[go: up one dir, main page]

JPH024981A - Ceramic coating method - Google Patents

Ceramic coating method

Info

Publication number
JPH024981A
JPH024981A JP15590188A JP15590188A JPH024981A JP H024981 A JPH024981 A JP H024981A JP 15590188 A JP15590188 A JP 15590188A JP 15590188 A JP15590188 A JP 15590188A JP H024981 A JPH024981 A JP H024981A
Authority
JP
Japan
Prior art keywords
base material
layer
coating
ceramic
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15590188A
Other languages
Japanese (ja)
Inventor
Toshio Irisawa
入沢 敏夫
Tokuo Morishige
森重 徳男
Hirosuke Kawachi
河内 啓輔
Masahiro Yuki
正弘 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
Ishikawajima Harima Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Harima Heavy Industries Co Ltd filed Critical Ishikawajima Harima Heavy Industries Co Ltd
Priority to JP15590188A priority Critical patent/JPH024981A/en
Publication of JPH024981A publication Critical patent/JPH024981A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To form a rigid coating layer on the surface of a base material without leaving a boundary layer by applying a prescribed kneaded material to the surface of the base material and irradiating the resulting layer with laser beams. CONSTITUTION:Metallic Ti is used as a base material 1. A mixture of TiC ceramic powder as a powder of a coated layer 2 with the same Ti powder as it of the material 1 is kneaded with a binder and applied to the surface of the base material 1. The resulting coated layer 2 is irradiated with laser beams 3, the surface of the base material 1 and the layer 2 are locally fused into one at the irradiated part and this stage is carried out once or more. A rigid coating layer can be formed on the surface of the base material 1 without leaving a boundary layer.

Description

【発明の詳細な説明】 「産業上の利用分野コ 本発明は、セラミックス被覆方法に関するものである。[Detailed description of the invention] “Industrial Application Area The present invention relates to a ceramic coating method.

[従来の技術] 従来、金属等の表面をセラミックスにより被覆して耐食
性や耐摩耗性を向上させるために、ノズルからセラミッ
クスの粒子を金属表面に向は高速で吹出させてセラミッ
クスの粒子を金属表面に食い込ませることによりセラミ
ックスの膜を形成するいわゆる溶射を行っていた。ある
いはこのとき、セラミックスの粒子をあらかじめ加熱し
て溶融状態にしておきセラミ・ソクスの粒子をより強固
に食い込ませることも行っていた。
[Conventional technology] Conventionally, in order to improve corrosion resistance and wear resistance by coating the surface of metal, etc. with ceramics, ceramic particles were sprayed at high speed from a nozzle toward the metal surface. They used so-called thermal spraying to form a ceramic film by biting into the metal. Alternatively, at this time, the ceramic particles were heated in advance to a molten state so that the ceramic particles would bite into them more firmly.

[発明が解決しようとする課題] しかしなから、上記従来の溶射によるセラミックス被覆
方法では、単に金属表面にセラミ・ノクス粒子を付着さ
せて膜を形成しているだけなので、金属とセラミックス
との境界層か明瞭であり、従って結合力が弱く機械的な
力や或いは熱的な力によりセラミックスの膜が剥離し易
いという問題かあった。
[Problems to be Solved by the Invention] However, in the conventional method of coating ceramics by thermal spraying, the ceramic coating method simply forms a film by attaching ceramic particles to the metal surface, so the boundary between the metal and ceramics is There was a problem that the layers were distinct, and therefore the bonding force was weak and the ceramic film was likely to peel off due to mechanical or thermal force.

本発明は」二連の実情に鑑み金属に対してより強い結合
力を得られるようにしたセラミ・ソクス被覆方法を提供
することを目的とするものである。
SUMMARY OF THE INVENTION In view of these two circumstances, it is an object of the present invention to provide a ceramic-socket coating method that can obtain a stronger bonding force to metal.

[課題を解決するための手段] 本発明は、基材の表面に、該基材と同じ組成の粒子と被
覆層を形成しようとするセラミ・ソクスの粒子とをバイ
ンダーと共に混練した混練物を、少なくとも一層以上塗
布して塗布層を形成し、該塗布層の上からレーザービー
ムを照射する]−程を少なくとも一回行うことを特徴と
するセラミックス被覆方法に係るものである。
[Means for Solving the Problems] The present invention provides a kneaded product in which particles having the same composition as the base material and particles of cerami-sox to form a coating layer are kneaded together with a binder on the surface of the base material. The present invention relates to a ceramics coating method characterized in that the following steps are performed at least once: forming a coating layer by coating at least one layer, and irradiating a laser beam from above the coating layer.

