[go: up one dir, main page]

JPH02501830A - Neutralization of polyalkylene carbonate polyols for polyurethane prepolymer synthesis - Google Patents

Neutralization of polyalkylene carbonate polyols for polyurethane prepolymer synthesis

Info

Publication number
JPH02501830A
JPH02501830A JP63501715A JP50171588A JPH02501830A JP H02501830 A JPH02501830 A JP H02501830A JP 63501715 A JP63501715 A JP 63501715A JP 50171588 A JP50171588 A JP 50171588A JP H02501830 A JPH02501830 A JP H02501830A
Authority
JP
Japan
Prior art keywords
acid
prepolymer
polyalkylene carbonate
stirring
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63501715A
Other languages
Japanese (ja)
Inventor
マンキュシ,アンソニー ダブリュ.,ザ サード
ワシントン,サミュエル ジェイ.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Chemical Co
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of JPH02501830A publication Critical patent/JPH02501830A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/089Reaction retarding agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 ポリウレタンプレポリマー合成のためのポリアルキレンカーボネートポリオール の中和 ポリウレタンはフオーム生成物を考える際最初に浮かぶものであり、実際ポリウ レタンは固体フオームマーケットを支配している。そのようなフオームは硬質も しくは軟質のいずれかであり、その製造法によって異なる。事実、ポリウレタン システムは重合および加工法の大きな変化を可能にし;ウレタン部分を展開およ び発泡に適した部分に保つ複雑さである。[Detailed description of the invention] Polyalkylene carbonate polyol for polyurethane prepolymer synthesis neutralization of Polyurethane is the first thing that comes to mind when you think of foam products, and in fact polyurethane Letane dominates the solid form market. Such foams are also rigid. It can be either soft or soft, depending on the manufacturing method. In fact, polyurethane The system allows for major changes in polymerization and processing methods; This is the complexity of keeping the area suitable for foaming and foaming.

多くの高分子と同様、ポリウレタンは少なくとも原則として多くの異なる経路を 介して製造される一般的種類の物質である。しかし、工業的実用性は、例えば供 給原料入手性および加工容易性に基づ(好ましい方法をめている0例えば、ジア ミンとのビスタロロホルメートの通常の縮重合はポリウレタンを生ずるが、大規 模の実施はジイソシアネートとジオールの縮合を要求している (より一般的に は、通常の合成はジイソシアネートおよびポリオールを含み、ここでジオールは 特別なケースであり、トリオールは架橋を生ずる)。典型的例は1.4−ブタン ジオールと反応する2、4−トルエンジイソシアネート(TDI)である。あら ゆるケースにおいて、実際上の問題は個々の化学分子のレベルではなく、むしろ 物理的製造および成形工程を示している。Like many polymers, polyurethanes, at least in principle, can be It is a common type of substance produced through However, industrial practicality, e.g. Based on feedstock availability and ease of processing (determined preferred method, e.g. Conventional condensation polymerization of bistaroloformates with amines yields polyurethanes, but on a large scale The implementation of this model requires the condensation of a diisocyanate and a diol (more generally A typical synthesis involves a diisocyanate and a polyol, where the diol is A special case, triols cause crosslinking). A typical example is 1,4-butane 2,4-toluene diisocyanate (TDI) that reacts with diols. fault In all cases, the practical problem is not at the level of individual chemical molecules, but rather Showing the physical manufacturing and molding process.

ポリウレタンは加工に関してかなり困難である。良好な、有効なフオームの製造 は中空気孔もしくは生成物中の気泡の分布および大きさの正確な調節を含む、連 続気泡フオームは救命具製造には不十分であり、一方独立気泡フオームはスポン ジ製造には不十分である。体積はポリウレタン加工に関する問題と示され、この 問題は通常プし・ポリマー安定化を除く本発明の範囲内である。Polyurethane is quite difficult to process. Manufacture of good and effective forms is a continuous process involving precise control of the distribution and size of air pores or bubbles in the product. Closed cell foam is inadequate for making life preservers, while closed cell foam is It is insufficient for the production of Volume is indicated as a problem with polyurethane processing, and this Problems are generally within the scope of this invention excluding polymer stabilization.

