[go: up one dir, main page]

JPH0249798B2 - JUKIKAGOBUTSUGANJUSUINOSHORIHOHO - Google Patents

JUKIKAGOBUTSUGANJUSUINOSHORIHOHO

Info

Publication number
JPH0249798B2
JPH0249798B2 JP1839888A JP1839888A JPH0249798B2 JP H0249798 B2 JPH0249798 B2 JP H0249798B2 JP 1839888 A JP1839888 A JP 1839888A JP 1839888 A JP1839888 A JP 1839888A JP H0249798 B2 JPH0249798 B2 JP H0249798B2
Authority
JP
Japan
Prior art keywords
water
organic compounds
reaction
treatment
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1839888A
Other languages
Japanese (ja)
Other versions
JPH01194993A (en
Inventor
Tetsuo Senzaki
Hiroo Kumagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1839888A priority Critical patent/JPH0249798B2/en
Publication of JPH01194993A publication Critical patent/JPH01194993A/en
Publication of JPH0249798B2 publication Critical patent/JPH0249798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機化合物、特に難分解性または人
体に有害な有機化合物含有水の処理方法の改良に
関するものである。さらに詳しくいえば、本発明
は、人体に有害な有機塩素化合物などの難分解性
有機化合物や各種の有機化合物を溶存する用水や
排水を効率よく処理して無害化する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a method for treating water containing organic compounds, particularly organic compounds that are difficult to decompose or are harmful to the human body. More specifically, the present invention relates to a method for efficiently treating and rendering harmless water and wastewater containing persistent organic compounds such as organic chlorine compounds and various organic compounds that are harmful to the human body.

〔従来の技術〕[Conventional technology]

クリリーニング業あるいはハイテク関連産業、
特に半導体製造工業や機械工業においては、溶剤
としてトリクロロエチレンなどの人体に有害な各
種の有機性溶剤が用いられており、これらの工業
から排出される排水の処理が問題になつている。
また、各種の化学工場から排出される種々の有害
な天然若しくは合成有機化合物を含有する排水な
どによる地下水や河川水などの汚染が問題になつ
ており、さらに、飲料水の塩素殺菌工程におい
て、水中の溶存有機化合物と塩素との反応による
トリハロメタン類の生成などが問題となつてい
る。
Cleaning industry or high-tech related industry,
Particularly in the semiconductor manufacturing industry and the machinery industry, various organic solvents such as trichlorethylene that are harmful to the human body are used as solvents, and the treatment of wastewater discharged from these industries has become a problem.
In addition, contamination of groundwater and river water by wastewater containing various harmful natural or synthetic organic compounds discharged from various chemical factories has become a problem.Furthermore, in the process of chlorinating drinking water, The formation of trihalomethanes due to the reaction of dissolved organic compounds with chlorine has become a problem.

従来、このような有機化合物は、(1)オゾン処理
法、(2)活性炭処理法、(3)揮散処理法、(4)半導体光
触媒による還元処理法、(5)金属あるいはこれらの
合金による還元処理法(特願62―182016)などに
よる処理が試みられ、採用されている。これらの
処理方法の中で(1)の方法は二重結合をもつ有機化
合物に選択的に反応し、これを分解することから
脱臭や脱色に実用化されているが、有機塩素化合
物や合成有機化合物の多くは、オゾンによる分解
は困難であることから、適用範囲の制限を免れな
いうえに、オゾンの生成に多大のエネルギーを消
費し、経済的にも有効な方法とはいえない。
Conventionally, such organic compounds have been treated by (1) ozone treatment, (2) activated carbon treatment, (3) volatilization treatment, (4) reduction treatment using semiconductor photocatalysts, and (5) reduction using metals or alloys thereof. Treatment methods such as the treatment method (Patent Application No. 62-182016) have been attempted and adopted. Among these treatment methods, method (1) selectively reacts with organic compounds with double bonds and decomposes them, so it has been put into practical use for deodorization and decolorization. Since many compounds are difficult to decompose with ozone, this method is not only limited in its applicability, but also consumes a large amount of energy to generate ozone, making it not an economically effective method.