[作   用コ 従って本発明では、レーザービームはエネルギー密度が
高いためレーザービームか照射された部分の基材表面と
塗布層が局部的に溶けて融合し基材表面に境界層のない
強固な被覆層が形成される。
[Function] Therefore, in the present invention, since the laser beam has a high energy density, the surface of the substrate and the coating layer in the area irradiated with the laser beam are locally melted and fused, creating a strong coating on the surface of the substrate without a boundary layer. A layer is formed.

[実 施 例コ 以下、本発明の実施例を図面を参照して説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

表面に被覆を施そうとする金属等の基材Iの表面に対し
、該基材1と同一の組成をもつ粒子4と被覆層を形成す
るためのセラミックスの粒子5とを、アクリル樹脂など
の有機樹脂又はエチルシルケート等の無機樹脂なとのよ
うに所要の粘着性と加熱により揮発性を有したバインダ
と共に混練し、その混練物を塗布して塗布層2を形成す
る。その移液塗布層2の上からレーザービーム3を全面
に照射する。
Particles 4 having the same composition as the base material 1 and ceramic particles 5 for forming a coating layer are added to the surface of a base material I such as a metal whose surface is to be coated. The mixture is kneaded with a binder such as an organic resin or an inorganic resin such as ethyl silicate, which has the required adhesiveness and becomes volatile when heated, and the kneaded product is applied to form the coating layer 2. A laser beam 3 is irradiated onto the entire surface of the liquid transfer coating layer 2.

するとレーザービーム3はエネルギー密度か高いため、
レーザービーム3が照射された部分の基材lの表面と塗
布層2の両者が局部的に溶けて融合し、該レーザービー
ム3の照射を基材■の全面に対し行うことにより境界層
のない強固な被覆層が基材1表面に形成される。
Then, since laser beam 3 has a high energy density,
Both the surface of the base material 1 and the coating layer 2 in the part irradiated with the laser beam 3 are locally melted and fused, and by irradiating the entire surface of the base material 2 with the laser beam 3, there is no boundary layer. A strong coating layer is formed on the surface of the base material 1.

上記の具体例を掲げると、基材1として金属Ti(チタ
ン)を用い、該Tiの表面に対し、塗布層2の粒子とし
てセラミックスTic (炭化チタン)の粉末に基材1
と同じTiの粉末を混合したものをバインダーと共に混
練して塗布し、塗布したTiC及びTiの粉末の塗布層
2の上からレーザービーム3を照射する。するとT1の
表面に境界層のないTiCの被覆層か形成される。
To take the above specific example, metal Ti (titanium) is used as the base material 1, and ceramic Tic (titanium carbide) powder is applied to the surface of the Ti as particles of the coating layer 2.
A mixture of the same Ti powder as above is kneaded and applied with a binder, and a laser beam 3 is irradiated from above the applied layer 2 of TiC and Ti powder. Then, a TiC coating layer without a boundary layer is formed on the surface of T1.

又、例えば基材lとしてAI、塗布層2としてセラミッ
クスAjzO3の粉末と基材lと同じAIの粉末を用い
ても同様である。
Further, the same effect can be obtained even if, for example, the base material 1 is made of AI, and the coating layer 2 is made of ceramic AjzO3 powder and the same AI powder as the base material 1.

尚、上記例中のTiの粉末及びA1の粉末は別の同様な
組成の金属としても良い。
Note that the Ti powder and the A1 powder in the above example may be other metals with similar compositions.