はとんどのポリウレタンはポリエチレンを用いる方法で溶融体にするおよび成形 品に射出することは簡単にできない。Most polyurethanes are melted and molded using polyethylene. It cannot be easily injected into products.

1つの実行可能な方法は「ワンショット」法であり、これによりすべての反応体 が同時に混合され形成品に射出される。One viable method is the "one-shot" method, whereby all reactants are are simultaneously mixed and injected into the molded part.

他の方法はプレポリマー、すなわち短鎖ポリウレタン中間体の合成を調節するこ とが必要である。中間体の使用は通常より良い特性を有するポリウレタンを与え る。このプレポリマー法はワンショット法より寛大であり、および混成法が可能 であるが、現在の技術はまだ改良の余地を有している。本発明はプレポリマーの 安定性の実際的問題に関する。Another method involves controlling the synthesis of prepolymers, short-chain polyurethane intermediates. is necessary. The use of intermediates usually gives polyurethanes with better properties Ru. This prepolymer method is more forgiving than the one-shot method and allows hybridization However, current technology still has room for improvement. The present invention is based on prepolymer Concerning practical issues of stability.

特に、本発明はポリオールの処理に関する。この方法はより安定なプレポリマー および改良ウレタン生成物に至るポリアルキレンカーボネートポリオールの処理 を含む。ポリアルキレンカーボネート(PAC)ポリオールは塩基触媒化反応に より製造され、触媒のいくらかは生成物PAC中に残っている。In particular, the present invention relates to the treatment of polyols. This method produces a more stable prepolymer and processing of polyalkylene carbonate polyols leading to improved urethane products. including. Polyalkylene carbonate (PAC) polyols are suitable for base-catalyzed reactions. Some of the catalyst remains in the product PAC.

従って、従来技術はポリオール中の残留塩基種を中和するためTDI中の残留酸 種、例えばHClに依存していた。必要な場合、中和するためTDI(常に塩化 ベンゾイル)に酸クロリドを加えることも可能であるが、従来技術の限界は塩化 ベンゾイルがPACプレポリマーを安定化しないことである(多量に加えた場合 でさえ)。塩化ベンゾイルは放出する発熱反応を妨げるが、残留塩化物イオンは 生成物内に残るため多くの用途に対しHClと同じ(らい不満である。さらに、 塩化ベンゾイルは安定なプレポリマーを与えない。本発明はより長い貯蔵時間( 加工前)およびより長いゲル化時間(加工の間)の2つの利点を有する安定なP ACプレポリマーを生ずる。従って、早期硬化がおこらず、成形品がより良い物 理特性および耐環境性を有する。Therefore, the conventional technology uses residual acids in TDI to neutralize residual base species in polyols. depending on the species, e.g. HCl. If necessary, use TDI (always chloride) to neutralize. It is also possible to add acid chloride to benzoyl), but the limitation of conventional technology is that chloride Benzoyl does not stabilize the PAC prepolymer (if added in large amounts) even). Benzoyl chloride prevents the exothermic reaction from releasing, but residual chloride ions Same as HCl for many applications as it remains in the product (unsatisfactory). Benzoyl chloride does not give a stable prepolymer. The present invention has a longer storage time ( Stable P with two advantages: before processing) and longer gelation time (during processing) This produces an AC prepolymer. Therefore, early curing does not occur and the molded product is better. It has mechanical properties and environmental resistance.

PACポリオールは典型的には約250〜20000当量を有するジオールであ るが、トリオールでもよい。PACポリオールへの強酸の添加は塩基触媒を中和 し、TDIの三量体化を含む副反応を防ぐ。PAC polyols are typically diols having an equivalent weight of about 250 to 20,000. However, triol may also be used. Addition of strong acid to PAC polyol neutralizes base catalyst and prevent side reactions including trimerization of TDI.

