JPH0249474A - Solar cells and their manufacturing method - Google Patents
Solar cells and their manufacturing methodInfo
- Publication number
- JPH0249474A JPH0249474A JP1113273A JP11327389A JPH0249474A JP H0249474 A JPH0249474 A JP H0249474A JP 1113273 A JP1113273 A JP 1113273A JP 11327389 A JP11327389 A JP 11327389A JP H0249474 A JPH0249474 A JP H0249474A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- substrate
- solar cell
- silicon
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000758 substrate Substances 0.000 claims description 55
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 33
- 229910052710 silicon Inorganic materials 0.000 claims description 32
- 239000010703 silicon Substances 0.000 claims description 32
- 239000010409 thin film Substances 0.000 claims description 31
- 239000007789 gas Substances 0.000 claims description 27
- 239000013078 crystal Substances 0.000 claims description 18
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 16
- 239000012495 reaction gas Substances 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 14
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 12
- 238000005530 etching Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 28
- 239000010408 film Substances 0.000 description 15
- 239000002019 doping agent Substances 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000013081 microcrystal Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/545—Microcrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は太陽電池及びその製造方法に関し、特に安価で
高品質な太陽電池及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solar cell and a manufacturing method thereof, and particularly to an inexpensive and high quality solar cell and a manufacturing method thereof.
(従来技術)
従来、PN接合を有する結晶シリコン薄膜太陽電池は、
通常、単結晶又は多結晶シリコン基板上にシリコンを気
相又は液相でエピタキシャル成長せしめて作製しており
、基板として単結晶シリコンを使用する場合には、30
05m程度の厚さに切削加工した基板が使用される。し
かしながら該加工は容易ではなく、そのため太陽電池の
コストを高くするという欠点があった。(Prior art) Conventionally, a crystalline silicon thin film solar cell having a PN junction is
Usually, it is produced by epitaxially growing silicon on a single crystal or polycrystalline silicon substrate in the vapor phase or liquid phase, and when using single crystal silicon as the substrate,
A substrate cut to a thickness of about 0.5 m is used. However, this processing is not easy, which has the disadvantage of increasing the cost of the solar cell.
そこで、エピタキシャルシリコンより安価に製造するこ
とのできる多結晶シリコンが注目されている。Therefore, polycrystalline silicon, which can be manufactured more cheaply than epitaxial silicon, is attracting attention.
多結晶シリコン薄膜は数百人〜数μmの結晶シリコンが
多数集合した状態であり、従来その薄膜は主として熱C
VD法によって製造されている。A polycrystalline silicon thin film is a state in which a large number of crystalline silicon particles of several hundred to several micrometers are aggregated.
Manufactured by VD method.
例えば、特開昭58−172217号では、400〜9
00℃の反応室ヘシラン化合物を供給して熱CVDを行
い、基板上へ多結晶シリコン薄膜を形成せしめることを
開示している。For example, in JP-A-58-172217, 400-9
It is disclosed that a polycrystalline silicon thin film is formed on a substrate by supplying a hesilane compound to a reaction chamber at 00° C. and performing thermal CVD.
しかしながら上記方法では、伝導効率の悪い反応ガスを
高温に加熱するため大量の熱エネルギーを必要とするだ
けでなく、加熱冷却に時間とコストがかかりすぎて薄膜
の生産性が悪いという問題がある上、400〜700°
C程度の温度条件を使用した場合には製膜速度が遅く実
用的でないという欠点があった。However, the above method not only requires a large amount of thermal energy to heat the reactant gas with poor conduction efficiency to a high temperature, but also has the problem of poor thin film productivity because heating and cooling takes too much time and cost. , 400~700°
When temperature conditions around C were used, there was a drawback that the film forming rate was slow and impractical.
又、一般に多結晶シリコン薄膜はアルミナやグラファイ
トなど結晶シリコン以外の材質の基板上へ形成させるた
め、700°C以上もの高温にさらされると基板中に含
有されるアルミニウムやニッケルなどの不純物が新たに
形成されるシリコン結晶中に拡散して、堆積される薄膜
の特性を悪化させることが知られている([最新LSI
プロセス技術J、P2O3、昭和58年発行、前田和夫
著工業調査会曙)。Furthermore, since polycrystalline silicon thin films are generally formed on substrates made of materials other than crystalline silicon, such as alumina or graphite, impurities such as aluminum and nickel contained in the substrate may be newly formed when exposed to high temperatures of 700°C or higher. It is known that it diffuses into the formed silicon crystal and deteriorates the characteristics of the deposited thin film ([Latest LSI
Process Technology J, P2O3, published in 1982, written by Kazuo Maeda, Kogyo Kenkyukai Akebono).
