[go: up one dir, main page]

JPH02501934A - Separation method and plant for synthetic water-soluble polymers - Google Patents

Separation method and plant for synthetic water-soluble polymers

Info

Publication number
JPH02501934A
JPH02501934A JP62506293A JP50629387A JPH02501934A JP H02501934 A JPH02501934 A JP H02501934A JP 62506293 A JP62506293 A JP 62506293A JP 50629387 A JP50629387 A JP 50629387A JP H02501934 A JPH02501934 A JP H02501934A
Authority
JP
Japan
Prior art keywords
resin
permeate
formaldehyde
reverse osmosis
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62506293A
Other languages
Japanese (ja)
Other versions
JPH0774257B2 (en
Inventor
ヘルマー カリン ウラ エリザベト
ステンシオ カール‐エルランド マグナス
Original Assignee
エカ ノーベル アクチェボラーグ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エカ ノーベル アクチェボラーグ filed Critical エカ ノーベル アクチェボラーグ
Publication of JPH02501934A publication Critical patent/JPH02501934A/en
Publication of JPH0774257B2 publication Critical patent/JPH0774257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2455Stationary reactors without moving elements inside provoking a loop type movement of the reactants
    • B01J19/2465Stationary reactors without moving elements inside provoking a loop type movement of the reactants externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/10Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with acyclic compounds having the moiety X=C(—N<)2 in which X is O, S or —N
    • C08G12/12Ureas; Thioureas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 合成水溶性ポリマーの分離方法およびプラント本発明は合成水溶性ポリマーをろ 過プロセスによって2種類の溶液に分離し、そのIN類の溶液を再重合のために 再循環させる方法に関する。本発明はまた、重合反応器と生成した合成水溶性ポ リマーの分離装置とを含むプラントに関する。[Detailed description of the invention] Method and plant for separating synthetic water-soluble polymers The present invention is a method for separating synthetic water-soluble polymers by filtering them. Separate into two types of solutions by filtration process, and use the IN solution for repolymerization. Regarding how to recirculate. The present invention also relates to a polymerization reactor and the resulting synthetic water-soluble polymer. limmer separation equipment.

蛋白質、天然ゴムラテックス、セルロースなどの天然ポリマーは、しばしば非常 に良好に定義された分子量を有する。これとは対照的に、合成ポリマーは通常広 範囲な分子量分布を有し、多くの場合に高分子量ポリマーを含む分画のみが予定 の用途のために望ましい良好な性質を有する。所望の高分子量分画のみを得るた めに、利用可能な技術によってポリマー合成を制御することが常に可能であると は限らない。合成された樹脂中には、好ましくない低分子量ポリマーと副生成物 の他に、未反応モノマーもしばしば存在する。Natural polymers such as proteins, natural rubber latex, and cellulose are often highly It has a well-defined molecular weight. In contrast, synthetic polymers are typically With a wide molecular weight distribution, often only fractions containing high molecular weight polymers are planned. It has good properties desirable for applications. In order to obtain only the desired high molecular weight fraction, Therefore, it is always possible to control polymer synthesis with available technologies. is not limited. Synthesized resins contain undesirable low molecular weight polymers and by-products. In addition, unreacted monomers are often present.

本発明は有利な性質を有する好ましい高分子量分画を得るための合成水溶性ポリ マーの分離方法を提供し、この方法はさらに低分子量分画の重合工程への再循環 をも含むものである。The present invention provides synthetic water-soluble polymers for obtaining preferred high molecular weight fractions with advantageous properties. The method provides a method for the separation of polymers, which further recycles the low molecular weight fraction to the polymerization process. It also includes.

合成ポリマーの分子量は例えばモノマー、ポリマー反応の種類、反応時間及び温 度などの幾つかの変数に依存する。溶液中のポリマーでは、分子量分布が殆ど常 に曲線の形を有する。この曲線は当然、ポリマーによって異なり、1つ以上のピ ークを有する。例えば、水溶性尿素−ホルムアルデヒド樹脂は2つの明確に定義 された特定のピークを含む分子量分布を有することが判明している。The molecular weight of synthetic polymers depends on, for example, the monomers, the type of polymer reaction, reaction time, and temperature. It depends on several variables such as temperature. For polymers in solution, the molecular weight distribution is almost always has a curved shape. This curve will of course vary from polymer to polymer and will include more than one piston. has a network. For example, water-soluble urea-formaldehyde resins have two clearly defined It has been found that the molecular weight distribution includes specific peaks.

本発明の方法によると、このような樹脂の好ましい高分子量分画を再使用可能な 好ましくない分画から分離することができる。According to the method of the invention, preferred high molecular weight fractions of such resins can be reused. It can be separated from undesirable fractions.

本発明の方法は一般に、水溶性合成樹脂の好ましい高分子量分画の分離に適用可 能である。しかし、この方法は特に製紙に用いる水溶性樹脂にとって有利であり 、次の考案は限定するわけではないが、このような樹脂に該当するであろう。The method of the invention is generally applicable to the separation of preferred high molecular weight fractions of water-soluble synthetic resins. It is Noh. However, this method is especially advantageous for water-soluble resins used in papermaking. , the following invention may apply to such resins, although it is not limited thereto.

製紙に用いる水溶性樹脂は例えば尿素−ホルムアルデヒド樹脂、メラミン−ホル ムアルデヒド樹脂及びポリアミドアミン−エビクロロヒドリンである。これらの 樹脂は紙に対する湿潤紙力増強剤として用いられ、湿潤強度に対する効果は高分 子量分画によってのみ得られることが判明している。低分子量分画は紙に保留さ れないが、閉じた白水系で循環される。ホルムアルデヒドに基づく樹脂では、高 温の水はこの低分子量分画の加水分解と、環境問題を生ずるおそれのある遊離ホ ルムアルデヒドの放出とを生ずる。ポリアミドアミン−エビクロロヒドリン樹脂 はホルムアルデヒドに基づく樹脂よりも高分子量を有し、この樹脂の低分子量分 画は湿潤強度に対して低い効果を有するにすぎない。さらにこれらの樹脂は環境 問題をやはり生ずるモノマーの塩素化副生成物を含んでいる。Examples of water-soluble resins used in papermaking include urea-formaldehyde resin and melamine-formaldehyde resin. maldehyde resin and polyamidoamine-shrimp chlorohydrin. these Resins are used as wet strength agents for paper, and their effect on wet strength is highly It has been found that it can only be obtained by molecular fractionation. The low molecular weight fraction is retained on paper. It is circulated in a closed white water system. Formaldehyde-based resins have high Hot water reduces the hydrolysis of this low molecular weight fraction and the release of free phosphates that can pose environmental problems. This results in the release of lumaldehyde. Polyamidoamine-shrimp chlorohydrin resin has a higher molecular weight than formaldehyde-based resins, and the lower molecular weight fraction of this resin Painting has only a low effect on wet strength. Additionally, these resins are environmentally friendly. It contains monomer chlorination by-products which also cause problems.

上記樹脂を本発明の方法によって処理すると、高分子量ポリマーの水溶液が得ら れ、これは非常に良好な湿潤強度効果を有し、製紙工場における水および空気中 のホルムアルデヒドおよびその他の好ましくない化合物をもかなり低下させる。When the above resin is treated by the method of the present invention, an aqueous solution of a high molecular weight polymer is obtained. It has a very good wet strength effect and is suitable for use in water and air in paper mills. of formaldehyde and other undesirable compounds.