特に、PACポリオールはそのrcPRJカウントに関する最初の特性決定を必 要とする。rCPR,はプレポリマー中の残留塩基の量を示す「調節重合速度」 を表わす。CPR測定は0.0IN HC7!で滴定するためメタノール100 m中のPAC30gを必要とする。「ウレタンポリエーテルプレポリマーおよび フオーム:反応における化学的および物理的変化の影響J 、5chotten 、 ShubmannおよびTen Boorら、J、 Chem。In particular, PAC polyols require initial characterization regarding their rcPRJ counts. Essential. rCPR, "controlled polymerization rate" indicating the amount of residual base in the prepolymer represents. CPR measurement is 0.0IN HC7! Methanol 100% for titration with Requires 30 g of PAC in m. "Urethane polyether prepolymer and Form: Effects of chemical and physical changes on reactions J, 5chotten , Shubmann and Ten Boor et al., J. Chem.

ハム」Ih5巻、3号、1960年7月参照。要点は強酸の添加による負のCP R値を得ることである。しかし−100以下のCPR値は生成物に対し有害であ り意図とは逆の結果を招くかもしれず必要ない。Ham, Vol. 5, No. 3, July 1960. The key point is negative CP due to the addition of strong acid. The goal is to obtain an R value. However, CPR values below -100 are harmful to the product. This is not necessary as it may lead to the opposite of the intended result.

用いられる強酸は、メタンスルホン酸(MSA)およびp−)ルエンスルホン酸 (PTSA)を含む。確かに多くの他の強酸も作用するが、各タイプの酸を実験 的にPACポリオールをきれいにする能力を証明するためではなくむしろ望まし くない副反応がおこるかどうかを調べるためテストした0例えば、前に示したよ うに、HCfは望ましくない酸であることがわかった。しかし事実上あらゆる有 機スルホン酸が十分作用することも明らかである。The strong acids used are methanesulfonic acid (MSA) and p-)luenesulfonic acid. (PTSA) included. Experiment with each type of acid, although certainly many other strong acids will also work. It is desirable rather than to demonstrate the ability to clean PAC polyols. For example, as shown above, we tested to see if side effects occur. However, HCf was found to be an undesirable acid. But virtually any It is also clear that organic sulfonic acids work well.

さらに、ある酸、例えばn、so、およびPTSAはTDIと直接反応し、従っ てPACポリオールはポリイソシアネートとの反応の前に酸で処理する必要があ る。Additionally, some acids, such as n, so, and PTSA, react directly with TDI and therefore PAC polyols need to be treated with acid before reaction with polyisocyanates. Ru.

この方法はプレポリマーを形成するためポリイソシアネートと反応する前もしく は後のいずれかに酸を選ばれたポリオール、特にPACと混合することを含む。This method can be used before reacting with the polyisocyanate to form a prepolymer. either later involves mixing the acid with the selected polyol, especially PAC.

混合は密閉容器内で60@F (15°C)〜95”F (35°C)において 行なうことが最良である。酸は撹拌しながらPACに加える。酸を混合するため 撹拌装置を用いてPACに酸を撹拌する。酸の量は全く少量であり:例えばPA Clfに対し酸は数1)pRi 、もしくはほんの数滴の有効量で撹拌しながら 加えられる。はんの少量の酸が必要であるので、中性希釈剤(好ましくはPAC ポリオール自身)を酸1に対し10〜50、酸に加える。酸は撹拌しながら時間 をかけて加える。PAC中の残留塩基種が処理前に公知である場合、酸の量は計 算できる。一方、酸は塩基中和を行なうため比例して加えられ過剰の投与が避け られる。従って、好ましい方法は必要な中和が得られるまでPACを撹拌しなが ら酸を加えることである。酸添加の程度は主にPAC中和の程度により異なる。Mix at 60@F (15°C) to 95”F (35°C) in a closed container. It is best to do so. Add the acid to the PAC with stirring. for mixing acids Stir the acid into the PAC using a stirrer. The amount of acid is quite small: for example PA The acid for Clf is the number 1) pRi, or an effective amount of just a few drops while stirring. Added. Since a small amount of acid is required, a neutral diluent (preferably PAC Add 10 to 50 parts of the polyol itself to the acid. Add the acid for a while while stirring. Add. If the residual base species in the PAC is known before treatment, the amount of acid is I can calculate it. On the other hand, acid is added in proportion to neutralize the base and avoid overdosing. It will be done. Therefore, the preferred method is to stir the PAC until the necessary neutralization is achieved. This is done by adding acid. The degree of acid addition depends primarily on the degree of PAC neutralization.