また、前記(2)の方法は、現時点では最も有効な
方法であつて、幅広く用いられている。しかしな
がら、この方法においては、トリハロメタンなど
の有機化合物に対しては吸着容量が小さく、活性
炭の再生頻度が高く、前記(1)の方法と同様に処理
コストの面において問題がある。前記(3)の方法
は、揮発性の難分解物質の処理法として用いられ
ているが、曝気処理のみで完全に有害な有機化合
物を除去することは困難であるうえ不揮発性のも
のには効果がない。また排気ガスを未処理のまま
大気中に放散すれば、単に有害物質を水中から大
気中に移行したにすぎないため、該排気ガスを活
性炭処理や燃焼などの方法によつて処理する必要
がある。(4)の方法は、二酸化チタンなどのN型半
導体を触媒として用い、太陽エネルギーを利用し
て各種有機化合物を酸化、還元分解する方法であ
つて、自然のエネルギーを利用でき、経済性の点
からも合理的な方法に見えるが、高濃度の光触媒
懸濁液中を、くまなく光照射することは困難であ
つて、現時点では実用規模の装置を制作するまで
には至つていない。
Furthermore, method (2) above is currently the most effective method and is widely used. However, this method has a small adsorption capacity for organic compounds such as trihalomethane, requires a high frequency of regeneration of the activated carbon, and has problems in terms of treatment costs, similar to the method (1) above. Method (3) above is used as a treatment method for volatile and difficult-to-decompose substances, but it is difficult to completely remove harmful organic compounds by aeration treatment alone, and it is not effective for non-volatile substances. There is no. Furthermore, if exhaust gas is released into the atmosphere untreated, harmful substances will simply be transferred from the water to the atmosphere, so it is necessary to treat the exhaust gas using methods such as activated carbon treatment or combustion. . Method (4) is a method that uses an N-type semiconductor such as titanium dioxide as a catalyst to oxidize and reductively decompose various organic compounds using solar energy.It uses natural energy and is economical. Although this seems like a reasonable method, it is difficult to irradiate light all over a highly concentrated photocatalyst suspension, and so far no practical scale device has been produced.

(5)の方法は、これら従来の方法の欠点を改良す
るものとして、本発明者らが提案した方法であ
り、該水中の有害な有機化合物の無害化効果もよ
い。しかし、該水の水温が低い場合や硝酸イオ
ン、溶存酸素などの酸化性物質が存在する時、所
定の基準濃度にまで該物質を処理するのに長時間
を要し、また、反応温度が40℃以上では水素ガス
の発生量も大きい。
Method (5) is a method proposed by the present inventors to improve the drawbacks of these conventional methods, and is also effective in detoxifying harmful organic compounds in the water. However, when the temperature of the water is low or when oxidizing substances such as nitrate ions and dissolved oxygen are present, it takes a long time to process the substances to a predetermined standard concentration, and the reaction temperature is 40°C. At temperatures above ℃, a large amount of hydrogen gas is generated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、このような従来技術が有する欠点を
克服し、人体に有害な有機塩素化合物などの種々
の有機化合物を溶存する用水や排水を効率よく経
済的に処理して無害化する方法を提供することを
目的としてなされたものである。
The present invention overcomes the drawbacks of such conventional techniques and provides a method for efficiently and economically treating and rendering harmless water and wastewater containing various organic compounds such as organic chlorine compounds that are harmful to the human body. It was done for the purpose of