尿素−ホルムアルデヒド樹脂は主要な湿潤強度樹脂であるが、重大な環境問題を 生ずる傾向のある樹脂でもあるので、本発明によるこれらの改良は特に重要であ り、これらの樹脂は以下でさらに詳細に検討することにする。Urea-formaldehyde resins are the primary wet strength resins, but they pose significant environmental problems. These improvements according to the present invention are particularly important as these resins are also prone to Therefore, these resins will be discussed in more detail below.

上述したように、製紙の際には尿素−ホルムアルデヒド樹脂から加水分解によっ て遊離ホルムアルデヒドが放出される。さらに、使用する最初の樹脂も常に遊離 ホルムアルデヒドを含み、これは白水系に蓄積され、循環する。As mentioned above, during paper manufacturing, urea-formaldehyde resin is processed by hydrolysis. Free formaldehyde is released. Additionally, the first resin used is also always free. Contains formaldehyde, which accumulates and circulates in the white water system.

本発明による分離によって得られる濃縮溶液は全べて、最初の樹脂に比べて、よ り効果的であるので、ある一定の湿潤強度効果を得るために必要な添加量はかな り減少する。濃縮溶液中では最初の樹脂におけるよりも未反応モノマー(例えば ホルムアルデヒド)と低分子量副生成物の含量も低く、これによりて白水系の好 ましくない生成物は二重に低下する。−例として、最初のホルムアルデヒド樹脂 は樹脂の乾量基準で7%の遊離ホルムアルデヒドを含むが、本発明の方法によっ て得られた同じ尿素−ホルムアルデヒド樹脂の濃縮溶液では僅かに約4%にすぎ ない。製紙中に通常加える尿素−ホルムアルデヒド樹脂量は紙1トンにつき10 〜24kgである。本発明の濃縮物を用いると、僅か6〜12kgの乾量の樹脂 によって同じ湿潤強度効果が得られる。このことは“添加°遊離ホルムアルデヒ ドが0.7〜1.4 )Cgから0.24〜0.48kgに減少する。すなわち 80〜70%の減少が生ずることを意味する。All the concentrated solutions obtained by the separation according to the invention are much better compared to the starting resin. The amount of addition necessary to obtain a certain wet strength effect is small. decrease. In the concentrated solution there is more unreacted monomer (e.g. The content of formaldehyde) and low molecular weight by-products is also low, which makes it suitable for white water systems. Unsatisfactory products are doubly degraded. - As an example, the first formaldehyde resin contains 7% free formaldehyde on a resin dry weight basis, which can be reduced by the method of the present invention. A concentrated solution of the same urea-formaldehyde resin obtained by do not have. The amount of urea-formaldehyde resin usually added during papermaking is 10 per ton of paper. ~24 kg. With the concentrate of the present invention, only 6-12 kg dry weight of resin The same wet strength effect can be obtained by This means that “added free formaldehyde Cg decreases from 0.7 to 1.4) Cg to 0.24 to 0.48 kg. i.e. This means that a reduction of 80-70% occurs.

この減少は、濃縮物が容易に加水分解する低分子量樹脂をごく僅かに含むにすぎ ないという事実によって、′さらに増強する。同様に、モノマー中の硫黄含量の ほぼ1/2をホルムアルデヒドと共に含有することが判明している陰イオン性亜 硫酸水素塩改質尿素−ホルムアルデヒド樹脂も本発明の方法によって処理して、 湿潤強度効果を有さないことの他に、ストックの2−電位(Z−potenti al)に対して有害であるこれらの生成物を除去することができる。このように 、尿素〜ホルムアルデヒド樹脂とメラミン−ホルムアルデヒド樹脂の好ましい高 分子量分画の分離に本発明の方法を用いることは、効果的な湿潤強度樹脂生成物 を形成するのみでなく、環境上および職業上の見地から有利であるような生成物 をももたらす。This reduction is due to the fact that the concentrate contains only a small amount of easily hydrolyzed low molecular weight resin. It is further strengthened by the fact that there is no such thing. Similarly, the sulfur content in the monomer Anionic minerals found to contain approximately 1/2 of formaldehyde Bisulfate modified urea-formaldehyde resins are also treated by the method of the invention to Besides having no wet strength effect, the 2-potential (Z-potential) of the stock al) can be removed. in this way , urea-formaldehyde resin and melamine-formaldehyde resin. Using the method of the present invention to separate molecular weight fractions produces effective wet strength resin products. products that not only form but also are advantageous from an environmental and occupational point of view It also brings.

本発明の方法はさらに、分離時に得られた低分子量化合物の溶液を再重合のため に再循環させることを含む。The method of the present invention further comprises using a solution of low molecular weight compounds obtained during separation for repolymerization. including recycling.

再重合のためのこの再循環は改良工程の後で実施するのが好ましい。本発明はさ らに、水溶性合成ポリマーの好ましい高分子量分画を製造し、同時に低分子量分 画の再使用を可能にする。技術的および商業的に有利な方法を提供する。This recycling for repolymerization is preferably carried out after the reforming step. The present invention is Furthermore, it is possible to produce a preferred high molecular weight fraction of water-soluble synthetic polymers while simultaneously producing a low molecular weight fraction. Enables reuse of images. Provide a technically and commercially advantageous method.

本発明によると、水溶性合成樹脂の供給水溶液を限外ろ過膜装置に装入し、この 装置で供給溶液を2種類の溶液すなわち主として高分子量を有するポリマー分子 を含む濃縮液と、低分子量のポリマー分子、モノマーおよび副生成物を含む透過 液とに分離し、前記透過液を次に重合工程に再循環させる。According to the present invention, a feed aqueous solution of a water-soluble synthetic resin is charged into an ultrafiltration membrane device; The device feeds the solution into two types of solutions, i.e. mainly polymer molecules with high molecular weight. and permeate containing low molecular weight polymer molecules, monomers and by-products. The permeate is then recycled to the polymerization process.

限外ろ過装置では、好ましい高分子量分画を保留するための適当なカットオフを 備えた膜を用いるが、これらの膜は特定のポリマーと好ましい分画とによって当 然変化する。膜の適当な種類は例えばポリスルホン、セルロースアセテート、ポ リアミド、塩化ビニル−アクリロニトリルコポリマーおよびポリ (フッ化ビニ リデン)膜である。この膜装置は例えばプレート/フレームモジュール(pla te−and−flame modules)の形状を有するが、他の種類の膜 装置も当然使用可能である。この膜に対して分離の前に分離すべき実際の樹脂の 希薄溶液による予備処理を適当に実施する。この予備処理は第2膜層の形成に役 立つ。尿素−ホルムアルデヒド樹脂では好ましい高分子量分画は2000〜40 00の範囲内であり分画を膜保留成分として、すなわち濃縮物または保留物とし て本質的に与えるように実施する。このために、20000〜200000のカ ットオフを有する上記種類の膜が適当に用いられることを、目安として、述べる ことができる。他の樹脂としては、200000〜400000の範囲内のカッ トオフを有する膜を一般に用いることができる。Ultrafiltration equipment requires an appropriate cutoff to retain the desired high molecular weight fraction. These membranes are tailored by specific polymers and preferred fractions. It changes naturally. Suitable types of membranes include, for example, polysulfone, cellulose acetate, polymer Lyamide, vinyl chloride-acrylonitrile copolymer and poly(vinyl fluoride) Liden) membrane. This membrane device can be used, for example, in a plate/frame module (pla (te-and-flame modules), but other types of membranes Of course, the device can also be used. The actual resin to be separated before separation is applied to this membrane. Pretreatment with a dilute solution is suitably carried out. This pretreatment helps form the second film layer. stand. For urea-formaldehyde resins, the preferred high molecular weight fraction is 2000-40 00 and the fraction is treated as a membrane-retained component, i.e., as a concentrate or a retentate. It is carried out in such a way that it essentially gives. For this purpose, 20,000 to 200,000 As a guideline, we will state that the above types of membranes with cut-off properties are appropriately used. be able to. Other resins include carbon fibers within the range of 200,000 to 400,000. Membranes with to-off can generally be used.