酸添加が不十分であると負のCPR値が得られるまで繰り返す必要がある。If the acid addition is insufficient, it may be necessary to repeat the process until a negative CPR value is obtained.

以下の例および比較実験は本発明を説明するものでありその範囲を限定するもの ではない。The following examples and comparative experiments are intended to illustrate the invention and limit its scope. isn't it.

北較炎狡人 この比較実験は安定剤としての塩化ベンジルの無効果を示している。PACポリ オールをトルエンジイソシアネートと反応させ5パーセントのイソシアネート含 量を有するプレポリマーを形成した。このプレポリマーのCPR値は上記方法に 従って調べた。処理後のプレポリマーの粘度をブルックフィールド粘度計モデル RVTDで測定しセンチポアズで示す。この機械は多くのスピンドルを含む回転 粘度計である。このスピンドルを分析する溶液内に入れ回転させる。適当なスピ ンドル検量因子にRPMを掛けることにより粘度を計算する。North China Flame Cunning This comparative experiment shows the ineffectiveness of benzyl chloride as a stabilizer. PAC poly toluene diisocyanate containing 5% isocyanate. A prepolymer having an amount of The CPR value of this prepolymer was calculated using the above method. So I investigated. Brookfield viscometer model to measure the viscosity of prepolymer after processing Measured by RVTD and expressed in centipoise. This machine is a rotating machine containing many spindles. It is a viscometer. The spindle is placed in the solution to be analyzed and rotated. appropriate speed Calculate viscosity by multiplying the calibration factor by RPM.

表 1 1.76 瞬時 1.40 74.200(74,2) 1時間0、99 40.400 (40 ,4) 1日0.006 33,000(33) 1日−2,0127,000 (27) 1〜2日−4,9824,000(24) 1〜2日−7,9529 ,800(29,8) 1〜2日−13,8941,200(41,2) 1〜 2日−31,3537,000(37) 1〜2日−61,4126,800( 26,8) 1〜2日イソシアネートのゲル化となる三量体化を含む種々の副反 応が生じたと考えられる。Table 1 1.76 instantaneous 1.40 74.200 (74,2) 1 hour 0,99 40.400 (40 ,4) 1 day 0.006 33,000 (33) 1 day - 2,0127,000 (27) 1st to 2nd day - 4,9824,000 (24) 1st to 2nd day - 7,9529 ,800 (29,8) 1-2 days - 13,8941,200 (41,2) 1-2 2nd day - 31,3537,000 (37) 1st to 2nd day - 61,4126,800 ( 26,8) Various side reactions including trimerization resulting in isocyanate gelation for 1 to 2 days It is thought that a reaction occurred.

±−上 表Hに記載の第2のテストにおいて、一定量のPACを処理するためPTSAを 用いた。次いで処理したPACを過剰のトルエンジイソシアネートと反応させ、 5パーセントのイソシアネート基を含むプレポリマーを形成した。測定は80’ Cで24時間後に行った。±− top In the second test described in Table H, PTSA was used to treat a fixed amount of PAC. Using. The treated PAC is then reacted with excess toluene diisocyanate, A prepolymer containing 5 percent isocyanate groups was formed. Measures 80' C after 24 hours.