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、前記目的を達成するために鋭意
研究を重ねた結果、被処理水を所定のPHに調整し
たのち、酸化還元電位を該水中の有害成分を無害
化する反応が進行する−300mv以下にするため還
元性の物質を添加し、溶存酸素などの酸化性成分
を除去し、必要によつては該水の電気伝導度を高
めるため電解質を添加したのち、金属系還元剤を
用いて処理することにより、(6)の方法(特願62―
182016)より反応時間を1/3以下に短縮し得るこ
と、また、反応時間が短縮されたことにより水素
ガスの発生する副反応も抑えられることを見い出
だし、この知見に基ずいて本発明を完成するに至
つた。
As a result of extensive research to achieve the above object, the present inventors have found that after adjusting the water to be treated to a predetermined pH, the oxidation-reduction potential progresses to a reaction that renders harmful components in the water harmless. A reducing substance is added to reduce the PV to 300 mv or less, oxidizing components such as dissolved oxygen are removed, and if necessary, an electrolyte is added to increase the electrical conductivity of the water, and then a metal reducing agent is used. method (6) (patent application 62-
182016), it was discovered that the reaction time could be shortened to 1/3 or less, and that the side reaction that generated hydrogen gas was also suppressed by shortening the reaction time.Based on this knowledge, the present invention was developed. I was able to complete it.

すなわち、本発明は、有機化合物を含有する被
処理水をPH値6.5以上に調整し、かつ還元性の物
質を添加した後、金属系還元剤を用いて処理する
ことを特徴とする有機化合物含有水の処理方法を
提供するものである。
That is, the present invention is characterized in that the water to be treated containing organic compounds is adjusted to a pH value of 6.5 or higher, and after adding a reducing substance, the water is treated using a metal reducing agent. The present invention provides a water treatment method.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明方法における被処理水としては、例えば
トリクロロエチレンやトリハロメタンのような有
機塩素化合物などの難分解性有機化合物を含有す
る用水や排水、あるいは染料、医薬品、農薬製造
工場から排出される天然および合成有機化合物を
含有する排水などがあげられる。
The water to be treated in the method of the present invention includes, for example, municipal water and wastewater containing persistent organic compounds such as organochlorine compounds such as trichlorethylene and trihalomethane, and natural and synthetic organic compounds discharged from factories manufacturing dyes, pharmaceuticals, and agricultural chemicals. Examples include wastewater containing compounds.

通常、被処理水は空気と接触しているため数
ppmの酸素が溶解している。また時には硝酸イオ
ンなども含まれている。これらの酸化性物質と金
属還元剤との反応が遅いため該水の電位を無害化
反応の生じる酸化還元電位まで低下するのに長い
時間を必要とする。そこで、亜硫酸ナトリウム等
の還元性物質を添加し、これらの酸化性物質を(1)
式で示す反応により除去すると、急速に酸化還元
電位が低下し難分解性有機化合物の無害化反応が
開始する。
Normally, the water to be treated is in contact with air, so
ppm of oxygen is dissolved. It also sometimes contains nitrate ions. Since the reaction between these oxidizing substances and the metal reducing agent is slow, it takes a long time to lower the potential of the water to the redox potential at which a detoxifying reaction occurs. Therefore, reducing substances such as sodium sulfite are added to reduce these oxidizing substances (1).
When removed by the reaction shown in the formula, the redox potential rapidly decreases and a reaction to detoxify the refractory organic compound begins.

NazSO3+O2→NazSO4 (1) また、有害な有機化合物の無害化の反応機構に
ついては、例えば難分解性有機化合物として、有
機塩素化合物を例に挙げ、これを金属系還元剤を
用いて処理する場合について示すと、次に示す様
に反応が進行して、該難分解性有機化合物が無害
化される。
Na z SO 3 +O 2 →Na z SO 4 (1) Regarding the reaction mechanism for detoxification of harmful organic compounds, for example, an organic chlorine compound is given as an example of a persistent organic compound, and it is subjected to metal reduction. In the case of treatment using an agent, the reaction proceeds as shown below, and the refractory organic compound is rendered harmless.

