[go: up one dir, main page]

JPH0248982B2 - - Google Patents

Info

Publication number
JPH0248982B2
JPH0248982B2 JP59181752A JP18175284A JPH0248982B2 JP H0248982 B2 JPH0248982 B2 JP H0248982B2 JP 59181752 A JP59181752 A JP 59181752A JP 18175284 A JP18175284 A JP 18175284A JP H0248982 B2 JPH0248982 B2 JP H0248982B2
Authority
JP
Japan
Prior art keywords
address
addresses
groove
cut
radial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59181752A
Other languages
Japanese (ja)
Other versions
JPS6161237A (en
Inventor
Kazuaki Obara
Yosha Takemura
Michoshi Nagashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59181752A priority Critical patent/JPS6161237A/en
Priority to US06/768,843 priority patent/US4712204A/en
Priority to EP85110716A priority patent/EP0176755B1/en
Priority to DE8585110716T priority patent/DE3574644D1/en
Publication of JPS6161237A publication Critical patent/JPS6161237A/en
Publication of JPH0248982B2 publication Critical patent/JPH0248982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/20Driving; Starting; Stopping; Control thereof
    • G11B19/24Arrangements for providing constant relative speed between record carrier and head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/24Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by sensing features on the record carrier other than the transducing track ; sensing signals or marks recorded by another method than the main recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00745Sectoring or header formats within a track
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/10Indexing; Addressing; Timing or synchronising; Measuring tape travel
    • G11B27/19Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier
    • G11B27/28Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording
    • G11B27/30Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording
    • G11B27/3027Indexing; Addressing; Timing or synchronising; Measuring tape travel by using information detectable on the record carrier by using information signals recorded by the same method as the main recording on the same track as the main recording used signal is digitally coded

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光デイスク、および光デイスクにレ
ーザ光を絞つて照射し、信号の記録、再生を行な
う際のアドレスの再生方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical disk and a method for reproducing addresses when recording and reproducing signals by irradiating the optical disk with focused laser light.

従来例の構成とその問題点 近年、大容量、高転送レートを目的とした光デ
イスクメモリの開発がさかんに行なわれている。
その中で、光デイスク表面にV字状の溝を形成
し、その対向斜面を1組の信号面として信号を記
録、再生を行ない、容量、転送レートを2倍にす
る方式が提案されている(特願昭57−147133号、
特願昭58−175259号)。この方式は第1図に示し
た様に、斜面AとB、或にはCとD等の互いに隣
り合う2斜面に、第2図の様に第1のレーザスポ
ツト1と第1のレーザとは独立に駆動できる第2
のレーザスポツト2とを絞つて照射することによ
り信号の記録、再生を行なうものである。信号の
記録は、記録媒体薄膜(例へばTeOx、X<2)
の反射率がレーザパワーの照射により変化するこ
とで行なわれる。信号の再生は隣り合う2斜面
(例へばCとD)を同時に読み出す。この再生方
式については前記特許出願の明細書に詳しく示さ
れている様に、V字状溝の形状を最適化すれば、
デイスクからの反射光のうち、±1次光を中心と
して受光することにより、各斜面の信号をそれぞ
れ再生できる。信号のアドレスピツトPiは第3図
に示す様にV字状の溝をカツテイングする際にデ
イスクの深さ方向に、変化を与えることで作る。
第3図でVCはV溝をカツテイングするためカツ
タ、Piはこのカツタを深さ方向にアドレスのビツ
トに対応して振動させてカツテイングされたアド
レスビツトを示している。実際のアドレスピツト
は第3図に示したよりはゆるやかにカツテイング
されるがここでは模式的に示している。アドレス
の再生はこの深さの変化で回折光強度が変化する
ことを利用して、再生用受光素子を用いて読むこ
とができる。しかし第4図の様に隣接するV字状
溝でAとBの斜面にカツテイングされたアドレス
とCとDにカツテイングされたアドレスがデイス
クの半径方向で重なつた様な場合、斜面BとCで
共有される山が両方のアドレスで変調されるので
アドレスを読み誤る可能性がある。以下この点に
ついて説明する。第5図はV溝デイスクの断面図
を示している。例へば、θ=161゜、PT=800nm、
d=134nmとすると、アドレスのカツテイング
のために深さ方向にε=200Åの変化を与えると
V溝の山5は半径方向11にγ=1200Å変化す
る。したがつて第6図の様に隣接するV溝で半径
方向にアドレスNとMが重なつてしまうような場
合が生じると、V溝の斜面BおよびCの共有する
山5はアドレスNとアドレスMによつて変調され
ることになり、第7図のようにV溝3にカツテイ
ングされたアドレスNを再生するためのレーザス
ポツト2にV溝4にカツテイングされたアドレス
Mの影響が生じ、アドレスNを読み誤る恐れがあ
つた。
Conventional Structures and Their Problems In recent years, optical disk memories have been actively developed with the aim of achieving large capacities and high transfer rates.
Among these, a method has been proposed in which a V-shaped groove is formed on the surface of an optical disk, and the opposing slopes are used as a set of signal surfaces to record and reproduce signals, thereby doubling the capacity and transfer rate. (Special Application No. 147133,
(Special Application No. 175259/1982). In this method, as shown in Fig. 1, a first laser spot 1 and a first laser are placed on two adjacent slopes, such as slopes A and B, or C and D, as shown in Fig. 2. is a second motor that can be driven independently.
Signals are recorded and reproduced by focusing and irradiating the laser spot 2. Signal recording is performed using a recording medium thin film (for example, TeOx, X<2)
This is done by changing the reflectance of the laser beam by irradiating it with laser power. To reproduce the signal, two adjacent slopes (for example, C and D) are read out simultaneously. Regarding this regeneration method, as detailed in the specification of the above-mentioned patent application, if the shape of the V-shaped groove is optimized,
By receiving mainly the ±1st-order light among the reflected light from the disk, the signals of each slope can be reproduced. The signal address pit Pi is created by varying the depth of the disk when cutting a V-shaped groove, as shown in Figure 3.
In FIG. 3, VC represents a cutter for cutting the V-groove, and Pi represents an address bit that is cut by vibrating this cutter in the depth direction in accordance with the address bit. Although the actual address pit is cut more gently than shown in FIG. 3, it is shown schematically here. Addresses can be read using a reproduction light-receiving element by taking advantage of the fact that the intensity of the diffracted light changes with this change in depth. However, as shown in Figure 4, if the addresses cut on the slopes A and B and the addresses cut on C and D overlap in the radial direction of the disk in adjacent V-shaped grooves, then the slopes B and Since the shared peak is modulated by both addresses, it is possible to misread the address. This point will be explained below. FIG. 5 shows a cross-sectional view of the V-groove disk. For example, θ=161°, PT=800nm,
Assuming that d=134 nm, when a change of ε=200 Å is applied in the depth direction for address cutting, the peak 5 of the V groove changes in the radial direction 11 by γ=1200 Å. Therefore, if a case occurs where addresses N and M overlap in the radial direction in adjacent V grooves as shown in Figure 6, the peak 5 shared by slopes B and C of the V grooves will overlap address N and address M. As shown in FIG. 7, the laser spot 2 for reproducing the address N cut into the V-groove 3 is affected by the address M cut into the V-groove 4. There was a risk of misreading N.