第2図は本発明の他の実施例の説明図であり、塗布層2
を多層化(L+〜L、)している。この場合塗布層2を
各層毎に混練物の粒子4,5の含有率を変えて基材lに
対する被覆層の接着力、及び被覆層の物理的特性を任意
に変えることができ、又、複数の被覆層を各層毎に素材
の種類が異なるものとして強固な複合被覆層を形成する
ことかでき、或いは」二記を組合わせて物理的特性の異
なる複合被覆層を形成することができる。又レーザービ
ーム3の照射は一層塗布する毎に行うようにしても良く
、又は数層毎に行うようにしても良く、或いは全層塗布
した後に行うようにしても良い。
FIG. 2 is an explanatory diagram of another embodiment of the present invention, in which the coating layer 2
are multilayered (L+~L,). In this case, the adhesion of the coating layer to the base material l and the physical properties of the coating layer can be arbitrarily changed by changing the content of the particles 4 and 5 of the kneaded material in each layer of the coating layer 2. A strong composite coating layer can be formed by using different types of materials for each coating layer, or a composite coating layer having different physical properties can be formed by combining the two coating layers. Further, the irradiation with the laser beam 3 may be performed every time one layer is coated, or every several layers, or after all layers are coated.

」二記の具体例を掲げると、基材1として金属Tiを用
いTiの表面に対し被覆の物理的特性を調整するための
基材1と同じTiの粉末が100%の層L1を塗布して
その後レーザービーム3を照射し、次にTiの粉末90
%にセラミックスTiCの粉末を10%含有する層L2
を塗布してその後レーザービーム3を照射し、以後セラ
ミックスTiCの粉末のTiの粉末に対する含有率が連
続的に増加するように塗布層2を塗布形成した後にレー
ザービーム3を照射する工程を繰返し、最後にTiCの
粉末100%の層Loを塗布するようにしてレーザービ
ーム3を照射する。
To give a specific example of 2, metal Ti is used as the base material 1, and a layer L1 containing 100% of the same Ti powder as the base material 1 is applied to the surface of the Ti to adjust the physical properties of the coating. After that, the laser beam 3 is irradiated, and then the Ti powder 90
%, layer L2 containing 10% ceramic TiC powder
The process of coating and forming the coating layer 2 and then irradiating the laser beam 3 is repeated so that the content ratio of the ceramic TiC powder to the Ti powder increases continuously, Finally, the laser beam 3 is irradiated to coat a layer Lo of 100% TiC powder.

すると基材lである金属T1には表面に行くに従い徐々
にTiCの含有率が多くなる境界層のない強固なTiC
の被覆層か形成される。
Then, the metal T1, which is the base material 1, has a strong TiC without a boundary layer whose TiC content gradually increases toward the surface.
A coating layer is formed.

このとき、レーザービーム3の照射は」二記したように
一層(L+〜Ln)塗布する毎に行うか、数層塗布する
毎或いは全層塗布した後に行っても良い。
At this time, the irradiation with the laser beam 3 may be performed every time one layer (L+ to Ln) is coated as described in Section 2, or every time several layers are coated, or after all layers are coated.

又、Tiの粉末に対するTiCの粉末の含有率は、塗布
層と含有率の関係を示す第3図中線イで示すように一定
割合で連続的に増加させるようにしたり、或いは線口で
示すように表面に近い層のみ含有率が多くなるようにし
たり、更には線ハで示すように大部分の層に対して含有
率を多くしたり、要するに被覆層の要求される物理的特
性に応じて最適な含有率とすることができる。
Furthermore, the content ratio of TiC powder to Ti powder can be increased continuously at a constant rate as shown by line A in Figure 3, which shows the relationship between the coating layer and the content ratio, or it can be increased as shown by the line inlet. In other words, depending on the physical properties required of the coating layer, the content may be increased only in the layer near the surface, as shown in the figure, or the content may be increased in most of the layers, as shown by line C. The content can be set to the optimum content.

更に、上記したようにTiCの被覆を形成した後、Ti
Cの被覆の上に同様の工程を行って他の被覆を施して複
合被覆を形成することもできる。
Furthermore, after forming the TiC coating as described above, Ti
Other coatings can also be applied over the coating of C using similar steps to form a composite coating.

尚、本発明は上述の実施例に限定されるものではなく、
本発明の要旨を逸脱しない範囲内で種々変更を加え得る
ことは勿論である。
It should be noted that the present invention is not limited to the above-mentioned embodiments,
Of course, various changes can be made without departing from the gist of the invention.