Me+H2O+RX→RH+Me+++OH-+X- (2) ここで、Meは金属系還元剤、RXは有機塩素
化合物である。すなわち、有機塩素化合物は脱ハ
ロゲン化され、無害な炭化水素に変換される。ま
た、この際、次ぎに示すような副反応が起こり、
水素が発生する。
Me+H 2 O+RX→RH+Me ++ +OH - +X - (2) Here, Me is a metal reducing agent and RX is an organic chlorine compound. That is, organic chlorine compounds are dehalogenated and converted into harmless hydrocarbons. In addition, at this time, the following side reactions occur,
Hydrogen is generated.

Me+2H2O→2HO-+Me+++Hz (3) 本発明方法においては、上述の無害化反応は、
酸化還元電位が−300mv付近以下で起きることか
ら該反応を促進するためには、該水中の酸化還元
電位を迅速に約−300mv以下にする事が好まし
い。これは、例えば被処理水1m3当り、0.08Kg程
度の亜硫酸ナトリウムを注入する方法によつて行
うことができる。その結果、該水中の酸化還元電
位は−300mv以下となり有機塩素化合物の無害化
反応に好ましい条件となる。また、被処理水のPH
は6.5以上が選ばれる。このPH値は6.5未満では金
属系還元剤の溶解量が多く、また水素ガスの発生
量も多く不利である。
Me+2H 2 O→2HO - +Me ++ +H z (3) In the method of the present invention, the above detoxification reaction is
Since the redox potential occurs when the redox potential is around -300mv or less, in order to promote the reaction, it is preferable to quickly reduce the redox potential in the water to about -300mv or less. This can be done, for example, by injecting about 0.08 kg of sodium sulfite per 1 m 3 of water to be treated. As a result, the oxidation-reduction potential in the water becomes -300mv or less, which is a favorable condition for the detoxification reaction of the organic chlorine compound. In addition, the pH of the water to be treated
A score of 6.5 or higher is selected. If the pH value is less than 6.5, a large amount of the metal reducing agent is dissolved and a large amount of hydrogen gas is generated, which is disadvantageous.

本発明方法に於いて用いられる酸化還元電位の
調整剤は、前記PHの水中に於て、調整能を発揮す
る物であればよく特に制限はないが、経済性の点
から亜硫酸ナトリウムやチオ硫酸ナトリウムが好
ましく用いられる。また、その使用量は被処理水
中に溶存する酸化性物質の量により、異なり一概
に決めることは出来ないが、通常、1m3当り0.04
〜0.1Kgの範囲で選ばれる。
The oxidation-reduction potential regulator used in the method of the present invention is not particularly limited as long as it exhibits a regulating ability in water with the above-mentioned pH, but from the economical point of view sodium sulfite and thiosulfate are used. Sodium is preferably used. In addition, the amount used varies depending on the amount of oxidizing substances dissolved in the water to be treated and cannot be determined unconditionally, but it is usually 0.04 per 1 m3 .
Selected in the range of ~0.1Kg.

被処理水が例えばイオン交換水や蒸留水を用い
た洗浄排水等の場合には燐酸ナトリウムや硫酸ナ
トリウム等の電解質を該水量1m3当り0.05〜0.1
Kg添加し、電気伝導度を100μmho/cm以上に調
整して、金属還元剤界面におけるアノード反応を
促進することにより、該反応を加速することがで
きる。添加する電解質は酸化性のものあるいは塩
素イオンを生じるもの以外なら特に制限はない
が、燐酸塩等が好ましく用いられる。
If the water to be treated is, for example, washing wastewater using ion-exchanged water or distilled water, add an electrolyte such as sodium phosphate or sodium sulfate at 0.05 to 0.1 per m3 of water.
The reaction can be accelerated by adding Kg and adjusting the electrical conductivity to 100 μmho/cm or more to promote the anodic reaction at the metal reducing agent interface. The electrolyte to be added is not particularly limited as long as it is oxidizing or produces chlorine ions, but phosphates and the like are preferably used.