発明の目的 本発明の目的は以上に述べた様に、V溝デイス
クに信号を記録再生するに際し、デイスク上の隣
接するV溝のアドレスが半径方向で重なつた場
合、アドレスの読み誤りが生じるという従来の問
題点を解決した光デイスクの提供およびこの光デ
イスクにおけるアドレスの正確な再生方法を提供
することである。
Purpose of the Invention As stated above, when recording and reproducing signals on a V-groove disk, if the addresses of adjacent V-grooves on the disk overlap in the radial direction, an error in reading the address will occur. It is an object of the present invention to provide an optical disc that solves the conventional problems, and to provide a method for accurately reproducing addresses on this optical disc.

発明の構成 本発明は半径方向の断面がV字状の回折光であ
る光デイスクに、デイスクのアドレス領域として
アドレスのカツテイング長の少くとも2倍の長さ
を確保し、かつV字状溝の半径方向でアドレスが
重らぬ様カツテイングされた光デイスクである。
Structure of the Invention The present invention provides an optical disk in which diffracted light has a V-shaped cross section in the radial direction. This is an optical disk that is cut so that addresses do not overlap in the radial direction.

また本発明は前記デイスクのアドレスを再生す
る時に前記V溝の両斜面上に絞つて照射した2つ
のレーザが同一のアドレスを検出したときに真の
アドレスとして再生を行うものであり、上記の方
法でV字状溝を有す光デイスクのアドレスの正確
な再生を可能にするものである。
Further, in the present invention, when the address of the disk is reproduced, when two laser beams focused on both slopes of the V-groove detect the same address, the address is reproduced as a true address, and the address is reproduced as a true address. This makes it possible to accurately reproduce addresses on an optical disk having a V-shaped groove.

実施例の説明 以下に本発明の実施例を図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第8図aは、等角速度駆動(以下CAVと略す)
でV溝デイスクに信号の記録再生を行なう場合の
V溝デイスク上にアドレスのカツテイングされた
状態を示している。この様にCAVで信号の記録
再生を行うときにはアドレス領域にはデイスクの
半径方向に並ぶ。AとB、CとD、EとF、がそ
れぞれ1組で第8図bの様にV溝の2斜面をそれ
ぞれ表わしている。第8図bの8はアドレス領域
を示している。信号のアドレス長、アドレスの始
まりを示すアドレスマーク、アドレスのエラーを
監視するためのエラーテエツクコード等を含めた
アドレスビツト数をLとすると、このアドレス領
域8は最低2Lビツトの情報をカツテイングする
ことができる物理的な長さを確保している。
Figure 8a shows constant angular velocity drive (hereinafter abbreviated as CAV)
This figure shows the state in which addresses are cut on the V-groove disk when recording and reproducing signals on the V-groove disk. In this way, when recording and reproducing signals with CAV, the address areas are arranged in the radial direction of the disk. Each set of A and B, C and D, and E and F represents the two slopes of the V groove, as shown in Figure 8b. 8 in FIG. 8b indicates an address area. If L is the number of address bits including the signal address length, address mark indicating the start of the address, error check code for monitoring address errors, etc., this address area 8 cuts at least 2L bits of information. We have ensured the physical length possible.