限外ろ過装置に対する供給溶液の乾燥含量は通常8〜25重量%の範囲内である べきである。この方法は一般に約1.0〜15barの圧力で実施され、膜を通 る流量は温度の上昇によって増加する。しかし、選択した温度が樹脂または膜に とって有害でないように注意しなければならない。上記種類の膜と、例えば尿素 −ホルムアルデヒド、メラミン−ホルムアルデヒドおよびポリアミノポリアミド エピクロロヒドリン樹脂の分離とに対しては、30〜45℃の範囲内の温度を用 いるのが適当である。The dry content of the feed solution to the ultrafiltration device is usually in the range 8-25% by weight. Should. The process is generally carried out at a pressure of about 1.0-15 bar and is passed through a membrane. The flow rate increases with increasing temperature. However, the selected temperature may cause the resin or membrane to Care must be taken to ensure that it is not harmful. Membranes of the above type and e.g. urea - formaldehyde, melamine - formaldehyde and polyaminopolyamide For separation of epichlorohydrin resin, temperatures within the range of 30-45°C are used. It is appropriate to be there.

膜装置からの濃縮液は供給タンクを介して同膜装置に再循環し、好ましい濃度が 得られるまで膜装置を数回通過するように、ろ過を実施するのが有利である。こ の代りに、濃縮液に対して数個の膜装置での連続的な処理を実施することも当然 可能である。Concentrate from the membrane unit is recycled to the membrane unit via a feed tank until the desired concentration is reached. It is advantageous to carry out the filtration in several passes through the membrane device until obtained. child Alternatively, it is also natural to carry out continuous treatment of the concentrate with several membrane devices. It is possible.

以下ではUF透過液と呼ぶ、限外ろ過装置から得られた低分子量ポリマーを含む 水溶液、ろ液すなわち透過液は、再重合のために最初の樹脂の重合反応器に戻し て、物質を損失しない経済的プロセスを形成する。Contains low molecular weight polymers obtained from the ultrafiltration device, hereinafter referred to as UF permeate. The aqueous solution, filtrate or permeate, is returned to the first resin polymerization reactor for repolymerization. to form an economical process that does not result in material loss.

限外ろ過装置での分離は、最初の乾燥樹脂含量すなわち高分子量と低分子量のポ リマー分画の少なくとも5重量%が透過溶液中に分離されるように実施するのが 好ましい。透過溶液中に分離された物質量とこれに付随する水量とに依存して、 UF−透過液の改良工程を重合反応器への再循環の前に含めることができる。こ の量が少量で、5〜10重量%の範囲内である場合には、UF−透過液を直接再 重合に運ぶこともできる。さもなければ、重合−分離系の水残部が多すぎないよ うに、またこの系への好ましくない生成物の許容できない量の蓄積が避けられる ように、UF−透過液の改良を実施するのが適当で本発明の好ましい実施態様に よると、UF−透過液を重合工程に再循環させる前にポリマー物質の溶液から水 の少なくとも一部を除去するように改良する。この改良は例えば蒸発またはいわ ゆる逆浸透膜ろ過によって実施することができる。逆浸透プロセスは比較的安価 であり、UF−透過液中のポリマー物質に対する熱負荷が低いという点で有利で あるので、この改良を逆浸透によって実施するのが好ましい。逆浸透プロセスは これによって生ずる未反応上ツマ−および副生成物(例えばホルムアルデヒド) の分離に関しても有利である。逆浸透によって得られた濃縮UF−透過液は樹脂 の合成に用いられ、再重合のために再循環されるが、逆浸透装置の膜を通過した 溶液、以下ではRO−透過液と呼ぶ逆浸透透過液は供給タンクに運び、その少な くとも一部を希釈液として実際の樹脂合成中に用いることができる。The separation in the ultrafiltration device is based on the initial dry resin content, i.e. high and low molecular weight polymers. The procedure is such that at least 5% by weight of the reamer fraction is separated into the permeate solution. preferable. Depending on the amount of substance separated in the permeate solution and the associated amount of water, A modification step of the UF-permeate can be included before recycling to the polymerization reactor. child If the amount of It can also be carried into polymerization. Otherwise, make sure there is not too much water left in the polymerization-separation system. This also avoids the accumulation of unacceptable amounts of undesirable products in the system. As such, it is appropriate to carry out the modification of the UF-permeate in accordance with the preferred embodiment of the present invention. According to Improved to remove at least part of. This improvement can be achieved by e.g. evaporation or This can be carried out by conventional reverse osmosis membrane filtration. Reverse osmosis process is relatively inexpensive is advantageous in that the thermal load on the polymeric substances in the UF-permeate is low. Therefore, it is preferable to carry out this improvement by reverse osmosis. The reverse osmosis process is This results in unreacted additives and by-products (e.g. formaldehyde). It is also advantageous in terms of separation. Concentrated UF obtained by reverse osmosis - permeate is resin used in the synthesis of fluorine and recycled for repolymerization, but passed through the membrane of a reverse osmosis device. The solution, reverse osmosis permeate, hereafter referred to as RO-permeate, is conveyed to a feed tank and its At least a portion can be used as a diluent during actual resin synthesis.

逆浸透膜装置においてUF−透過液の処理を実施して、これに含まれる水の一部 を除去して、少なくとも25重量%の乾量含量を有する溶液を適当に形成するこ とができる。逆浸透における適当な温度は約30〜50℃であり、圧力は約20 〜BObarであるのが適切である。逆浸透装置の膜は複合フィルム材料または ポリベンズイミダシロンまたはセルロースアセテートから適当に構成される。The UF-permeate is treated in a reverse osmosis membrane device, and some of the water contained in it is removed. to suitably form a solution having a dry content of at least 25% by weight. I can do it. A suitable temperature for reverse osmosis is about 30-50°C and a pressure of about 20°C. ~BObar is appropriate. The membrane of the reverse osmosis device is made of composite film material or Suitably composed of polybenzimidacylon or cellulose acetate.

本発明の方法をホルムアルデヒドに基づく樹脂に用いる場合には、限外ろ過工程 への供給材料にホルムアルデヒド結合剤を加えることが可能であり、有利である 。この添加は最終生成物中のホルムアルデヒド含量をさらに減するために実施す る。RO−濃縮生成物により多くのホルムアルデヒドを結合させるために、UF −透過液にホルムアルデヒド結合剤を加えることも有利である。このようにして 、生成物およびプロセス中の遊離ホルムアルデヒドの総負荷はさらに減する。ホ ルムアルデヒド結合剤がホルムアルデヒドと共にジメチロール尿素を形成する尿 素であることが好ましい。When using the method of the invention with formaldehyde-based resins, an ultrafiltration step It is possible and advantageous to add formaldehyde binders to the feed to . This addition is carried out to further reduce the formaldehyde content in the final product. Ru. UF to bind more formaldehyde to the RO-enriched product - It is also advantageous to add a formaldehyde binder to the permeate. In this way , the total free formaldehyde load in the product and process is further reduced. Ho Urine where the lumaldehyde binder forms dimethylol urea with formaldehyde It is preferable that it is pure.

本発明はまた、重合反応器、水溶性合成樹脂の分画化と精製のための第1M装置 を含み、この分離からの透過液を改良するための第2膜装置をも含み、これによ って第1膜装置の透過液出口が供給タンクを介して第2膜装置に連結しているプ ラントにも関する。The present invention also provides a polymerization reactor, a 1M device for fractionation and purification of water-soluble synthetic resins. and a second membrane device for improving the permeate from this separation; The permeate outlet of the first membrane device is connected to the second membrane device via the supply tank. Also related to runt.