[発明の効果コ 上記したように、本発明のセラミックス被覆方法によれ
ば、基材の表面に混練物を塗布した後その塗布層にレー
ザービームを照射することにより、境界層のない強固な
被覆層を基材表面に形成することかできる等の優れた効
果を奏し得る。
[Effects of the Invention] As described above, according to the ceramic coating method of the present invention, by applying a kneaded material to the surface of a base material and then irradiating the applied layer with a laser beam, a strong coating without a boundary layer can be achieved. Excellent effects such as being able to form a layer on the surface of the base material can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は本発明の
他の実施例の説明図、第3図は第2図の場合における塗
布層とセラミックスTIC含有率の関係を示す線図であ
る。 図中1は基材、2は被覆層、3はレーザービム、4は基
材と同じ組成の粒子、5はセラミックスの粒子を示す。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of another embodiment of the present invention, and Fig. 3 shows the relationship between the coating layer and the ceramic TIC content in the case of Fig. 2. It is a line diagram. In the figure, 1 is a base material, 2 is a coating layer, 3 is a laser beam, 4 is a particle having the same composition as the base material, and 5 is a ceramic particle.

Claims (1)

【特許請求の範囲】 1)基材の表面に、該基材と同じ組成の粒子と被覆層を
形成しようとするセラミックスの粒子とをバインダーと
共に混練した混練物を、少なくとも一層以上塗布して塗
布層を形成し、該塗布層の上からレーザービームを照射
する工程を少なくとも一回行うことを特徴とするセラミ
ックス被覆方法。 2)基材の表面に、該基材の表面から遠ざかるに従い、
基材と同じ組成の粒子に比してセラミックスの粒子の割
合が大きくなるように混合割合を調整した混練物を必要
回数塗布した後、レーザービームによる照射を行う請求
項1のセラミックス被覆方法。 3)最外層の塗布層がセラミックスの粒子100%であ
る請求項2のセラミックス被覆方法。 4)基材の表面に、混練物を塗布してレーザービームに
よる照射を行った後、前記混練物に比してセラミックス
の粒子の混合割合を大きく調整した混練物を塗布してレ
ーザービームの照射を行う操作を必要回数行う請求項1
のセラミックス被覆方法。 5)最外層の塗布層がセラミックスの粒子100%であ
る請求項4のセラミックス被覆方法。
[Claims] 1) Coating on the surface of a base material at least one layer of a kneaded product obtained by kneading particles having the same composition as the base material and ceramic particles to form a coating layer together with a binder. A method for coating ceramics, comprising forming a layer and irradiating the coated layer with a laser beam at least once. 2) On the surface of the base material, as the distance from the surface of the base material increases,
2. The method for coating ceramics according to claim 1, wherein the kneaded material is coated a necessary number of times with the mixing ratio adjusted so that the ratio of ceramic particles is larger than that of particles having the same composition as the base material, and then irradiation with a laser beam is performed. 3) The ceramic coating method according to claim 2, wherein the outermost coating layer is made of 100% ceramic particles. 4) After applying a kneaded material to the surface of the base material and irradiating it with a laser beam, apply a kneaded material in which the mixing ratio of ceramic particles is adjusted to be larger than that of the kneaded material and irradiating it with a laser beam. Claim 1: performing the operation a necessary number of times.
Ceramic coating method. 5) The ceramic coating method according to claim 4, wherein the outermost coating layer is made of 100% ceramic particles.
JP15590188A 1988-06-23 1988-06-23 Ceramic coating method Pending JPH024981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15590188A JPH024981A (en) 1988-06-23 1988-06-23 Ceramic coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15590188A JPH024981A (en) 1988-06-23 1988-06-23 Ceramic coating method

Publications (1)

Publication Number Publication Date
JPH024981A true JPH024981A (en) 1990-01-09

Family

ID=15615990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15590188A Pending JPH024981A (en) 1988-06-23 1988-06-23 Ceramic coating method

Country Status (1)

