide a stable and sufficiently strong coating film.
It is gradually hydrolyzed in seawater, separating and releasing R 3 COOH, and the resin itself acquires hydrophilic groups and dissolves. Therefore, the α,β-ethylenically unsaturated monomer does not require a hydrophilic group such as a hydroxyl group or a carboxyl group, and it is preferable from the viewpoint of coating film stability that it does not contain a hydrophilic group. It is permissible to carry a hydrophilic group on the α,β-ethylenically unsaturated monomer to the extent that the resin itself does not dissolve or swell significantly until it is hydrolyzed in seawater. In addition, especially when the amount of vinyl derivative I is small, the α,β-ethylenically unsaturated monomer may be supported with a certain amount of hydrophilic groups, and the hydrophilic groups derived from the hydrolysis of vinyl derivative I and α, It has also been confirmed that it is preferable to render the hydrolyzed resin water-soluble through the interaction of hydrophilic groups supported on the β-unsaturated monomer. The present invention will be explained below with reference to Examples. Parts and parts by weight unless otherwise specified. Further, in this specification, the molecular weight of the resin is the number average molecular weight (measured by Gell Parmilation Chromatography). Example 1 40 parts of xylene was added to a three-necked flask equipped with a reflux, a stirrer, and a dropping funnel, kept at 80°C, and 20 parts of vinyl acetate and 80 parts of monochlorovinyl acetate were added thereto.
and 10 parts of azobisisobutyronitrile were added dropwise over 5 hours. After 2 hours of dropping, add 10 parts of methyl isobutyl ketone and 0.2 parts of azobisisobutyronitrile.
The mixture was heated to 90°C and reacted for 2 hours. Varnish A having a viscosity of Z 1 and a solid content of 65.2% (resin molecular weight of 11,000) was obtained. Example 2 80 parts of vinyl p-chlorobenzoate, 20 parts of vinyl acetate
The viscosity Z,
A resin solution with a solid content of 64.8% (resin molecular weight 10,500) was obtained. This is called varnish B. Example 3 80 parts of vinyl p-cyanobenzoate, 20 parts of vinyl acetate
The viscosity Z 1 ,
Resin solution with solid content 65.0% (resin molecular weight 11000)
I got it. This is called varnish C. Example 4 A resin solution with a viscosity of Y and a solid content of 64.7% (resin molecular weight
9800) was obtained. This is called varnish D. Example 5 80 parts of vinyl p-nitrobenzoate, 20 parts of vinyl acetate
The viscosity was determined in the same manner as in Example 1 except that parts were used.
Z 1 , resin solution with solid content of 65.1% (molecular weight of resin
10000) was obtained. This is called varnish E. Example 6 The viscosity
A 64.2% resin solution (resin molecular weight 9200) was obtained.
This is called varnish F. Example 7 The same method as in Example 1 was used except that 20 parts of trichlorovinyl acetate, 40 parts of monochlorovinyl acetate, 30 parts of vinyl acetate, and 10 parts of styrene were used, and the viscosity Z 1 and solid content were
A 64.4% resin solution (resin molecular weight 13000) was obtained.
This is called varnish G. Example 8 A resin solution with a viscosity of X and a solid content of 64.0% (resin molecular weight
8800) was obtained. This is called varnish H. The following production examples 1 to 3 are production examples of the vinyl derivative of general formula (1) used in the present invention. Production Example 1 In a three-necked flask equipped with a reflux device and a stirrer, 55 parts of glycidyl methacrylate, 45 parts of cyanoacetic acid, 0.2 parts of monoethanolamine, 0.3 parts of hydroquinone,
40 parts of dimethylformamide was added and reacted at 120° C. for 2 hours while bubbling air, then the reaction product was poured into water and neutralized with an aqueous NaHCO 3 solution. After neutralization, the reaction product was thoroughly washed with water, the reaction product was extracted with ether, the solvent was removed from the extract, and the vinyl ester of cyanoacetic acid (general formula 1, R 1 = CH 3 , k = 1, l = 1, m=1, R2
=OH, R3 =CN- CH2- ) 65 parts were obtained. This is called monomer A. Production Example 2 A vinyl ester of m-nitrobenzoic acid (general formula 1, R 1 = CH 3 , k = l =m=1, R2 =OH,