2つの分離装置を含み、本発明の好ましい実施態様によるポリマー合成プラント の範囲に含まれるプラントを以下で、このようなプラントの概略フローチャート を示す添付図を参照しながら、詳述する。Polymer synthesis plant according to a preferred embodiment of the invention, comprising two separation devices Below is a schematic flowchart of such a plant. This will be described in detail with reference to the accompanying drawings showing the figure.

プラントは水溶性ポリマーの合成用反応器1を含む。The plant includes a reactor 1 for the synthesis of water-soluble polymers.

反応器は供給タンク2に連結する。供給タンク2から管3と4が限外ろ過装置5 に通ずる。装置の濃縮液側(Cによって示す)から、高分子量分画を取出すこと ができ、すなわち濃縮液を管6を介して、次に続く限外ろ過のために、供給タン ク2に戻す。限外ろ過装置の透過液側(Pによって示す)は第2供給タンク7に 連結し、第2供給タンク7は次に管8と9によって第2膜装置すなわち逆浸透装 置10に連結する。逆浸透装置の透過液側は管12aを介して供給タンク2に連 結し、管12bを介して廃水処理プラントに連結することができるが、装置の濃 縮液側は管11を介して供給タンク7に連結し、弁15と管16によって反応器 1に連結する。供給タンク2から高分子量生成物は管3、弁13および管14に よって得られる。樹脂合成の原料物質は管17を介して反応器1に装入する。The reactor is connected to a feed tank 2. Tubes 3 and 4 from supply tank 2 lead to ultrafiltration device 5 It leads to Removing the high molecular weight fraction from the concentrate side of the apparatus (denoted by C) , i.e. the concentrate can be passed through tube 6 to the feed tank for subsequent ultrafiltration. Return to step 2. The permeate side of the ultrafiltration device (indicated by P) is connected to the second supply tank 7. The second supply tank 7 is then connected to a second membrane device or reverse osmosis device by means of pipes 8 and 9. Connect to position 10. The permeate side of the reverse osmosis device is connected to the supply tank 2 via pipe 12a. can be connected to a wastewater treatment plant via pipe 12b; The condensate side is connected to the feed tank 7 via a pipe 11 and connected to the reactor by a valve 15 and a pipe 16. Connect to 1. High molecular weight product from feed tank 2 is passed to line 3, valve 13 and line 14. Therefore, it is obtained. Raw materials for resin synthesis are charged into the reactor 1 via a pipe 17.

水溶性合成樹脂の実際の合成はバッチ式プロセスであるが、重合以外ではプラン トを連続操作することができる。The actual synthesis of water-soluble synthetic resins is a batch process, but processes other than polymerization are planned. can be operated continuously.

例えば管6と12に連結して、装置5とタンク7との間に存在する、必要な貯蔵 タンクは図面には示さない。the necessary storage present between the device 5 and the tank 7, e.g. connected to the pipes 6 and 12; Tanks are not shown on the drawings.

図面によると、プラントは次のように作動するように配置するが、他の方法も前 述したように可能である。広範囲な分子量分布を有する合成水溶性樹脂を反応器 1内で製造して、供給タンク2に導入する。供給タンク2に水を添加する。供給 タンク2からの溶液を限外ろ過装置5に通し、ここでこの溶液を2種類の溶液に 分離する。According to the drawings, the plant is arranged to operate as follows, but other methods are also possible: As mentioned above, it is possible. Synthetic water-soluble resin with a wide range of molecular weight distribution is processed into a reactor. 1 and introduced into the supply tank 2. Add water to supply tank 2. supply The solution from tank 2 is passed through ultrafiltration device 5 where it is divided into two solutions. To separate.

水、低分子量ポリマー、未反応モノマーおよび副生成物を含む透過溶液は膜を通 過し、図面に示すように第2供給タンク7に導かれる。低い分離度では、この透 過溶液を直接反応器に導くことができる。溶液の大部分は膜の入口側すなわち濃 縮液側に残留する。この溶液の濃度を高めるために、この溶液を再び供給タンク に戻し、ポンプ(図面に示さない)によって限外ろ過装置の膜の表面に沿って再 度流動させることができる。溶液をこのようにして一定時間処理した場合には、 生成物すなわち好ましい高分子量ポリマーの濃縮溶液を管3と14によって供給 タンクから取出す。The permeate solution containing water, low molecular weight polymers, unreacted monomers and by-products is passed through the membrane. and is led to the second supply tank 7 as shown in the drawing. At low resolution, this transparency The supersolution can be led directly to the reactor. Most of the solution is on the inlet side of the membrane, i.e. concentrated. Remains on the condensate side. Supply this solution again to the tank to increase its concentration. along the surface of the ultrafiltration device membrane by a pump (not shown in the drawing). can be made to flow. If the solution is treated in this way for a certain period of time, A concentrated solution of the product, the preferred high molecular weight polymer, is supplied by tubes 3 and 14. Remove from tank.

第2供給タンク7に回収された、限外ろ過膜装置から得られた透過液は第2膜装 置lOに導き、逆浸透によって濃縮する。UF−透過液の濃縮液は一定時間再循 環させ、好ましい量の水を通過させる装置の膜に沿って流動させる。逆浸透装置 からの最終濃縮液を次に管8と15とを介して反応器に戻し、樹脂の新たな製造 のための原料物質として用いる。第211!装置の膜を通過する溶液は主として 水から成り、その一部は重合工程に再使用される。The permeate obtained from the ultrafiltration membrane device and collected in the second supply tank 7 is transferred to the second membrane device. Bring to 100 ml and concentrate by reverse osmosis. UF-Permeate concentrate is recirculated for a certain period of time. The system is ringed and allowed to flow along the membrane of the device, allowing the desired amount of water to pass through. reverse osmosis equipment The final concentrate from is then returned to the reactor via tubes 8 and 15 for new production of resin. used as a raw material for 211th! The solution passing through the membrane of the device is mainly It consists of water, part of which is reused in the polymerization process.

本発明を限定することを意図するものではない次の実施例によって、本発明をさ らに説明する。部と%は、他に指示しないかぎり、それぞれ重量部と重量%とを 意味する。The invention is illustrated by the following examples, which are not intended to limit the invention. I will explain further. Parts and percentages refer to parts by weight and percentages by weight, respectively, unless otherwise specified. means.

実施例1 水溶性陽イオン尿素−ホルムアルデヒド樹脂を、溶液の濃度が23乾量%になる まで、水で希釈した。この溶液55.2kgをUF−ps−20型の膜すなわち ポリスルホン膜を備えた限外ろ過装置で濃縮した。37.9%の濃度の溶液が得 られるまで、溶液を限外ろ過プラントに通過させた。Example 1 Water-soluble cationic urea-formaldehyde resin is added to a solution concentration of 23% dry weight. diluted with water until Transfer 55.2 kg of this solution to a UF-ps-20 type membrane, i.e. It was concentrated using an ultrafiltration device equipped with a polysulfone membrane. A solution with a concentration of 37.9% was obtained. The solution was passed through an ultrafiltration plant until

濃縮溶液量は28.2kgであった。透過液すなわち膜を通過した、乾量含量1 0%を有する溶液27.6kgが回収された。The amount of concentrated solution was 28.2 kg. The permeate, i.e. the dry content of the membrane passed through the membrane, 1 27.6 kg of solution with 0% was collected.