Country Link
JP (1) JPH024981A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112879A (en) * 1991-04-15 1993-05-07 General Electric Co <Ge> Rotary seal component and preparation thereof
US5431967A (en) * 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US6312232B1 (en) 1998-05-11 2001-11-06 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for suppressing resonance
JP2019203195A (en) * 2018-05-22 2019-11-28 国立大学法人 名古屋工業大学 Structural member and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354214A (en) * 1976-10-27 1978-05-17 Mitsubishi Heavy Ind Ltd Ceramics coating method
JPS58140380A (en) * 1981-09-23 1983-08-20 バツテレ−インステイツウト High temperature-resistant thermal impact- resistant heat-insulating coating mounted on ceramic substrate
JPS59219468A (en) * 1983-05-25 1984-12-10 Teikoku Piston Ring Co Ltd Aluminum sliding member and its manufacture
JPS60110851A (en) * 1983-09-27 1985-06-17 Agency Of Ind Science & Technol Laser hardening method
JPS60258481A (en) * 1984-06-06 1985-12-20 Toyota Motor Corp Manufacture of surface coated member containing dispersed particles
JPS61143576A (en) * 1984-11-28 1986-07-01 ユナイテツド・テクノロジーズ・コーポレイシヨン Welding of metal-ceramic layer gradually changed in its composition
JPS61296972A (en) * 1985-06-24 1986-12-27 Toyota Motor Corp Formation of ceramic particle dispersed composite metallic layer
JPH01290781A (en) * 1988-05-18 1989-11-22 Mitsubishi Heavy Ind Ltd Ceramic fiber reinforced material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354214A (en) * 1976-10-27 1978-05-17 Mitsubishi Heavy Ind Ltd Ceramics coating method
JPS58140380A (en) * 1981-09-23 1983-08-20 バツテレ−インステイツウト High temperature-resistant thermal impact- resistant heat-insulating coating mounted on ceramic substrate
JPS59219468A (en) * 1983-05-25 1984-12-10 Teikoku Piston Ring Co Ltd Aluminum sliding member and its manufacture
JPS60110851A (en) * 1983-09-27 1985-06-17 Agency Of Ind Science & Technol Laser hardening method
JPS60258481A (en) * 1984-06-06 1985-12-20 Toyota Motor Corp Manufacture of surface coated member containing dispersed particles
JPS61143576A (en) * 1984-11-28 1986-07-01 ユナイテツド・テクノロジーズ・コーポレイシヨン Welding of metal-ceramic layer gradually changed in its composition
JPS61296972A (en) * 1985-06-24 1986-12-27 Toyota Motor Corp Formation of ceramic particle dispersed composite metallic layer
JPH01290781A (en) * 1988-05-18 1989-11-22 Mitsubishi Heavy Ind Ltd Ceramic fiber reinforced material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431967A (en) * 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
JPH05112879A (en) * 1991-04-15 1993-05-07 General Electric Co <Ge> Rotary seal component and preparation thereof
US6312232B1 (en) 1998-05-11 2001-11-06 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Method and apparatus for suppressing resonance
JP2019203195A (en) * 2018-05-22 2019-11-28 国立大学法人 名古屋工業大学 Structural member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
PL317298A1 (en) Method of depositing on surfaces of metal structural components a metallic adhesive layer for ceramic thermally insulating layers and metallic adhesive layer produced thereby
EP0988898A3 (en) Thermal spray application of polymeric material
PT968316E (en) METHOD OF TREATMENT OF METAL COMPONENTS
WO2000052228B1 (en) A method of depositing flux or flux and metal onto a metal brazing substrate
KR830005068A (en) Columnar particle ceramic thermal barrier coating
ES8401730A1 (en) Method of applying ceramic coatings on a metallic substrate
SE8604949D0 (en) TITANIUM COMPOSITE HAVING A POROUS SURFACE AND PROCESS FOR PRODUCING THE SAME
ATE450631T1 (en) METHOD FOR APPLYING METAL ALLOY COATINGS AND COATED COMPONENT
JPH024981A (en) Ceramic coating method
JPS6034449A (en) Formation of biologically active coating to bone prosthesis
DE93779T1 (en) PLASMA COATINGS CONSTRUCTED FROM SPRAYED FIBERS.
Morimoto et al. Improvement of solid cold sprayed TiO2–Zn coating with direct diode laser
US5750202A (en) Preparation of gold-coated molybdenum articles and articles prepared thereby
JPS6073940A (en) Decorative board and its production
US20020114888A1 (en) Method of applying a coating to a concrete surface and product related thereto
JP4424913B2 (en) Antibacterial treatment method by thermal spraying of plastic products
JPS6191323A (en) Formation of particle-dispersed surface coating layer
JPS62207883A (en) Laser treatment of surface layer of cermet
JP2001164379A (en) Surface treating method and joining method
US20090301645A1 (en) System and method of joining components
JPS6244566A (en) Class lining method by thermal spraying coating
JPS61103580A (en) Coating process of deal
JPH04120280A (en) Production of surface-hardened aluminum material
JPS6240356A (en) Production of multi-layered coating film
JP3561280B2 (en) Painting method