(発明が解決しようとする課題)
本発明者等は、従来のかかる欠点を解決すべく鋭意検討
した結果、従来a−3i:Hの成膜に使用していた5i
HaやSt、H,を成膜性ガスとすると共に5tFi、
S1mF&又はFtをエツチング性ガスとし水素及び不
活性ガスを希釈ガスとして使用することにより、プラズ
マCVD法により低い基板温度でシリコンの良好な結晶
成長を実現し、太陽電池として十分な膜厚の多結晶シリ
コン薄膜を容易に得ることができることを見い出し本発
明に到達した。(Problems to be Solved by the Invention) As a result of intensive study to solve the above drawbacks of the conventional technology, the present inventors discovered that the 5i
In addition to using Ha, St, and H as film-forming gases, 5tFi,
By using S1mF & or Ft as an etching gas and hydrogen and an inert gas as a diluting gas, it is possible to achieve good crystal growth of silicon at a low substrate temperature using the plasma CVD method, resulting in a polycrystalline film with a sufficient thickness for a solar cell. The present invention was achieved by discovering that a silicon thin film can be easily obtained.
従って本発明の第1の目的は、低品位の基板を使用して
高品質の太陽電池を提供することにある。Therefore, a first objective of the present invention is to provide a high quality solar cell using a low grade substrate.
本発明の第2の目的は、比較的低温の基板上にシリコン
の多結晶薄膜を形成せしめ高品質な太陽電池を製造する
方法を提供することにある。A second object of the present invention is to provide a method for manufacturing a high-quality solar cell by forming a polycrystalline thin film of silicon on a relatively low-temperature substrate.
更に本発明の第3の目的は、シリコン結晶薄膜を少なく
とも一層有する太陽電池上に更に光電変換層を積層した
タンデム型太陽電池を提供することにある。Furthermore, a third object of the present invention is to provide a tandem solar cell in which a photoelectric conversion layer is further laminated on a solar cell having at least one silicon crystal thin film.
(問題を解決するための手段)
本発明の上記の諸口的は、シリコン結晶基板上にP層及
びN層からなるシリコン薄膜光電変換層を有する太陽電
池であって、前記基板が不純物を相当量含有するシリコ
ン多結晶基板であると共に、前記PFI及びN層の少な
(とも基板側の層が10−IΩ・1以上の比抵抗を有す
る多結晶シリコン薄膜であることを特徴とする太陽電池
及びそれに適した太陽電池の製造方法によって達成され
た。(Means for Solving the Problem) The above aspects of the present invention provide a solar cell having a silicon thin film photoelectric conversion layer consisting of a P layer and an N layer on a silicon crystal substrate, wherein the substrate contains a considerable amount of impurities. A solar cell characterized in that it is a polycrystalline silicon thin film containing a silicon polycrystalline substrate, and a polycrystalline silicon thin film having a small amount of the PFI and N layers (both the layers on the substrate side have a specific resistance of 10-IΩ·1 or more, and This was achieved by a suitable solar cell manufacturing method.
本発明の太陽電池に使用する基板は多結晶シリコンであ
り、後記する如く相当量の不純物を含有する。The substrate used in the solar cell of the present invention is polycrystalline silicon and contains a considerable amount of impurities as described later.
多結晶シリコン基板中には、通常人2.0、Cr、Fe
、Mn、Tl、V等の不純物が含まれており、特にAj
!、Fe及びOについては、その含有量は0.5原子%
程度に及ぶことがある。従うて、多結晶シリコン基板上
に、熱CVD法によってシリコン薄膜を形成せしめる場
合には、上記の如く基板中に含有されている不純物が基
板上に形成せしめたシリコン薄膜中に拡散し、この拡散
のために基板温度を約i、ooo℃以上とする従来法に
おいては高品質のシリコン薄膜を得ることはできない。Polycrystalline silicon substrates usually contain 2.0, Cr, and Fe.
, Mn, Tl, V and other impurities, especially Aj
! , for Fe and O, the content is 0.5 at%
It may range to a certain extent. Therefore, when forming a silicon thin film on a polycrystalline silicon substrate by thermal CVD, impurities contained in the substrate as described above diffuse into the silicon thin film formed on the substrate, and this diffusion Therefore, a high-quality silicon thin film cannot be obtained in the conventional method in which the substrate temperature is set to about i,00° C. or higher.
例えば不純物として最も多量に含まれているAl及びF
eの拡散係数は下表の如くである。For example, Al and F, which are contained in the largest amount as impurities,
The diffusion coefficient of e is as shown in the table below.