このようにして、初期量12.6kgから樹脂乾量2.64kgを分離した。入 口圧力は10bar 、温度は40℃であり、ろ過は3時間実施した。In this way, a dry amount of 2.64 kg of resin was separated from the initial amount of 12.6 kg. Enter The mouth pressure was 10 bar, the temperature was 40°C, and the filtration was carried out for 3 hours.

初期生成物中の遊離ホルムアルデヒド量は樹脂の乾量基準で8.85%であった 。すなわち溶液55.2kg中0.87kgであった。濃縮液中の遊離ホルムア ルデヒド量は樹脂の乾量基準で4.1%、すなわち0.41kgであり、透過液 中の遊離ホルムアルデヒド量は乾量基準で19.1%すなわち0.53鰭であっ た。ホルムアルデヒドの総実測量0.94kgと添加量0.87kgとの間の差 はろ過膜に樹脂が若干加水分解されたことによって説明される。The amount of free formaldehyde in the initial product was 8.85% based on the dry weight of the resin. . That is, it was 0.87 kg in 55.2 kg of solution. Free formua in concentrate The amount of aldehyde was 4.1% based on the dry weight of the resin, or 0.41 kg, and the permeate The amount of free formaldehyde in the fish was 19.1% on a dry weight basis, or 0.53 fins. Ta. Difference between the total measured amount of formaldehyde 0.94 kg and the added amount 0.87 kg This is explained by the slight hydrolysis of the resin in the filtration membrane.

実施例2 水溶性陽イオン尿素−ホルムアルデヒド樹脂を、8.1乾量%の濃度になるまで 水で希釈した。この溶液88.8)cgをポリスルホン膜を含む限外ろ過装置で 濃縮した。濃度20.4%の溶液が得られるまで溶液を限外ろ過装置に通した。Example 2 Add water-soluble cationic urea-formaldehyde resin to a concentration of 8.1% dry weight. Diluted with water. 88.8) cg of this solution was filtered through an ultrafiltration device containing a polysulfone membrane. Concentrated. The solution was passed through an ultrafiltration device until a solution with a concentration of 20.4% was obtained.

得られた濃縮溶液量は20.8kgすなわち乾燥樹脂4.2kgであった。膜を 通過した、乾量含量2.8%を有する透過溶液48.2kgすなわち乾量1.3 5kgが初期量5.8 kgから分離された。ろ過は1.5時間実施した。The amount of concentrated solution obtained was 20.8 kg, or 4.2 kg of dry resin. membrane 48.2 kg of permeate solution having a dry content of 2.8% or a dry weight of 1.3 5 kg was separated from the initial amount of 5.8 kg. Filtration was carried out for 1.5 hours.

遊離ホルムアルデヒドの総添加量は0.390 kgであり、その中の0.23 0 kgが濃縮液中で検出され、0.171 kgが透過液中で検出された。樹 脂の乾量基準で、初期生成物の6.9%含量に比べて、濃縮液は遊離ホルムアル デヒド5.47%を含み、透過液は12.7%を含んでいた。The total amount of free formaldehyde added was 0.390 kg, of which 0.23 0 kg was detected in the concentrate and 0.171 kg in the permeate. tree On a dry weight basis, the concentrate contains free formal It contained 5.47% dehyde and the permeate contained 12.7%.

実施例3 乾量8.9%を含む樹脂溶液83.0kgを用いて、実施例2をくり返した。4 0℃、1Obarにおける2時間後に乾量含量23.4%を含む濃縮液24.2 kgと、乾量含量2.95%を含む透過液58.8)cgが得られた。遊離ホル ムアルデヒド0.510弯を加え、濃縮液中で0.280 )cgが検出され、 透過液中で0.241 kgが検出された。樹脂の乾量基準で初期生成物中の6 .9%の含量に比べて、濃縮液は遊離ホルムアルデヒド4.9%を含み、透過液 は遊離ホルムアルデヒド13゜9%を含んでいた。Example 3 Example 2 was repeated using 83.0 kg of resin solution containing 8.9% dry weight. 4 Concentrate 24.2 with a dry content of 23.4% after 2 hours at 0° C. and 1 Obar kg and 58.8) cg of permeate containing a dry content of 2.95%. free hole After adding 0.510 cg of maldehyde, 0.280 cg was detected in the concentrated solution, 0.241 kg was detected in the permeate. 6 in the initial product on a dry weight basis of resin. .. The concentrate contains 4.9% free formaldehyde compared to the 9% content, and the permeate contains 4.9% free formaldehyde. contained 13.9% free formaldehyde.

実施例4 実施例1からの濃縮樹脂を潤滑紙力増強剤として、パイロット製紙機においてテ ストした。バルブは漂白軟木50%と24”SRの硬水50%とから成るもので あった。Example 4 The concentrated resin from Example 1 was used as a lubricating paper strength agent in a pilot paper machine. There was a strike. The valve is made of 50% bleached softwood and 50% 24” SR hard water. there were.

pHは4.5であった。pH was 4.5.

初 期 0.5 0.93 13.7 3.0 1.63 19.7 濃縮物 0.5 1.0B 15.4 乾量含量8.8%すなわち4.92kgで、実施例1を数回くり返した後に得ら れた透過液の混合物である透過溶液55.8kgを逆浸透のためにろ過装置に装 入した。薄膜状複合膜を用いた。プロセスは40bar % 40℃において2 時間実施した。乾量含量23.0%すなわち乾燥樹脂4.78kgを含むRO− 濃縮液20.8kgと乾量含量0.2%すなわち乾燥樹脂0 、07 kgを含 むRO−透過液4.78kgを回収した。Initial period 0.5 0.93 13.7 3.0 1.63 19.7 Concentrate 0.5 1.0B 15.4 Obtained after repeating Example 1 several times with a dry content of 8.8% or 4.92 kg. 55.8 kg of permeate solution, which is a mixture of permeate solution, was loaded into a filtration device for reverse osmosis. I entered. A thin composite membrane was used. The process was carried out at 40 bar% at 40°C. It was carried out for an hour. RO- with a dry content of 23.0% or 4.78 kg of dry resin. Containing 20.8 kg of concentrate and a dry content of 0.2%, i.e. 0.07 kg of dry resin. 4.78 kg of RO-permeate was collected.

遊離ホルムアルデヒドの総添加量は0.930 kgであり、その中の0.41 3 )cgはRO−濃縮液中で検出され、0.532檀はRO−透過液中で検出 された。The total amount of free formaldehyde added was 0.930 kg, of which 0.41 3) cg was detected in the RO-concentrate and 0.532 g was detected in the RO-permeate. It was done.

尿素−ホルムアルデヒド樹脂の合成は、RO−濃縮液を原料物質の1つとして用 いて実施した。標準調合法に従って、他の尿素とホルムアルデヒドおよびその他 の成分を加えた。RO−濃縮液の量は加えた総乾量の20%乾量であった。The synthesis of urea-formaldehyde resin uses RO-concentrate as one of the raw materials. It was carried out. Other urea and formaldehyde and other according to standard formulation method ingredients were added. The amount of RO-concentrate was 20% dry weight of the total dry weight added.

得られた生成物は標準的性質を有し、良好な湿潤強度結果を示した。The product obtained had standard properties and showed good wet strength results.

実施例6 乾量含量8.6%すなわち乾量5.3 kgを有する透過溶液81.6)cgを RO−ろ過装置に加えた。薄膜状複合膜を用いた。プロセスは40bar 、  40℃において2.5時間実施した。Example 6 81.6) cg of the permeate solution having a dry content of 8.6% or a dry weight of 5.3 kg. Added to RO-filtration device. A thin composite membrane was used. The process is 40bar, It was carried out for 2.5 hours at 40°C.