本発明方法において用いられる金属系還元剤
は、特に制限はないが、経済性の点から、鉄や亜
鉛など金属の単体、合金または化合物が好ましく
用いられる。
The metal-based reducing agent used in the method of the present invention is not particularly limited, but from the viewpoint of economy, metals, alloys, or compounds of metals such as iron and zinc are preferably used.

この金属系還元剤の使用量は、被処理水中に溶
存する難分解性有機化合物の量により異なり、一
概に決めることができないが、通常被処理水1m3
当り1×10-3〜5×10-3Kgの範囲にある。
The amount of this metal-based reducing agent to be used varies depending on the amount of persistent organic compounds dissolved in the water to be treated and cannot be determined unconditionally, but it is usually used for 1 m 3 of the water to be treated.
It is in the range of 1×10 -3 to 5×10 -3 Kg per unit.

さらに、処理温度は還元反応促進のためには高
温が好ましいが、加温するためにエネルギーを消
費することは経済性を考えるとあまり好ましくな
く、通常0〜30℃の範囲で選ばれる。
Further, the treatment temperature is preferably a high temperature in order to promote the reduction reaction, but consuming energy for heating is not so desirable from an economic standpoint, and is usually selected in the range of 0 to 30°C.

〔発明の効果〕〔Effect of the invention〕

本発明方法によると、人体に有害な有機塩素化
合物などの難分解性有機化合物や含窒素有機化合
物を溶存する用水や排水を、効率よく経済的に処
理し、無害化することができる。
According to the method of the present invention, it is possible to efficiently and economically treat water and wastewater containing persistent organic compounds such as organic chlorine compounds and nitrogen-containing organic compounds that are harmful to the human body and render them harmless.

〔実施例〕〔Example〕

次に本発明を実施例によつてさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 ここでは電解質と還元剤の効果を示す。電解質
には硫酸ナトリウムの1/100モル溶液を用い、
還元剤には亜硫酸ナトリウムを用いた。それぞ
れ、1,1,2,2―テトラクロロエタンを約10
mg/になるように調製した検水を5mlのバイア
ル瓶にとり、鉄粉1gを加えた後、20℃の恒温槽
中で振とうしながら無害化処理をおこなつた。そ
の結果を第1図に示す。ここでAは純水、Bは純
水に亜硫酸ナトリウムを溶解した場合、Cは純水
に硫酸ナトリウムを溶解した場合、Dは純水に硫
酸ナトリウムと亜硫酸ナトリウムを溶解した場合
であり、硫酸ナトリウムを溶解した場合には、イ
オン交換水のみの場合よりも反応は迅速でありま
たは亜硫酸ナトリウム添加の効果も高い。
Example 1 Here, the effects of electrolytes and reducing agents are shown. A 1/100 molar solution of sodium sulfate was used as the electrolyte.
Sodium sulfite was used as a reducing agent. each about 10% of 1,1,2,2-tetrachloroethane
The sample water prepared to have a concentration of mg/ml was placed in a 5 ml vial, 1 g of iron powder was added, and then detoxified while shaking in a constant temperature bath at 20°C. The results are shown in FIG. Here, A is pure water, B is when sodium sulfite is dissolved in pure water, C is when sodium sulfite is dissolved in pure water, D is when sodium sulfate and sodium sulfite are dissolved in pure water, and sodium sulfate is When ion-exchanged water is dissolved, the reaction is faster and the effect of adding sodium sulfite is also higher than when using only ion-exchanged water.