しかしながら、本発明においては、基板温度を300
”C以下とすることができるので、上記不純物の混入を
従来法の場合に比して3桁以上少なくすることができる
。このように、本発明においては比較的不純物の多い低
品質の基板を使用しても高品質のシリコン薄膜を形成せ
しめることができるので、これにより製造コストの低減
を実現することができる。However, in the present invention, the substrate temperature is
``C or less, the contamination of the above-mentioned impurities can be reduced by more than three orders of magnitude compared to the conventional method.In this way, in the present invention, a low-quality substrate with relatively many impurities can be reduced. Since a high-quality silicon thin film can be formed even when using this method, manufacturing costs can be reduced.
本発明において、相当量の不純物を含有するシリコーン
多結晶基板とは、アルミニウムがIPPm以上、鉄がi
ppm以上、酸素が10ppm以上のシリコン多結晶基
板を意味する。In the present invention, a silicone polycrystalline substrate containing a considerable amount of impurities means that aluminum is IPPm or more and iron is iPPm or more.
ppm or more, meaning a silicon polycrystalline substrate containing oxygen of 10 ppm or more.
しかしながら、不純物の量があまりにも多すぎる場合に
は、基板温度を300℃以下としても十分な性能の太陽
電池を得ることは望めないので、本発明においてはアル
ミニウムは0.3原子%以下、鉄は0.2原子%以下、
酸素は0.3原子%以下のシリコン多結晶基板を使用す
ることが好ましい。However, if the amount of impurities is too large, it is not possible to obtain a solar cell with sufficient performance even if the substrate temperature is 300°C or less. is 0.2 atomic% or less,
It is preferable to use a silicon polycrystalline substrate containing 0.3 atomic % or less of oxygen.
上記基板上に1層又はN層として設ける多結晶シリコン
の比抵抗は10−1Ω・口板上であり好ましくは1Ω・
1以上である。又、結晶の粒子サイズは、直径9層1m
m以上のものが多結晶の断面比で80%以上であること
が好ましく、特に直径0.3mm〜10mmのものが9
5%以上であることが好ましい。The specific resistance of the polycrystalline silicon provided as a single layer or N layers on the substrate is 10-1Ω・on the base plate, and preferably 1Ω・
It is 1 or more. In addition, the particle size of the crystal is 9 layers 1 m in diameter.
It is preferable that the polycrystal has a cross-sectional ratio of 80% or more, and in particular, the polycrystal has a diameter of 0.3 mm to 10 mm.
It is preferably 5% or more.
本発明においては、基板上に1層又はNJilを構成す
る上記多結晶シリコン薄膜を形成せしめるために成膜性
ガスとしてS i H,及び/又は5ly)Isを使用
し、エツチングガスとしては、SiF、、S1g F、
及び弗素ガスからなる群、の中から選択された少なくと
も1種を主成分として使用する。In the present invention, in order to form the polycrystalline silicon thin film constituting one layer or NJIL on the substrate, SiH and/or Is are used as the film-forming gas, and SiF is used as the etching gas. ,,S1g F,
and fluorine gas is used as the main component.
エツチング性ガスは前記成膜性ガスの約0.1〜100
倍、好ましくは0.5〜80倍とし水素ガスを成膜性ガ
スの約500倍以下の量使用する。The etching gas is about 0.1 to 100% of the film forming gas.
The amount of hydrogen gas used is about 500 times or less that of the film-forming gas.
エツチング性ガスが成膜性ガスの0.1倍より少ないと
基板表面をシリコンが結晶成長し易いように、常に最良
の状態に保つことができない。If the etching gas is less than 0.1 times the film forming gas, the substrate surface cannot always be kept in the best condition so that silicon crystal growth tends to occur.
一方、100倍より多い場合はエツチング速度が大きく
なりすぎてシリコン結晶薄膜が成長しにくい、又、水素
ガスを成膜性ガスの500倍以上とした場合には、シリ
コン原子の濃度が低くなりシリコン結晶薄膜の形成速度
が遅くなり過ぎるので好ましくない。On the other hand, if the hydrogen gas is more than 100 times the etching rate, the etching rate becomes too high and it is difficult to grow a silicon crystal thin film, and if the hydrogen gas is more than 500 times the film-forming gas, the concentration of silicon atoms becomes low and the silicon crystal thin film becomes difficult to grow. This is not preferable because the formation speed of the crystal thin film becomes too slow.