【式】)82部を得た。これをモノ マーBとする。 製造例 3 還流器、デカンター、攪拌機付3頚フラスコに
メタクリル酸2−ヒドロキシエチル60部、フルオ
ル酢酸105部、パラトルエンスルホン酸0.3部、ハ
イドロキノンモノメチルエーテル1.0部、トルエ
ン30部を加え、空気をパブリングさせ脱水を行い
ながら130℃で5時間エステル化反応を行なわせ、
減圧蒸留でトルエンを留去させた。次いで製造例
1と同様操作でフルオン酢酸のビニルエステル化
物(一般式1、R1=CH3、k=1、l=1、m
=0、R2=H、R3=F・CH2−)35部を得た。
これをモノマーCとする。 実施例 9 製造例1で合成されたモノマーA80部、メタク
リル酸メチル20部を用いたほかは実施例1と同様
方法で、粘度W、固型分65.2%の樹脂溶液(樹脂
の分子量9000)を得た。これをワニスとする。 実施例 10 製造例2で合成されたモノマーB80部、酢酸ビ
ニル20部を用いたほかは実施例1と同様方法で粘
度P、固型分64.2%の樹脂溶液(樹脂の分子量
7500)を得た。これをワニスJとする。 実施例 11 製造例3で合成されたモノマーC80部、メタク
リル酸メチル20部を用いたほかは実施例1と同様
方法で粘度X、固型分64.7%の樹脂溶液(樹脂の
分子量8600)を得た。これをワニスKとする。 実施例 12〜16 実施例1と同様方法で下記単量体を反応させ、
第1表の如きワニスを得た。
[Formula]) 82 copies were obtained. This is called monomer B. Production Example 3 Add 60 parts of 2-hydroxyethyl methacrylate, 105 parts of fluoroacetic acid, 0.3 parts of para-toluenesulfonic acid, 1.0 parts of hydroquinone monomethyl ether, and 30 parts of toluene to a 3-necked flask equipped with a refluxer, decanter, and stirrer, and bubble air. The esterification reaction was carried out at 130°C for 5 hours while dehydrating.
Toluene was distilled off under reduced pressure. Next, in the same manner as in Production Example 1, a vinyl ester of fluoroacetic acid (general formula 1, R 1 =CH 3 , k = 1, l = 1, m
=0, R2 =H, R3 = F.CH2- ) 35 parts were obtained.
This is called monomer C. Example 9 A resin solution with a viscosity W and a solid content of 65.2% (resin molecular weight 9000) was prepared in the same manner as in Example 1 except that 80 parts of monomer A synthesized in Production Example 1 and 20 parts of methyl methacrylate were used. Obtained. This will be used as varnish. Example 10 A resin solution with viscosity P and solid content of 64.2% (resin molecular weight
7500). This is called varnish J. Example 11 A resin solution (resin molecular weight 8600) with a viscosity of Ta. This is called varnish K. Examples 12-16 The following monomers were reacted in the same manner as in Example 1,
A varnish as shown in Table 1 was obtained.

【表】 尚比較目的で下記の比較ワニスが作られた。 比較ワニス1 モノクロル酢酸ビニル13部と酢酸ビニル87部を
用い実施例1と同様方法で得られた樹脂溶媒。 比較ワニス2 モノクロル酢酸ビニル10部、酢酸ビニル85部、
メタクリル酸2−ヒドロキシエチル5部を用い実
施例1と同様方法で得られた樹脂溶液 比較ワニス3 メタクリル酸メチル50部、スチレン50部を用い
た実施例1と同様方法で得られる樹脂溶液 比較ワニス4 酢酸ビニル100部を実施例1の方法に準じ重合
させて得られる樹脂溶媒 比較例 実施例1〜16の各ワニスならびに比較ワニスを
それぞれ、タテ60mm、ヨコ50mmのガラス板上に乾
燥膜厚が100μとなるように塗布し、105℃で3時
間乾燥させる溶剤成分を除去し精秤し樹脂の初期
重量をうる。次にこのガラス板をPH10のアルカリ
水溶液350cc中に浸漬し、40℃にて18時間保持し
たのちガラス板を取り出し、充分水洗し、乾燥後
精秤して最終重量をうる。下記の式により各樹脂
の加水分解溶出度を算出し 加水分解溶出度=初期重量−最終重量/初期重量 その結果を第2表に示した。
[Table] For comparison purposes, the following comparative varnishes were made. Comparative Varnish 1 A resin solvent obtained in the same manner as in Example 1 using 13 parts of monochlorovinyl acetate and 87 parts of vinyl acetate. Comparative varnish 2 10 parts of monochlorovinyl acetate, 85 parts of vinyl acetate,
Resin solution comparison varnish 3 obtained in the same manner as in Example 1 using 5 parts of 2-hydroxyethyl methacrylate Resin solution comparison varnish obtained in the same manner as in Example 1 using 50 parts of methyl methacrylate and 50 parts of styrene 4 Comparative example of resin solvent obtained by polymerizing 100 parts of vinyl acetate according to the method of Example 1 Each of the varnishes of Examples 1 to 16 and the comparative varnish were coated on a glass plate with a length of 60 mm and a width of 50 mm so that the dry film thickness was Coat the resin to a thickness of 100μ, dry at 105°C for 3 hours, remove the solvent component, and accurately weigh to obtain the initial weight of the resin. Next, this glass plate was immersed in 350 cc of an alkaline aqueous solution with a pH of 10, held at 40°C for 18 hours, and then taken out, thoroughly washed with water, dried, and accurately weighed to obtain the final weight. The degree of hydrolysis elution of each resin was calculated using the following formula: degree of hydrolysis elution=initial weight−final weight/initial weight The results are shown in Table 2.