表■ 0.2 ゲル化せず(液体のまま) −5,0ゲル化せず(液体のまま) 最初の2つの実験はTDIの三量体化を示し、一方下の2つの実験は処理したP AC製のプレポリマーの安定性を示し表■に示した第3のテストで、%NCO損 失(プレポリマーの重量パーセント)を測定することによりより定量的データを 得た。このパーセント値はジブチルアミン反応を行ない、続いてHCIでの逆滴 定により測定した。測定は80″Cで24時間後に行った。Table■ 0.2 No gelation (remains liquid) -5,0 No gelation (remains liquid) The first two experiments show trimerization of TDI, while the bottom two experiments show the trimerization of TDI, while the bottom two experiments show the trimerization of TDI In the third test shown in Table ■, which shows the stability of the prepolymer made of AC, the %NCO loss More quantitative data by measuring loss (weight percent of prepolymer) Obtained. This percentage is calculated by performing the dibutylamine reaction followed by backdropping with HCI. Measured by Measurements were taken after 24 hours at 80''C.

6.0 塩化ベンジル ゲル化 −10PTSA 0.04 1.7 ?ISA 0.01 後者の2つのケースにおけるポリオールの処理もしくは中和ハフレポリマーの三 量体化を止めるには十分である。6.0 Benzyl chloride gelation -10PTSA 0.04 1.7? ISA 0.01 Treatment of the polyol in the latter two cases or neutralization of the Haffle polymer Enough to stop quantification.

前記表に示されたように、PACポリオール中和はより有効なプレポリマーを得 るため行なわれる。As shown in the table above, PAC polyol neutralization yields a more effective prepolymer. It is done for the purpose of

補正書の翻訳文提出書 (特許法第184条の8) 平成1年8月 I日 特許庁長官 吉 1)文 毅 殿 1 特許出願の表示 PCT/US88100285 2 発明の名称 住 所 アメリカ合衆国、ミシガン 48640. ミツドランド。Submission of translation of written amendment (Article 184-8 of the Patent Act) August I, 1999 Yoshi, Commissioner of the Patent Office 1) Takeshi Moon 1 Display of patent application PCT/US88100285 2 Name of the invention Address: Michigan, USA 48640. Midland.

アポシト ロード、ダウ センター 2030名 称 ザ ダウ ケミカル カ ンパニー4代理人 補正された請求の範囲 1、安定化ポリアルキレンカーボネートポリオールを得るに有効量の酸をポリア ルキレンカーボネートポリオールに加える工程を含んでなる、プレポリマーの安 定化法。Aposite Road, Dow Center 2030 people Name: The Dow Chemical Company Npanee 4 agent Amended claims 1. Add an effective amount of acid to the polyalkylene carbonate polyol to obtain a stabilized polyalkylene carbonate polyol. The preparation of a prepolymer comprising the step of adding it to a lekylene carbonate polyol. formulation method.

2、酸が有機スルホン酸である、請求項1記載の方法。2. The method according to claim 1, wherein the acid is an organic sulfonic acid.

3、 負の制御重合速度が得られるまで酸の添加を行なう、請求項2記載の方法 。3. The method according to claim 2, wherein the addition of acid is carried out until a negatively controlled polymerization rate is obtained. .

4、酸がp−)ルエンスルホン酸もしくはメタンスルホン酸である、請求項3記 載の方法。4. Claim 3, wherein the acid is p-)luenesulfonic acid or methanesulfonic acid. How to put it on.

5、酸を撹拌しながら加える、請求項1記載の方法。5. The method of claim 1, wherein the acid is added with stirring.

6、 ポリアルキレンカーボネートポリオールに対し負の制御重合速度が測定さ れるまで酸添加の工程を繰り返す、請求項5記載の方法。6. Negative control polymerization rate was measured for polyalkylene carbonate polyol. 6. The method of claim 5, wherein the step of adding acid is repeated until the acid is added.

7、撹拌を周囲温度で行なう、請求項5記載の方法。7. The method of claim 5, wherein the stirring is carried out at ambient temperature.

8、撹拌を密閉容器内で行なう、請求項7記載の方法。8. The method according to claim 7, wherein the stirring is performed in a closed container.

9、 ポリアルキレンカーボネートポリオールに加える前に酸を希釈剤と混合す る、請求項5記載の方法。9. Mix the acid with the diluent before adding it to the polyalkylene carbonate polyol. 6. The method according to claim 5.