又、エツチング性ガスはHe、Ar等の不活性ガスで希
釈して使用することができる。不活性ガスによる希釈倍
率は、成膜性ガス及び水素ガス使用量にも依有するが約
0.1倍〜50倍とすることが好ましい。Further, the etching gas can be used after being diluted with an inert gas such as He or Ar. The dilution ratio with the inert gas depends on the amount of film-forming gas and hydrogen gas used, but is preferably about 0.1 times to 50 times.
次に、上記の条件を満たした約0.ITorr〜15T
orrの圧力の反応ガスを、電力密度0゜1〜5 W
/ c m ”の高周波によってプラズマ化し、約10
0℃〜300℃、好ましくは150℃〜250℃の間の
一定温度に維持した基板上にシリコン結晶薄膜を形成せ
しめる。Next, about 0.0% that satisfies the above conditions. ITorr~15T
orr pressure of reaction gas, power density 0°1~5 W
/ cm”, it is turned into plasma by the high frequency of about 10
A silicon crystal thin film is formed on a substrate maintained at a constant temperature between 0°C and 300°C, preferably between 150°C and 250°C.
基板温度が100℃より低いと、シリコンの結晶成長速
度が極端に遅くなるので現実的でない。If the substrate temperature is lower than 100° C., the silicon crystal growth rate will be extremely slow, which is not realistic.
基板温度が300℃より高くなると、基板表面の水素吸
着が不十分となるために、シリコン結晶薄膜の品質が悪
化する。When the substrate temperature is higher than 300° C., the quality of the silicon crystal thin film deteriorates because hydrogen adsorption on the substrate surface becomes insufficient.
又、プラズマを発生させるための電力密度及び反応ガス
の圧力は、基板に到着する原子やイオンの連動エネルギ
ーに影響し、従ってシリコン結晶薄膜の品質にも影響す
る。Further, the power density and the pressure of the reactant gas for generating plasma affect the interlocking energy of atoms and ions arriving at the substrate, and therefore the quality of the silicon crystal thin film.
電力密度が0.IW/cm”より小さいと反応ガスの圧
力を十分低下させなければならないので成膜速度が遅く
、5W/cm”以上ではシリコン結晶薄膜の品質を高く
維持することができないので好ましくない。Power density is 0. If it is less than IW/cm'', the pressure of the reaction gas must be sufficiently lowered, resulting in a slow film formation rate, and if it is more than 5 W/cm'', the quality of the silicon crystal thin film cannot be maintained at a high level, which is undesirable.
反応ガスの圧力が0.1Torrより低いとシリコンの
結晶成長速度が遅(、又15To r rより高いと放
電状態が安定しないので好ましくない。If the pressure of the reaction gas is lower than 0.1 Torr, the silicon crystal growth rate is slow (and if it is higher than 15 Torr, the discharge state will not be stable, which is not preferable).
本発明においては上記の条件を満たした約0゜5To
r r 〜10To r rの圧力の反応ガスを、電力
密度的0.3〜2.5W/cm”の放電によってプラズ
マ化し、約100℃〜300℃に維持した基板上にシリ
コン結晶薄膜を形成せしめる。In the present invention, approximately 0°5To which satisfies the above conditions is used.
The reaction gas at a pressure of r r ~ 10 Torr is turned into plasma by a discharge with a power density of 0.3 ~ 2.5 W/cm'', and a silicon crystal thin film is formed on a substrate maintained at approximately 100° C. ~ 300° C. .
周知の如(、太陽電池は受光表面近傍にPN接合を有す
ることが必要である。従って本発明においても、PN接
合を形成せしめるためにドーパントを使用する。As is well known, it is necessary for solar cells to have a PN junction near the light-receiving surface. Therefore, in the present invention, a dopant is also used to form a PN junction.
ドーパントは、p型にする場合には元素周期率表の第■
族元素であり、n型にする場合には第V族の元素である
0本発明においては、これらのド−バントを単体蒸気又
は気体化合物として、原料ガス中にドーパントガスとし
て混在せしめる。これらのドーパントガスとしては例え
ばBl H&、PH,、PFs等を挙げることができる
。When making the dopant p-type, the dopant should be selected from the periodic table of elements.
In the present invention, these dopant elements are mixed in the source gas as a dopant gas in the form of a single vapor or a gaseous compound. Examples of these dopant gases include Bl H&, PH, and PFs.
ドーパントガスは、シリコン原子を有する原料に対して
ガス比で10−5容量%〜1容量%混在せしめる。The dopant gas is mixed in a gas ratio of 10-5% to 1% by volume with respect to the raw material containing silicon atoms.