乾量含量25%すなわち乾燥樹脂4.8 kgを含むRO−濃縮液19.0kg と、乾量含量1.17%すなわち乾燥重量0.5 kgを含むRO−透過液とが 得られた。19.0 kg of RO-concentrate with a dry content of 25% or 4.8 kg of dry resin and an RO-permeate containing a dry content of 1.17% or a dry weight of 0.5 kg. Obtained.

このRO−濃縮液を新たな合成の原料物質として用いた。新たな合成のために添 加した総化学薬品量の約24%がRO−濃縮液からのものであった。新しい樹脂 は標準的性質を有し、良好な湿潤強度結果を示した。This RO-concentrate was used as starting material for a new synthesis. Added for new synthesis Approximately 24% of the total chemical added was from the RO-concentrate. new resin had standard properties and showed good wet strength results.

実施例7 乾量21%すなわち7.8 kgで硫黄分子を含む陰イオン性尿素−ホルムアル デヒド樹脂の溶液37.1kgを限外ろ過装置に通した。10bar 、 40 ℃の温度における4時間後に、乾量含量29.4%すなわち6.70kgの濃縮 溶液22Jkgと乾量含量7.6%すなわち1.1 kgの透過液14.3kg とが得られた。Example 7 Anionic urea-formal containing sulfur molecules with a dry weight of 21% or 7.8 kg 37.1 kg of the dehyde resin solution was passed through an ultrafiltration device. 10bar, 40 After 4 hours at a temperature of °C, concentration of dry content 29.4% or 6.70 kg 22 J kg of solution and 14.3 kg of permeate with a dry content of 7.6% or 1.1 kg was obtained.

加えた硫黄基約30%は、樹脂の最終湿潤強度効果に不利な影響を与える好まし くないモノマー副生成物の一部となった。Approximately 30% of the added sulfur groups are unfavorable as they adversely affect the final wet strength effect of the resin. It became part of the monomer by-products.

硫黄を含むモノマーの総添加量は0.122 kgであった。The total amount of sulfur-containing monomers added was 0.122 kg.

濃縮液は硫黄含有モノマーo、oekgを含み、透過液はQ、082 kgを含 んでいた。樹脂の乾量基準で、初期生成物は1.56%、濃縮液は0.89%、 透過液は5.6%を含有していた。The concentrate contains sulfur-containing monomers o, oe kg, and the permeate contains Q, 082 kg. I was reading. Based on the dry weight of the resin, the initial product is 1.56%, the concentrate is 0.89%, The permeate contained 5.6%.

これらの生成物も標準方法に従って、セルロース繊維からのホルムアルデヒド放 出に関してテストした。These products also undergo formaldehyde release from cellulose fibers according to standard methods. I tested it for output.

μg/乾量mg 初期生成物 92 実施例8 尿素−ホルムアルデヒド樹脂と共にストックに加えた遊離ホルムアルデヒド添加 量と製紙機の乾燥空気中に放出されたホルムアルデヒド量との関係を、パイロッ ト装置でテストした。μg/mg dry weight Initial product 92 Example 8 Free formaldehyde addition added to stock with urea-formaldehyde resin The relationship between the amount of formaldehyde and the amount of formaldehyde released into the dry air of the paper machine was Tested on standard equipment.

白水系は完全に閉鎖されており、テストは現状で実施した。The Hakusui system was completely closed, and the test was conducted under current conditions.

湿潤紙力 ストックへの 空気中の 増強剤 遊11iIcH20C1(20測量添加量 C)120添加量 PPm 2.0 55 0.81 2.4 HO,9G 遊離アルデヒド含量が異なる点以外は同じの尿素−ホルムアルデヒド樹脂をテス トした。生成物Aは樹脂の乾量基準で遊離ホルムアルデヒド7.14%を含み、 生成物Bは樹脂の乾量基準で遊離ホルムアルデヒド2.25%を含有していた。Wet paper strength to stock in air Enhancer 11iIcH20C1 (20 measured addition amount C) 120 addition amount PPm 2.0 55 0.81 2.4 HO, 9G The same urea-formaldehyde resins were tested except for their different free aldehyde contents. I did it. Product A contains 7.14% free formaldehyde on a dry basis of resin; Product B contained 2.25% free formaldehyde on a dry basis of resin.

乾量 遊+11cH20* CH20* 実測量生成物 添加量 添加量 白水 中 空気中% ig/win ppm ppm A 2.44 55.8 43 1.08B 2.50 17.5 15 0. 41*CH2O:ホルムアルデヒド ↓ 補正書の写しく翻訳文)提出書(特許法第184条の8)平成元年7月19日 特許庁長官 吉 1)文 毅 殿 1、国際出願番号 PCT/5E87100637 2、発明の名称 合成水溶性ポリマーの分離方法およびプラント3、特許出願人 住 所 スウェーデン国、ニス−10061ストツクホルム、ボックス 115 50名 称 キャスク ノーベル アクチェボラーグ代表者 ザイド ショール ド (国 籍) スウェーデン国 4、代理人 〒105 住 所 東京都港区虎ノ門二丁目8番1号→ 請 求 の 範 囲 1、合成水溶性樹脂の分離および再使用方法において、水溶性合成樹脂の水溶液 を限外ろ過膜装置に装入して、ここで2種類の溶液すなわち主として高分子量を 有するポリマー分子を含む濃縮液と、低分子量を有するポリマー分子、モノマー および副生成物を含む透過液とに分離し、次に前記透過液を再重合のための重合 工程に再循環させることを特徴とする方法。Dry amount Free + 11cH20* CH20* Actual amount Product Added amount Added amount White water Medium air% ig/win ppm ppm A 2.44 55.8 43 1.08B 2.50 17.5 15 0. 41*CH2O: Formaldehyde ↓ Copy and translation of written amendment) Submission (Article 184-8 of the Patent Law) July 19, 1989 Yoshi, Commissioner of the Patent Office 1) Takeshi Moon 1. International application number PCT/5E87100637 2. Name of the invention Synthetic water-soluble polymer separation method and plant 3, patent applicant Address: Box 115, Nis-10061 Stockholm, Sweden 50 Names Cask Nobel Akcebolag Representative Zaid Shawl de (Nationality) Sweden 4. Agent〒105 Address: 2-8-1 Toranomon, Minato-ku, Tokyo → The scope of the claims 1. In the method for separating and reusing synthetic water-soluble resin, an aqueous solution of water-soluble synthetic resin is charged into an ultrafiltration membrane device, where two types of solutions, mainly high molecular weight ones, are separated. Concentrated liquid containing polymer molecules with low molecular weight, monomers with low molecular weight and a permeate containing by-products, and then the permeate is polymerized for repolymerization. A method characterized by recycling into the process.

2 限外ろ過装置からの濃縮液を供給タンクを介して同限外ろ過装置に再循環さ せ、好ましい濃縮度が得られるまで、数回同装置に通すことを特徴とする請求項 l記載の方法。2 The concentrate from the ultrafiltration device is recirculated to the same ultrafiltration device via the supply tank. and passing through the same device several times until a desired concentration is obtained. The method described in l.

8、透過液を再循環させる前に改良することを特徴とする請求項1または2記載 の方法。8. Claim 1 or 2, characterized in that the permeate is improved before being recycled. the method of.

4、透過液に対して逆浸透を実施し、逆浸透後に得られた濃縮液を重合工程に再 循環させることを特徴とする請求項3に記載の方法。4. Perform reverse osmosis on the permeate and recycle the concentrated liquid obtained after reverse osmosis into the polymerization process. 4. A method according to claim 3, characterized in that it is circulated.