10、酸をプレポリマーの製造前に加える、請求項1記載の方法。10. The method according to claim 1, wherein the acid is added before the preparation of the prepolymer.

11、酸をプレポリマーの製造後に加える、請求項1記載の方法。11. The method of claim 1, wherein the acid is added after the prepolymer is prepared.

12、請求項5記載の方法の実施により製造される生成物。12. A product produced by carrying out the method of claim 5.

国際調査報告international search report

Claims (13)

【特許請求の範囲】[Claims] 1.安定化ポリアルキレンカーボネートポリオールを得るに有効量の酸をポリア ルキレンカーボネートポリオールに加える工程を含んでなる、プレポリマーの安 定化法。1. Add an effective amount of acid to the polyalkylene carbonate polyol to obtain a stabilized polyalkylene carbonate polyol. The preparation of a prepolymer comprising the step of adding it to a lekylene carbonate polyol. formulation method. 2.酸が有機スルホン酸である、請求項1記載の方法。2. 2. The method of claim 1, wherein the acid is an organic sulfonic acid. 3.負の制御重合速度が得られるまで酸の添加を行なう、請求項2記載の方法。3. 3. A process according to claim 2, wherein the addition of acid is carried out until a negatively controlled polymerization rate is obtained. 4.酸がp−トルエンスルホン酸もしくはメタンスルホン酸である、請求項3記 載の方法。4. Claim 3, wherein the acid is p-toluenesulfonic acid or methanesulfonic acid. How to put it on. 5.酸を撹拌しながら比例して加える、請求項1記載の方法。5. 2. The method of claim 1, wherein the acid is added proportionately with stirring. 6.ポリアルキレンカーボネートポリオールに対し負の制御重合速度が測定され るまで酸添加の工程を繰り返す、請求項5記載の方法。6. Negatively controlled polymerization rates were measured for polyalkylene carbonate polyols. 6. The method of claim 5, wherein the step of adding acid is repeated until the acid is added. 7.撹拌を周囲温度で行なう、請求項5記載の方法。7. 6. A method according to claim 5, wherein the stirring is carried out at ambient temperature. 8.撹拌を撹拌装置により行なう、請求項5記載の方法。8. 6. The method according to claim 5, wherein the stirring is carried out using a stirring device. 9.撹拌を密閉容器内で行なう、請求項8記載の方法。9. 9. The method according to claim 8, wherein the stirring is carried out in a closed container. 10.ポリアルキレンカーボネートポリオールに加える前に酸を希釈剤と混合す る、請求項5記載の方法。10. Mix the acid with the diluent before adding it to the polyalkylene carbonate polyol. 6. The method according to claim 5. 11.酸をプレポリマーの製造前に加える、請求項1記載の方法。11. 2. A method according to claim 1, wherein the acid is added before the preparation of the prepolymer. 12.酸をプレポリマーの製造後に加える、請求項1記載の方法。12. 2. The method of claim 1, wherein the acid is added after the prepolymer is produced. 13.請求項5記載の方法の実施により製造される生成物。13. A product produced by carrying out the method according to claim 5.
JP63501715A 1987-02-17 1988-02-01 Neutralization of polyalkylene carbonate polyols for polyurethane prepolymer synthesis Pending JPH02501830A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1495487A 1987-02-17 1987-02-17
US014,954 1987-02-17

Publications (1)

Publication Number Publication Date
JPH02501830A true JPH02501830A (en) 1990-06-21

Family

ID=21768761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63501715A Pending JPH02501830A (en) 1987-02-17 1988-02-01 Neutralization of polyalkylene carbonate polyols for polyurethane prepolymer synthesis

Country Status (6)

Country Link
EP (1) EP0363360A4 (en)
JP (1) JPH02501830A (en)
AU (1) AU605240B2 (en)
BR (1) BR8807361A (en)
CA (1) CA1320772C (en)
WO (1) WO1988006150A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190095299A (en) * 2016-12-19 2019-08-14 코베스트로 도이칠란트 아게 Process for preparing (cyclo) aliphatic polycarbonate polyols having low reactivity