本発明においては、ドーパントを含まない場合と同様に
してドーパントを含むP層及びNNの何れをも形成せし
めることができるが、Pi又はN層の何れか(第1層、
即ち基板側の層)を結晶成長させて形成した後、その上
に形成するNWI又はPJI(第2N)としてアモルフ
ァスシリコン又は微結晶を含有するアモルファスシリコ
ン層を形成することもできる。第1Nの膜厚は、1μm
〜50μm特に5μm〜20amの範囲が好ましく、第
271の膜厚は0. 01 μm 〜5 am特に0.
05μm〜1μmとする事が好ましい。In the present invention, both the P layer and the NN containing a dopant can be formed in the same manner as when the dopant is not included, but either the Pi or the N layer (the first layer,
In other words, after forming the substrate-side layer by crystal growth, amorphous silicon or an amorphous silicon layer containing microcrystals can be formed as the NWI or PJI (second N) formed thereon. The film thickness of the 1st N is 1 μm
~50 μm, particularly preferably in the range of 5 μm ~ 20 am, and the 271st film thickness is 0.5 μm. 01 μm to 5 am, especially 0.01 μm to 5 am.
It is preferable to set it as 05 micrometers - 1 micrometer.
アモルファスシリコンは、プラズマCVD法により形成
することができる。Amorphous silicon can be formed by plasma CVD.
基板温度は、100℃〜300℃、反応圧力は50mT
o r r〜l OTo r rの範囲に調整される。Substrate temperature is 100℃~300℃, reaction pressure is 50mT
It is adjusted to a range of o r r to l OTo r r.
P型としてのアモルファスシリコンの場合は、不純物と
して炭素を混入せしめたアモルファスシリコンカーバイ
トが好適である。In the case of P-type amorphous silicon, amorphous silicon carbide mixed with carbon as an impurity is suitable.
アモルファスシリコンカーバイトは、不純物としてメタ
ン等の炭化水素化合物(C+−C3)をシランやジシラ
ン等に混入した原料ガスを使用して形成される。Amorphous silicon carbide is formed using a raw material gas in which silane, disilane, etc. are mixed with a hydrocarbon compound (C+-C3) such as methane as an impurity.
微結晶を含有するアモルファスシリコンも、プラズマC
VD法により形成することができる。Amorphous silicon containing microcrystals is also plasma C
It can be formed by a VD method.
この場合、基板温度は150″C〜400°C1反応圧
力は100mTo r r 〜100To r rの範
囲に調整して形成される。In this case, the substrate temperature is adjusted to a range of 150''C to 400°C, and the reaction pressure is adjusted to a range of 100mTorr to 100Torr.
基板上へPN又はNP接合を設けた後、透明導電膜又は
金属くし電極或いは両者を形成することができる。透明
導電膜としては、酸化スズ又はITo(インジウム・ス
ズ酸化物)が採用される。After providing the PN or NP junction on the substrate, a transparent conductive film or a metal comb electrode or both can be formed. As the transparent conductive film, tin oxide or ITo (indium tin oxide) is used.
膜厚は、100〜1,000人程以下好ましい。The film thickness is preferably about 100 to 1,000 or less.
基板上にP層が第2層として設けられる場合には、Pl
iが導電膜として機能するので透明導電膜を製膜する必
要がない。When a P layer is provided as a second layer on the substrate, Pl
Since i functions as a conductive film, there is no need to form a transparent conductive film.
このようにして製造したPN接合を有する太陽を池は約
1〜1.5eVの光学ギャップを有するが、この上に、
更に、公知の方法によってアモルファスシリコン薄膜を
形成してタンデム型太陽電池を構成せしめることができ
る。アモルファスシリコンのpin接合は、前記プラズ
マCVD法において、基板温度100〜300℃、且つ
反応ガス圧力10mTo r r〜l OTo r r
、、電力密度0.01〜0.05W/cm”の条件を採
用することにより形成することができる。The solar pond with the PN junction produced in this way has an optical gap of about 1 to 1.5 eV, but in addition to this,
Furthermore, a tandem solar cell can be constructed by forming an amorphous silicon thin film using a known method. In the plasma CVD method described above, a pin junction of amorphous silicon is performed at a substrate temperature of 100 to 300°C and a reaction gas pressure of 10 mTorr to lOTorr.
, , can be formed by adopting conditions of a power density of 0.01 to 0.05 W/cm''.
膜厚は、例えばpl=100〜300人、1層:l、0
00〜5.ooo人、3層:100〜400人とされる
。尚、1層は通常ドーパントを含まないが、ドーパント
濃度がグレイディトに変化するように形成することもで
きる。The film thickness is, for example, pl = 100 to 300 people, 1 layer: l, 0
00-5. ooo people, 3rd layer: estimated to be 100 to 400 people. Note that one layer usually does not contain a dopant, but it can also be formed so that the dopant concentration changes in a gradient manner.