5、合成水溶性樹脂がホルムアルデヒドに基づく樹脂であることを特徴とする請 求項1〜4のいずれかに記載の方法。5. A claim characterized in that the synthetic water-soluble resin is a formaldehyde-based resin. 5. The method according to any one of claims 1 to 4.

6、樹脂が尿素−ホルムアルデヒド樹脂であることを特徴とする請求項5記載の 方法。6. The resin according to claim 5, wherein the resin is a urea-formaldehyde resin. Method.

7、限外ろ過膜装置に装入した水溶液にホルムアルデヒド結合剤を加えることを 特徴とする請求項5または6に記載の方法。7. Adding a formaldehyde binder to the aqueous solution charged to the ultrafiltration membrane device 7. A method according to claim 5 or 6, characterized in that:

8、逆浸透を行う透過液にホルムアルデヒド結合剤を加えることを特徴とする請 求項5.6または7に記載の方法。8. A method characterized by adding a formaldehyde binder to the permeate for reverse osmosis. The method according to claim 5.6 or 7.

9、重合反応器(1)と限外ろ過膜装置(5)とを含み、限外ろ過膜装置の透過 液出口が重合反応器に連結していることを特徴とする合成水溶性樹脂の分離と製 造のためのプラント。9. Includes a polymerization reactor (1) and an ultrafiltration membrane device (5), and permeation of the ultrafiltration membrane device Separation and production of synthetic water-soluble resin characterized by a liquid outlet connected to a polymerization reactor A plant for construction.

10、逆浸透膜装置(lO)をさらに含み、限外ろ過膜装置のろ過液出口が逆浸 透装置に連結し、逆浸透装置の透過液出口が重合反応器に連結していることを特 徴とする請求項9記載のプラント。10. It further includes a reverse osmosis membrane device (lO), and the filtrate outlet of the ultrafiltration membrane device is a reverse osmosis membrane device. The permeate outlet of the reverse osmosis device is connected to the polymerization reactor. 10. The plant according to claim 9, wherein the plant is characterized by:

国際調査報告international search report

Claims (1)

【特許請求の範囲】 1.合成水溶性樹脂の分離および再使用方法において、水溶性合成樹脂の水溶液 を限外ろ過膜装置に装入して、ここで2種類の溶液すなわち主として高分子量を 有するポリマー分子を含む濃縮液と、低分子量を有するポリマー分子、モノマー および副生成物を含む透過液とに分離し、次に前記透過液を重合工程に再循環さ せることを特徴とする方法。 2限外ろ過装置からの濃縮液を供給タンクを介して同限外ろ過装置に再循環させ 、好ましい濃縮度が得られるまで、数回同装置に通すことを特徴とする請求項1 記載の方法。 3.透過液を再循環させる前に改良することを特徴とする請求項1または2記載 の方法。 4.透過液に対して逆浸透を実施し、逆浸透後に得られた濃縮液を重合工程に再 循環させることを特徴とする請求項3に記載の方法。 5.合成水溶性樹脂がホルムアルデヒドに基づく樹脂であることを特徴とする請 求項1〜4のいずれかに記載の方法。 6.樹脂が尿素−ホルムアルデヒド樹脂であることを特徴とする請求項5記載の 方法。 7.限外ろ過膜装置に装入した水溶液にホルムアルデヒド結合剤を加えることを 特徴とする請求項5または6に記載の方法。 8.逆浸透を行う透過液にホルムアルデヒド結合剤を加えることを特徴とする請 求項5、6または7に記載の方法。 9.重合反応器(1)と限外ろ過膜装置(5)とを含み、限外ろ過膜装置の透過 液出口が重合反応器に連結していることを特徴とする合成水溶性樹脂の分離と製 造のためのプラント。 10.逆浸透膜装置(10)をさらに含み、限外ろ過膜装置のろ過液出口が逆浸 透装置に連結し、逆浸透装置の透過液出口が重合反応器に連結していることを特 徴とする請求項9記載のプラント。[Claims] 1. In the separation and reuse method of synthetic water-soluble resin, an aqueous solution of water-soluble synthetic resin is charged into an ultrafiltration membrane device, where two types of solutions, mainly high molecular weight ones, are separated. Concentrated liquid containing polymer molecules with low molecular weight, monomers with low molecular weight and a permeate containing by-products, and then the permeate is recycled to the polymerization process. A method characterized by: 2 The concentrate from the ultrafiltration device is recirculated to the same ultrafiltration device via the supply tank. , passing through the same device several times until a desired concentration is obtained. Method described. 3. Claim 1 or 2, characterized in that the permeate is modified before being recycled. the method of. 4. Perform reverse osmosis on the permeate and recycle the concentrated liquid obtained after reverse osmosis into the polymerization process. 4. A method according to claim 3, characterized in that it is circulated. 5. A claim characterized in that the synthetic water-soluble resin is a formaldehyde-based resin. 5. The method according to any one of claims 1 to 4. 6. 6. The method according to claim 5, wherein the resin is a urea-formaldehyde resin. Method. 7. Adding a formaldehyde binder to the aqueous solution charged to the ultrafiltration membrane device 7. A method according to claim 5 or 6, characterized in that: 8. A method characterized in that a formaldehyde binder is added to the permeate for reverse osmosis. The method according to claim 5, 6 or 7. 9. It includes a polymerization reactor (1) and an ultrafiltration membrane device (5), and the permeation of the ultrafiltration membrane device Separation and production of synthetic water-soluble resin characterized by a liquid outlet connected to a polymerization reactor A plant for construction. 10. It further includes a reverse osmosis membrane device (10), and the filtrate outlet of the ultrafiltration membrane device is a reverse osmosis membrane device. The permeate outlet of the reverse osmosis device is connected to the polymerization reactor. 10. The plant according to claim 9, wherein the plant is characterized by:
JP62506293A 1987-01-19 1987-12-29 Method and plant for separating synthetic water-soluble polymer Expired - Lifetime JPH0774257B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE8700187A SE456244B (en) 1987-01-19 1987-01-19 SET AND PLANT FOR SEPARATION THROUGH ULTRAFILTRATION OF WATER-SOLUBLE SYNTHETIC POLYMERS
SE8700187-1 1987-01-19
PCT/SE1987/000637 WO1988005444A1 (en) 1987-01-19 1987-12-29 Method and plant for separation of synthetic water soluble polymers

Publications (2)

Publication Number Publication Date
JPH02501934A true JPH02501934A (en) 1990-06-28
JPH0774257B2 JPH0774257B2 (en) 1995-08-09

Family

ID=20367209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62506293A Expired - Lifetime JPH0774257B2 (en) 1987-01-19 1987-12-29 Method and plant for separating synthetic water-soluble polymer

Country Status (10)

Country Link
US (1) US5009789A (en)
EP (1) EP0442866B1 (en)
JP (1) JPH0774257B2 (en)
AT (1) ATE107937T1 (en)
CA (1) CA1326637C (en)
DE (1) DE3750168T2 (en)
ES (1) ES2005758A6 (en)
FI (1) FI99120C (en)
SE (1) SE456244B (en)
WO (1) WO1988005444A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514576A (en) * 2012-04-20 2015-05-21 ブラームス・インステリング・ボール・テクノロジス・オンデルズーク(フェー・イー・ティ・オゥ)Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Improved dilution chemical reaction method by membrane separation process