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2058048T3 (en) * 1992-03-24 1999-06-16 Dow Chemical Co NEW FINISHING PROCEDURE FOR HYDROXY-FUNCTIONAL POLYETERS.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3770793A (en) * 1970-05-15 1973-11-06 American Cyanamid Co Aminium and dimonium salts used as polymerization inhibitors of diallyl digylcol carbonate
US4448727A (en) * 1976-03-22 1984-05-15 General Electric Company Color-stabilized halobisphenolethylene polycarbonates
AU536979B2 (en) * 1982-04-26 1984-05-31 Ppg Industries, Inc. Polyol(allyl carbonate) composition
DE3231397A1 (en) * 1982-08-24 1984-03-01 Bayer Ag, 5090 Leverkusen USE OF CARBONYL COMPOUNDS AND / OR HETEROANALOGIC CARBONYL COMPOUNDS AS A STABILIZING AGENT FOR SOLUTIONS CONTAINING PYROCARCOURED ACYLEDIUM CYLESTER AND POLYISUBYANITATE-ZONATE COMPOUNDS
US4528364A (en) * 1984-04-19 1985-07-09 The Dow Chemical Company Removal of alkaline catalysts from polyether polyols and polyalkylene carbonate polyols
US4814428A (en) * 1987-06-04 1989-03-21 General Electric Company Method of increasing the thermal stability of cyclic carbonate oligomers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190095299A (en) * 2016-12-19 2019-08-14 코베스트로 도이칠란트 아게 Process for preparing (cyclo) aliphatic polycarbonate polyols having low reactivity
JP2020502335A (en) * 2016-12-19 2020-01-23 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Method for producing (cyclo) aliphatic polycarbonate polyol having low reactivity

Also Published As

Publication number Publication date
CA1320772C (en) 1993-07-27
AU605240B2 (en) 1991-01-10
EP0363360A4 (en) 1990-06-27
AU1149888A (en) 1988-08-18
WO1988006150A1 (en) 1988-08-25
EP0363360A1 (en) 1990-04-18
BR8807361A (en) 1990-03-01

Similar Documents

Publication Publication Date Title
US4584362A (en) Bismuth catalyst system for preparing polyurethane elastomers
EP0989146B1 (en) Catalyst for production of polyurethane
US2901445A (en) Cellular polyurethane reaction product containing polysiloxane and method of preparing same
JP5810767B2 (en) Two-component curable polyurethane foam resin composition, urethane molded body, shoe sole, and industrial member
BRPI0708218A2 (en) dispersions comprising nanoureas
US20190352481A1 (en) Novel polyurethane curatives
JP6855461B2 (en) Storage stability activated prepolymer composition
JP2005060643A (en) Polyurethane foam and its preparation method
US4714719A (en) Catalyst for preparation of polyurethane and process for the preparation
JP7681518B2 (en) Microorganism-immobilizing carrier for water treatment, resin foam and raw material composition thereof
CN114258409B (en) Process for the preparation of flexible polyurethane foams
JPH02501830A (en) Neutralization of polyalkylene carbonate polyols for polyurethane prepolymer synthesis
JP5375542B2 (en) Polyurethane production catalyst and polyurethane production method
Dearlove et al. Synthesis and characterization of isocyanate‐terminated polyurethane prepolymers
JP6909364B1 (en) Manufacturing method of flexible polyurethane foam
US5189196A (en) Neutralization of polyakylene carbonate polyols for polyurethane prepolymer synthesis
US3652506A (en) Process for the preparation of polyurethane prepolymers comprising terminal isocyanate groups
TWI558767B (en) One kind of waterborne polyurethane dispersion and its preparation methods
JPH0144244B2 (en)
JPS5978227A (en) Urethane prepolymer composition
US3549598A (en) Post treatment of polyureaurethanes
WO2023084651A1 (en) Foam-forming composition, and urethane foam
JPS62236815A (en) Catalyst for polyurethane production
JP2001206928A (en) Hydrophilic gel for water-holding material and method for producing them