【表】【table】

【表】 上記により本発明にかかる樹脂組成物は弱アル
カリ性で加水分解され溶出することが明らかであ
る。
[Table] From the above, it is clear that the resin composition according to the present invention is hydrolyzed and eluted under weak alkalinity.

Claims (1)

【特許請求の範囲】 1 一般式 [式中R1は水素またはメチル基;kは0または
1;lおよびmはそれぞれ0または1〜4の整
数;R2は水素、水酸基またはメチル基;R3
【式】または【式】で 示される基;nは0または1〜6の整数;X1
シアノ基、ニトロ基またはハロゲン原子;X2
X4は各々水素、シアノ基、ニトロ基またはハロ
ゲン原子を表わす] で示されるビニル誘導体20〜100wt%と、α,β
−エチレン性不飽和単量体80〜0wt%を、不活性
溶剤中ラジカル重合開始剤の存在下に共重合させ
分子量3000〜50000の樹脂組成物を得ることを特
徴とする加水分解型樹脂組成物の製造法。
[Claims] 1. General formula [In the formula, R 1 is hydrogen or a methyl group; k is 0 or 1; l and m are each 0 or an integer of 1 to 4; R 2 is hydrogen, a hydroxyl group, or a methyl group; R 3 is [Formula] or [Formula] A group represented by; n is 0 or an integer of 1 to 6; X 1 is a cyano group, a nitro group, or a halogen atom;
X 4 represents hydrogen, a cyano group, a nitro group, or a halogen atom respectively] and 20 to 100 wt% of the vinyl derivative represented by
- A hydrolyzable resin composition characterized by copolymerizing 80 to 0 wt% of an ethylenically unsaturated monomer in an inert solvent in the presence of a radical polymerization initiator to obtain a resin composition with a molecular weight of 3,000 to 50,000. manufacturing method.
JP19824081A 1981-12-08 1981-12-08 Production of hydrolyzable resin composition Granted JPS5898313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19824081A JPS5898313A (en) 1981-12-08 1981-12-08 Production of hydrolyzable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19824081A JPS5898313A (en) 1981-12-08 1981-12-08 Production of hydrolyzable resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6750290A Division JPH0354203A (en) 1990-03-16 1990-03-16 Preparation of hydrolyzable resin composition

Publications (2)

Publication Number Publication Date
JPS5898313A JPS5898313A (en) 1983-06-11
JPH0250928B2 true JPH0250928B2 (en) 1990-11-05

Family

ID=16387828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19824081A Granted JPS5898313A (en) 1981-12-08 1981-12-08 Production of hydrolyzable resin composition

Country Status (1)

Country Link
JP (1) JPS5898313A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5720692B2 (en) 2010-09-29 2015-05-20 Jsr株式会社 Composition for forming immersion upper layer film and polymer

Also Published As

Publication number Publication date
JPS5898313A (en) 1983-06-11

Similar Documents

Publication Publication Date Title
JPH0239529B2 (en)
US4485197A (en) Resinous composition and antifouling paint
US4625006A (en) Adhesivizing agent copolymers containing both acrylate or methacrylate groups and alkoxysilyl groups
JP7508219B2 (en) Water-based resin emulsion
JPH0250928B2 (en)
JPH1087676A (en) New (meth)acrylic resin composition for antifouling coating material for ship and corresponding coating material composition
JPH04285612A (en) Copolymer latex from ester of (meth)acrylic acid and vinyl ester of branched chain carboxylic acid
JPH03126771A (en) Antifouling coating composition
JPH0368042B2 (en)
US5264466A (en) Stainproofing paint composition and method for producing same
US4939219A (en) Coating compositions for preventing adhesion of aquatic organisms
US4853438A (en) Water-soluble polymers bearing quaternary ammonium or pyridinium groups and alkoxysilyl groups, a method for their preparation, and the use thereof
WO1992016570A1 (en) Marine antifouling paint
JP3026384B2 (en) Water resistant coating liquid
JPH05320539A (en) Coating compound composition for preventing adhesion of underwater organism
EP0935618B1 (en) Waterborne latex compositions having reactive pendant functional groups and methods of preparing the same
JPH0723452B2 (en) Aqueous polymer emulsion prepared with crosslinkable nonionic surfactant
JPH0812728A (en) Resin for antifouling coating material
JPS638996B2 (en)
JP2002128837A (en) Method of producing copolymer
JPH02153961A (en) Aqueous synthetic resin composition
JPS6037803B2 (en) Polymer emulsifier
JPH05311110A (en) Coating resin and antifouling coating
JPH06212112A (en) Waterproofing coating fluid
JPH0551424A (en) Production of graft copolymer, slightly water-soluble resin composition and coating using the same