以上の如くして形成した太陽電池は、二端子型としても
四端子型としても良い、このタンデム型太陽電池の光学
ギャップは約1.5〜2.OeVであって、両太陽電池
の光学ギャップが異なるので変換効率を改善したタンデ
ム構造の太陽電池とすることができる。The solar cell formed as described above may be of either a two-terminal type or a four-terminal type, and the optical gap of this tandem solar cell is about 1.5 to 2. OeV, and since the optical gaps of both solar cells are different, it is possible to obtain a tandem structure solar cell with improved conversion efficiency.
(発明の効果)
以上詳述した如く、本発明によれば低品位の基板を使用
しても高品質の太陽電池を得ることができるので、太陽
電池の製造コストを大幅に引き下げることができるのみ
ならず、この低コスト化に伴って、太陽電池の用途を大
幅に拡大することができる。(Effects of the Invention) As detailed above, according to the present invention, high-quality solar cells can be obtained even by using low-grade substrates, so the manufacturing cost of solar cells can be significantly reduced. However, along with this cost reduction, the applications of solar cells can be greatly expanded.
以下実施例に従って本発明を更に詳述するが、本発明は
これによって限定されるものではない。The present invention will be described in more detail below with reference to Examples, but the present invention is not limited thereto.
実施例1゜
金属グレードシリコンをルツボで処理して多結晶ウェハ
ーを作製し、これを酸処理した後基板として用いた。基
板はN型で不純物としてAfを40ppm、Oを240
ppm含有していた。Example 1 Metallic grade silicon was processed in a crucible to produce a polycrystalline wafer, which was treated with an acid and used as a substrate. The substrate is N type and contains 40 ppm of Af and 240 ppm of O as impurities.
It contained ppm.
次に、予めlXl0−’Torrの高真空にした反応室
に、反応ガスSiH4:5iFn :Htり1:50
jlOO(全体で101005CCを、反応ガスの圧力
が2TOr rとなるように調整した。この反応ガスを
13.56MHzの高周波電源を用いて電力密度1,5
W/cm”でプラズマ化し200℃に加熱した前記基板
上に10.unの多結晶シリコン薄膜を成長させた。こ
のシリコン層はN−層として表示し得るものであり、光
活性層として動作する。Next, a reaction gas SiH4:5iFn:Ht 1:50
jlOO (101005 CC in total was adjusted so that the pressure of the reaction gas was 2 TOr r.This reaction gas was heated to a power density of 1.5 using a 13.56 MHz high frequency power source.
A 10.un thick polycrystalline silicon thin film was grown on the substrate which was plasmatized at 200° C. and heated to 200° C. This silicon layer can be designated as an N-layer and acts as a photoactive layer. .
次いで上記反応ガスにBgHaを加え、(Bg Ha
/ S i Ha −1%)、N−層の上に多結晶シリ
コンのPliを設けた(膜厚−0,1層m)。Next, BgHa is added to the above reaction gas, and (Bg Ha
/S i Ha -1%), and polycrystalline silicon Pli was provided on the N- layer (film thickness -0, 1 layer m).
このようにして得られた、太陽電池の光電変換効率はA
M −1、100mW/dの下で、5.1%であうた。The photoelectric conversion efficiency of the solar cell obtained in this way is A
Under M −1 and 100 mW/d, it was 5.1%.
実施例2゜
実施例1の場合と同様な手順で基板に10amの厚さに
多結晶シリコンを成長させた後、光学的バンドギャップ
Eopt−2,OeVのアモルファスシリコンカーバイ
ド(a−3iC(B):H)150人を、通常のプラズ
マCVD法によりPliとして設けた。Pwlの成膜条
件は下記の通りである。Example 2 After growing polycrystalline silicon to a thickness of 10 am on a substrate in the same manner as in Example 1, amorphous silicon carbide (a-3iC(B)) with an optical band gap Eopt-2, OeV was grown. :H) 150 people were set up as Pli by normal plasma CVD method. The conditions for forming Pwl are as follows.
反応ガス:CH,/SiH4−1/1、ドーパント:
Bg Ha (S i Haに対して0.1体積%)
反応ガス流量:80SCCM
電力密度:0.03W/cii
基板温度:250℃、
圧力=300mTorr
これによりAM−1,100mW/c11の下での光電
変換効率は5.3%となった。Reaction gas: CH, /SiH4-1/1, dopant:
Bg Ha (0.1% by volume relative to S i Ha) Reaction gas flow rate: 80SCCM Power density: 0.03W/cii Substrate temperature: 250°C, pressure = 300mTorr This allows the The photoelectric conversion efficiency was 5.3%.