実施例 2 Michaelisの燐酸緩衝液を用いてPHを7.0に調整
したイオン交換水に、9.1mg/になる様に、1,
1,2,2―テトラクロロエタンを溶解した検水
を5mlのバイアル瓶にとり、100g/の亜硫酸
ナトリウム溶液をマイクロシリンジで20μ(2
mg)注入し、さらに鉄粉1gを添加した後、10
℃、20℃、30℃、40℃、50℃に保持した恒温そう
中で振とうしながら、1,1,2,2―テトラク
ロロエタンの還元試験を行つた。その結果を第2
図に示す。第2図は各温度における処理時間と
1,1,2,2―テトラクロロエタンの残存率と
の関係を示すグラフであり、Aは10℃、Bは20
℃、Cは30℃、Dは40℃、Eは50℃のものであ
る。この図からわかるように、50℃の処理温度で
は、30分以内で1,1,2,2―テトラグロロエ
タンの残存率は0%となり、30℃では1時間30分
で残存率は0%となつている。
Example 2 To ion exchange water whose pH was adjusted to 7.0 using Michaelis' phosphate buffer, 1,
Take the test water in which 1,2,2-tetrachloroethane has been dissolved into a 5 ml vial, and add 100 g/sodium sulfite solution to 20 μ (2
mg), and after adding 1 g of iron powder, 10
A reduction test of 1,1,2,2-tetrachloroethane was carried out while shaking in a constant temperature oven maintained at 20°C, 30°C, 40°C, and 50°C. The second result is
As shown in the figure. Figure 2 is a graph showing the relationship between the treatment time and the residual rate of 1,1,2,2-tetrachloroethane at each temperature, where A is 10°C and B is 20°C.
℃, C is 30℃, D is 40℃, and E is 50℃. As can be seen from this figure, at a treatment temperature of 50°C, the residual rate of 1,1,2,2-tetragloloethane becomes 0% within 30 minutes, and at 30°C, the residual rate reaches 0% within 1 hour and 30 minutes. %.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明における還元性物質と電解質
の添加効果を示すグラフである。第2図は、本発
明の各処理温度における処理時間と1,1,2,
2―テトラクロロエタンの残存率との関係を示す
グラフである。
FIG. 1 is a graph showing the effect of adding a reducing substance and an electrolyte in the present invention. Figure 2 shows the processing time at each processing temperature of the present invention and 1, 1, 2,
It is a graph showing the relationship with the residual rate of 2-tetrachloroethane.

Claims (1)

【特許請求の範囲】 1 有機化合物を含有する被処理水のPH値を6.5
以上に調整し、かつ該水中の酸化還元電位を約−
300mv以下に低下させる還元性物質を添加し、溶
存する溶存酸素等の酸化性物質を除去するととも
に、金属系還元剤を用いて該有機化合物を無害化
することを特徴とする有機化合物含有水の処理方
法。 2 該有機化合物を含有する被処理水の電気伝導
度が100μmho/cm以下の場合、金属界面に於け
るアノード反応を促進するため、塩素イオンおよ
び酸化性のイオンを含まない電解質を添加したの
ち、請求項1に記載の処理を行う方法。
[Claims] 1. The PH value of water to be treated containing organic compounds is 6.5.
The redox potential in the water is adjusted to about -
Organic compound-containing water characterized by adding a reducing substance that lowers the PV to 300mv or less, removing oxidizing substances such as dissolved oxygen, and making the organic compound harmless using a metal reducing agent. Processing method. 2. If the electrical conductivity of the water to be treated containing the organic compound is 100 μmho/cm or less, add an electrolyte that does not contain chlorine ions and oxidizing ions in order to promote the anodic reaction at the metal interface, and then A method for performing the process according to claim 1.
JP1839888A 1988-01-28 1988-01-28 JUKIKAGOBUTSUGANJUSUINOSHORIHOHO Expired - Lifetime JPH0249798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1839888A JPH0249798B2 (en) 1988-01-28 1988-01-28 JUKIKAGOBUTSUGANJUSUINOSHORIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1839888A JPH0249798B2 (en) 1988-01-28 1988-01-28 JUKIKAGOBUTSUGANJUSUINOSHORIHOHO