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2656544B1 (en) * 1989-12-29 1994-02-25 Diffusion Materiels Fluides Sa METHOD AND UNIT FOR SEPARATION BY TANGENTIAL MICROFILTRATION, REVERSE OSMOSIS OR TWO - STAGE ULTRAFILTRATION.
FR2658092B1 (en) * 1990-02-13 1992-05-15 Atochem PROCESS FOR THE PURIFICATION OF POLYORGANOPHOSPHAZENE SOLUTIONS BY MEMBRANES.
DE4202539A1 (en) * 1992-01-30 1993-08-05 Duerr Gmbh & Co RECOVERY SYSTEM FOR WATER PAINT SURPLUS
TW270882B (en) * 1992-09-08 1996-02-21 American Cyanamid Co
US5501798A (en) * 1994-04-06 1996-03-26 Zenon Environmental, Inc. Microfiltration enhanced reverse osmosis for water treatment
JPH10506459A (en) * 1994-09-09 1998-06-23 マイクロモジュール・システムズ Circuit membrane probe
FR2728182B1 (en) * 1994-12-16 1997-01-24 Coatex Sa PROCESS FOR OBTAINING GRINDING AND / OR DISPERSING AGENTS BY PHYSICOCHEMICAL SEPARATION, AGENTS OBTAINED AND USES THEREOF
US6168719B1 (en) 1996-12-27 2001-01-02 Kao Corporation Method for the purification of ionic polymers
US5836321A (en) * 1997-04-07 1998-11-17 Chrysler Corporation Process of recycling a water laden solvent which was used to purge a point supply line of a paint sprayer
NL1009218C2 (en) * 1998-05-20 1999-11-24 Akzo Nobel Nv Preparation of a polymer using a small average pore size inorganic membrane.
EP0995483A1 (en) * 1998-10-23 2000-04-26 The Procter & Gamble Company A cross-flow filtration apparatus
DE19921507A1 (en) 1999-05-10 2000-11-16 Basf Ag Process for the fractionation of water-soluble or dispersible amino group-containing polymers with a broad molar mass distribution
AU2003232873A1 (en) * 2002-05-28 2003-12-12 Hans David Ulmert Method for treatment of sludge from waterworks and wastewater treament plants
US7396457B2 (en) * 2006-06-27 2008-07-08 Hyosung Corporation Apparatus and method for recovering acetic acid and catalyst in process for preparation of 2,6-naphthalenedicarboxylic acid
US7932349B2 (en) * 2006-09-18 2011-04-26 Hercules Incorporated Membrane separation process for removing residuals polyamine-epihalohydrin resins
WO2009038758A1 (en) * 2007-09-20 2009-03-26 Verenium Corporation Wastewater treatment system
EP2042485A1 (en) * 2007-09-28 2009-04-01 Huntsman International Llc Process for fractionating a mixture of polyisocyanates
MA44180A1 (en) * 2013-11-08 2019-07-31 Georgia Pacific Chemicals Llc Depressants for use in separation processes
SG11201701878TA (en) 2014-09-17 2017-04-27 Vito Nv Reaction process with membrane separation
CN108368215A (en) * 2015-12-16 2018-08-03 罗地亚聚酰胺特殊品公司 Method for reducing content of formaldehyde from cationic melamine-formaldehyde resin solution
CN106492722B (en) * 2016-10-21 2018-07-20 山西省交通科学研究院 A kind of aqueous epoxy resins preparation facilities
US20180230024A1 (en) * 2017-02-08 2018-08-16 Casey Glynn High toxicity wastewater mitigation methods and systems
US10864483B2 (en) 2018-11-16 2020-12-15 Integrated Protein Technologies, Snc. Molecular weight filtration system and apparatus
CN115485319A (en) 2020-04-30 2022-12-16 凯米拉公司 Process for manufacturing wet strength resins

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3565256A (en) * 1969-03-24 1971-02-23 Amicon Corp Ultrafiltration cell
US3567031A (en) * 1969-05-29 1971-03-02 Amicon Corp Autoagitating ultrafiltration apparatus
US4159251A (en) * 1976-09-29 1979-06-26 Pharmaco, Inc. Ultrafiltration membranes based on heteroaromatic polymers
JPS5410197A (en) * 1977-06-27 1979-01-25 Heihachirou Arakawa Circulating way apparatus for decorative fish
JPS5462980A (en) * 1977-10-28 1979-05-21 Niigata Engineering Co Ltd Ultrafiltration
US4340702A (en) * 1979-10-22 1982-07-20 The B. F. Goodrich Company Ultrafiltration of vinyl resin latices and reuse of permeate in emulsion polymerization
US4308121A (en) * 1979-12-21 1981-12-29 E. I. Du Pont De Nemours And Company Electrocoating process using polyhydroxyamine and second polymers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015514576A (en) * 2012-04-20 2015-05-21 ブラームス・インステリング・ボール・テクノロジス・オンデルズーク(フェー・イー・ティ・オゥ)Vlaamse Instelling Voor Technologisch Onderzoek (Vito) Improved dilution chemical reaction method by membrane separation process

Also Published As

Publication number Publication date
EP0442866A1 (en) 1991-08-28
SE8700187D0 (en) 1987-01-19
ATE107937T1 (en) 1994-07-15
DE3750168T2 (en) 1994-10-20
SE456244B (en) 1988-09-19
FI99120B (en) 1997-06-30
US5009789A (en) 1991-04-23
JPH0774257B2 (en) 1995-08-09
DE3750168D1 (en) 1994-08-04
ES2005758A6 (en) 1989-03-16
FI99120C (en) 1997-10-10
SE8700187L (en) 1988-07-20
EP0442866B1 (en) 1994-06-29
WO1988005444A1 (en) 1988-07-28
FI893453A0 (en) 1989-07-17
FI893453L (en) 1989-07-17
CA1326637C (en) 1994-02-01

Similar Documents

Publication Publication Date Title
JPH02501934A (en) Separation method and plant for synthetic water-soluble polymers
Koyuncu Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: effects of feed concentration and cross flow velocity
JP4868479B2 (en) Fractionation of polymers with amino groups having a broad molar mass distribution and soluble or dispersible in water
CN101652326B (en) Method for the treatment with reverse osmosis membrane
TWI715110B (en) Vorrichtung und verfahren zur reinigung von mit elektrolyten und farbstoffen verunreinigtem abwasser
Malinga et al. Cyclodextrin‐dendrimer functionalized polysulfone membrane for the removal of humic acid in water
KR20120072363A (en) Water treatment method and water treatment flocculant
JP2003154362A (en) Method and apparatus for treating water
US7077966B2 (en) Process for gelatines extraction and chromium salts recovery from tanned hides and skins shavings
JP2000508572A (en) Separation method of organic process solution generated from circuit board production
US4672113A (en) Process for purifying aqueous distillation residues during the treatment of liquids in the preparation of cellulose ethers
CN108472559B (en) Clarification method and clarification device for industrial water
JP2733573B2 (en) Ultrapure water production method and apparatus
Mignani et al. Innovative ultrafiltration for wastewater reuse
US4970001A (en) Use of chitosan to improve membrane filter performance
CN215559583U (en) Zero-emission process system device in sewage treatment
CN103717538A (en) Potabilisation method
Parekh Get your process water to come clean
US3059027A (en) Process of producing alkylated polymethylol aminoplast condensates
JP2002201267A (en) Method for producing aqueous polyamidoamine-epichlorohydrin resin
CN112739448A (en) Membrane water treatment medicine and membrane treatment method
CN114307359B (en) Thiourea and calcium thiocyanate membrane separation method
NO170856B (en) PROCEDURE AND PLANT FOR SEPARATION OF SYNTHETIC, WATER SOLUBLE POLYMERS
Oelmeyer et al. Combined flocculant systems with cationic starches in the solid/liquid separation of harbor sediments
KR20230004772A (en) Wet Strength Resin Manufacturing Process