実施例3゜
実施例2で製作した太陽電池の上に、膜厚0゜34pm
のアモルファスシリコン(光学的バンドギャップ1,7
eV)をnipの順に成膜した。Example 3 A film with a thickness of 0° and 34 pm was applied on the solar cell produced in Example 2.
amorphous silicon (optical bandgap 1,7
eV) were deposited in the order of nip.
このタンデム型太陽電池の光電変換効率は、AM −1
: 100 mW/aJの下で、5.6%であった*n
s’i、p各層の作製条件は下記の通りである。The photoelectric conversion efficiency of this tandem solar cell is AM −1
: Under 100 mW/aJ, it was 5.6%*n
The manufacturing conditions for each of the s'i and p layers are as follows.
(150人):実施例2の場合と同じ
(3,000人):
反応ガス:5iHa−
反応ガス流量:20SCCM
電力密度:0.02W/cm
基板温度:250℃
圧力 :100mTorr
1層 (200人):
反応ガス:SiH4
ドーパント:PH5
(S I Haに対して
0.1%)
反応ガス流量:803CCM
電力密度:0.03W/d
基板温度:250℃
圧カニ1,000mTorr
2層
1i
比較例1゜
基板温度を1,000℃とした他は実施例1と全く同様
にして太陽電池を得た。得られた太陽電池の光電変換効
率は1%程度であり、本発明によって得られた太陽電池
の変換効率には遠く及ばないことが確認された。(150 people): Same as in Example 2 (3,000 people): Reaction gas: 5iHa- Reaction gas flow rate: 20SCCM Power density: 0.02W/cm Substrate temperature: 250°C Pressure: 100mTorr 1 layer (200 people) ): Reactive gas: SiH4 Dopant: PH5 (0.1% to S I Ha) Reactive gas flow rate: 803 CCM Power density: 0.03 W/d Substrate temperature: 250°C Pressure crab 1,000 mTorr 2 layers 1i Comparative example 1 A solar cell was obtained in exactly the same manner as in Example 1 except that the substrate temperature was 1,000°C. It was confirmed that the photoelectric conversion efficiency of the obtained solar cell was about 1%, which was far below the conversion efficiency of the solar cell obtained by the present invention.
比較例2゜
反応ガスとして311(a :)it −t : 1
00を使用した他は実施例1と全く同様にして太陽電池
を得た。N層の比抵抗は1〇−冨Ω・備であり、太陽電
池の変換効率は2.3%であった。Comparative Example 2゜311(a:)it-t:1 as reaction gas
A solar cell was obtained in exactly the same manner as in Example 1 except that 00 was used. The specific resistance of the N layer was 10-tΩ·bi, and the conversion efficiency of the solar cell was 2.3%.
特許出願人 東亜燃料工業株式会社Patent applicant: Toa Fuel Industries Co., Ltd.
Claims (1)
ン薄膜光電変換層を有する太陽電池であって、前記基板
が不純物を相当量含有するシリコン多結晶基板であると
共に、前記P層及びN層の少なくとも基板側の層が10
^−^1Ω・cm以上の比抵抗を有する多結晶シリコン
薄膜であることを特徴とする太陽電池。 2)請求項1の太陽電池を構成している上層の光電変換
層上に更にアモルファスシリコン光電変換層を積層した
ことを特徴とするタンデム型太陽電池。 3)基板上に、プラズマCVD法によりP層及びN層か
らなるシリコン薄膜光電変換層を形成せしめる太陽電池
の製造方法において、前記P層及びN層の少なくとも基
板側の層として、SiH_4及びSi_2H_6、から
選択される少なくとも1種の成膜性ガスと、SiF_4
、Si_2F_6及び弗素ガスからなる群から選択され
た少なくとも1種を主成分とするエッチング性ガスとを
1:0.1〜1:100の比率で混合して反応ガスとし
、約100〜300℃に維持した基板上に多結晶シリコ
ン薄膜を形成せしめる事を特徴とする太陽電池の製造方
法。[Scope of Claims] 1) A solar cell having a silicon thin film photoelectric conversion layer consisting of a P layer and an N layer on a silicon crystal substrate, the substrate being a silicon polycrystalline substrate containing a considerable amount of impurities, At least the layer on the substrate side of the P layer and the N layer is 10
^-^ A solar cell characterized by being a polycrystalline silicon thin film having a specific resistance of 1 Ω·cm or more. 2) A tandem solar cell characterized in that an amorphous silicon photoelectric conversion layer is further laminated on the upper photoelectric conversion layer constituting the solar cell according to claim 1. 3) In a solar cell manufacturing method in which a silicon thin film photoelectric conversion layer consisting of a P layer and an N layer is formed on a substrate by a plasma CVD method, at least as a layer on the substrate side of the P layer and the N layer, SiH_4 and Si_2H_6, at least one film-forming gas selected from SiF_4
, Si_2F_6, and an etching gas mainly composed of at least one selected from the group consisting of fluorine gas at a ratio of 1:0.1 to 1:100 to form a reaction gas, and heated to about 100 to 300°C. A method for manufacturing a solar cell characterized by forming a polycrystalline silicon thin film on a maintained substrate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12753288 | 1988-05-25 | ||