Publications (2)

Publication Number Publication Date
JPH01194993A JPH01194993A (en) 1989-08-04
JPH0249798B2 true JPH0249798B2 (en) 1990-10-31

Family

ID=11970584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1839888A Expired - Lifetime JPH0249798B2 (en) 1988-01-28 1988-01-28 JUKIKAGOBUTSUGANJUSUINOSHORIHOHO

Country Status (1)

Country Link
JP (1) JPH0249798B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5140218B2 (en) 2001-09-14 2013-02-06 有限会社コヒーレントテクノロジー Electrolyzer for producing charged anode water suitable for surface cleaning and surface treatment, method for producing the same, and method of use
US9168318B2 (en) 2003-12-30 2015-10-27 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
EP1863502B1 (en) 2005-03-23 2018-09-12 Sonoma Pharmaceuticals, Inc. Method of treating skin ulcers using oxidative reductive potential water solution
EP1896043B1 (en) 2005-05-02 2018-08-29 Sonoma Pharmaceuticals, Inc. Method of using oxidative reductive potential water solution in dental applications
KR20080093135A (en) 2006-01-20 2008-10-20 오클루스 이노바티브 사이언시즈 인코포레이티드 Treatment or prophylaxis of peritonitis with redox potential solution
BRPI1011886B1 (en) 2009-06-15 2022-05-03 Invekra, S.A.P.I De C.V Low pH antimicrobial solution
CN102795731B (en) * 2012-09-11 2014-04-23 北京师范大学 A method for treating wastewater polluted by halogenated organic compounds based on Fe-Ni-Cu ternary metal system
CN102951719B (en) * 2012-12-21 2014-03-05 南京大学 A kind of method utilizing pyrrhotite fixed bed to treat nitrobenzene wastewater

Also Published As

Publication number Publication date
JPH01194993A (en) 1989-08-04

Similar Documents

Publication Publication Date Title
JPH10174976A (en) Treatment method for water containing nitrogen compounds
US3929600A (en) Process of removing ammoniacal nitrogen from waste water
JPH0249798B2 (en) JUKIKAGOBUTSUGANJUSUINOSHORIHOHO
JP2778964B2 (en) Detoxification of wastewater containing elemental mercury
JP7065184B2 (en) Wastewater treatment method
JP4106415B2 (en) Treatment method of wastewater containing cyanide
JP2000210683A (en) Soil and / or groundwater purification method
JPH0249158B2 (en)
JPH10113678A (en) Method for making nitrate ion-containing waste liquid harmless and device therefor
JP2013049000A (en) Method of treating nitrate nitrogen-containing water
JPS61204082A (en) Cleaning up method of water contaminated with organic halogen compound
JPH09276881A (en) Treatment method for water containing nitrogen compounds
JPH06182344A (en) Decomposition and utilization method and device for salt and inorganic nitrogen compound-containing solution
JP2603895B2 (en) Treatment of hypophosphite ions in plating aging solution
CN106881088A (en) A kind of air oxidation broken cyanide catalyst and preparation method thereof
JP2003001277A (en) Method for decomposing persistent substance
JPH0194998A (en) Photochemical treatment of waste water
JPH11262780A (en) Decomposition treatment method for organic halogen compounds
JPH0780479A (en) Method for treating waste liquid containing organic compounds
KR102696668B1 (en) Treating method for exhaust gas and waste water containing hydrogen cyanide
Gogolashvili et al. Detoxication of hydrazine in waste waters
CN114054052B (en) Method for removing ammonia nitrogen by catalytic oxidation of chromium oxyfluoride
JP3565637B2 (en) Treatment of wastewater containing ammonia
JP2018114441A (en) Method for oxidizing arsenic ions in solution
KR101164214B1 (en) Nitrate nitrogen treatment method using clay mineral and zero valent iron

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term