JP63-127532 | 1988-05-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0249474A true JPH0249474A (en) | 1990-02-19 |
Family
ID=14962345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1113273A Pending JPH0249474A (en) | 1988-05-25 | 1989-05-02 | Solar cells and their manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0249474A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5397400A (en) * | 1992-07-22 | 1995-03-14 | Mitsubishi Denki Kabushiki Kaisha | Thin-film solar cell |
JP2008153646A (en) * | 1994-03-25 | 2008-07-03 | Bp Corp North America Inc | Manufacturing method of semiconductor device |
-
1989
- 1989-05-02 JP JP1113273A patent/JPH0249474A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5397400A (en) * | 1992-07-22 | 1995-03-14 | Mitsubishi Denki Kabushiki Kaisha | Thin-film solar cell |
US5472885A (en) * | 1992-07-22 | 1995-12-05 | Mitsubishi Denki Kabushiki Kaisha | Method of producing solar cell |
JP2008153646A (en) * | 1994-03-25 | 2008-07-03 | Bp Corp North America Inc | Manufacturing method of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5486237A (en) | Polysilicon thin film and method of preparing polysilicon thin film and photovoltaic element containing same | |
US20110033969A1 (en) | Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon | |
WO2006070799A1 (en) | METHOD FOR PRODUCING ZnO-BASED TRANSPARENT ELECTROCONDUCTIVE FILM BY MOCVD (METAL ORGANIC CHEMICAL VAPOR DEPOSITION) METHOD | |
JPH05335257A (en) | Formation of p-type silicon carbide | |
CN108615672B (en) | Preparation method of semiconductor crystalline film and semiconductor crystalline film | |
Koyama et al. | Extremely low surface recombination velocities on crystalline silicon wafers realized by catalytic chemical vapor deposited SiNx/a-Si stacked passivation layers | |
WO2001022482A1 (en) | Method of producing relaxed silicon germanium layers | |
CN111681947B (en) | Epitaxial method for reducing stacking fault defects of epitaxial wafer and application thereof | |
CN116623296A (en) | A Method for Effectively Reducing the Defect Density of Silicon Carbide Epitaxial Wafers | |
Khranovskyy et al. | Morphology, electrical and optical properties of undoped ZnO layers deposited on silicon substrates by PEMOCVD | |
Ishida et al. | Origin of giant step bunching on 4H-SiC (0001) surfaces | |
WO2019223261A1 (en) | Preparation method for transparent conductive oxide film of crystalline silicon heterojunction solar cell | |
US5391410A (en) | Plasma CVD of amorphous silicon thin film | |
JPH0249474A (en) | Solar cells and their manufacturing method | |
Ubukata et al. | Accelerated GaAs growth through MOVPE for low-cost PV applications | |
TW202325921A (en) | Epitaxial growth method and epitaxial silicon wafer | |
CN111705359B (en) | A method for preparing graphene single crystal wafer on copper-based textured film substrate | |
CN108892132A (en) | Prepare auxiliary device, the graphene and preparation method thereof of graphene | |
CN112864001B (en) | Semiconductor structure, self-supporting gallium nitride layer and preparation method thereof | |
CN117403321A (en) | Tungsten nitride silicon single crystal film and preparation method thereof | |
JPH0277116A (en) | Method for manufacturing silicon crystal thin film | |
JP2004297008A (en) | P-type semiconductor material, manufacturing method thereof, manufacturing apparatus thereof, photoelectric conversion element, light emitting element, and thin film transistor | |
CN119194598A (en) | Epitaxial wafer and preparation method thereof | |
JPS60207319A (en) | Amorphous semiconductor solar cell | |
CN119040848A (en) | Silicon nitride film, preparation method thereof and solar cell |