第9図aではこのアドレス領域8を3,4,
6,7で示すように2等分し、半径方向で隣接す
るV溝で3,7のような領域に第8図bに示す様
に交互にアドレスのカツテイングすることによ
り、アドレスが重らぬ様にできるので再生ビーム
1および2でのアドレスの読み出しが可能とな
る。以下この点について説明する。今2組の隣接
する溝AとBおよびCとDに着目する。AとBで
構成される1組のV溝のアドレス領域を2等分し
た部分を第9図aに示す様に3と6とする。同様
に、CとDで構成される1組のアドレス領域を2
等分した部分を4と7とする。第9図aでは3と
7の部分にアドレスをカツテイングした様子を示
した。第9図bは第9図aの正面図で深さ方向に
アドレスをカツテイングたときのV溝のトラツク
幅PTの変化を示している。トラツクAとBに隣
接するトラツクCとDではアドレスをアドレス領
域の4ではなく7のアドレス領域にカツテイング
する。こうすることにより、トラツクBとCの境
界の山5はアドレスNとアドレスMによつて独立
に変化するのでアドレスNおよびアドレスMはレ
ーザスポツト1と2によつて正確に再生すること
ができる。
In FIG. 9a, this address area 8 is 3, 4,
By dividing the area into two equal parts as shown by 6 and 7, and cutting the addresses alternately in the areas 3 and 7 using radially adjacent V grooves as shown in Figure 8b, the addresses do not overlap. Since the address can be read out using the reproduction beams 1 and 2, it is possible to read the address using the reproduction beams 1 and 2. This point will be explained below. Now, attention is paid to two sets of adjacent grooves A and B and C and D. As shown in FIG. 9a, the address areas of a pair of V grooves A and B are divided into two halves, and are designated as 3 and 6. Similarly, a set of address areas consisting of C and D is set to 2.
Let the equally divided parts be 4 and 7. FIG. 9a shows how addresses are cut in parts 3 and 7. FIG. 9b is a front view of FIG. 9a and shows changes in the track width PT of the V groove when the address is cut in the depth direction. In tracks C and D adjacent to tracks A and B, addresses are cut into address areas of 7 instead of 4. By doing this, the mountain 5 at the boundary between tracks B and C changes independently depending on the address N and the address M, so that the address N and the address M can be accurately reproduced by the laser spots 1 and 2.

次にアドレスの再生方法について述べる。信号
の再生はデイスク上に絞られた2つのスポツト
1,2の反射光を、従来例で説明した方法と同様
な方法で再生できる。2つのレーザスポツト1,
2の反射光9,10(第10図)はそれぞれ斜面
A、Bの信号を含んでおり第10図a、bに示す
2つの光検出器D1,D2で受光され、信号の再生
が行なわれる。アドレスの再生も基本的には信号
の再生と同様に行うことができ、光検出器D1
D2で同じアドレスが検出されたときにアドレス
を読めばよい。例へば第11図で再生スポツト1
1,12がアドレス領域6を通過すると光検出器
D1はレーザスポツト11の反射光9によりアド
レスPを検出するが、光検出器D2はレーザスポ
ツト12の反射溝10によりアドレスQを検出す
るので読まないが、再生スポツト11,12がア
ドレス領域4を通過するときには光検出器D1
D2はレーザスポツト11,12の反射光9,1
0により同じアドレスMを検出するので、アドレ
スとして再生することができる。第12図にアド
レス再生回路の構成を示す。第12図において、
D1、D2は光検出器、13,14はアドレス信号
の増幅器、15,16は信号の増幅器、17,1
8はアドレス復調器、19はアドレスの一致検出
回路、20は一致検出回路がアドレスの一致を検
出したとき、アドレス出力を出すアドレスバツフ
アである。第12図で反射光9,10は光検出器
D1、D2で検出され、その信号は13〜16までの増
幅器で増幅され、アドレスの場合にはデイスク上
の変調されたアドレスを復調するアドレス復調回
路17,18を通り、一致検出回路19に入力さ
れる。一致検出回路19では光検出器D1、D2
入つてきたアドレスが同一であるか否かを検出
し、同一の場合にはアドレスバツフア20よりア
ドレスがコントローラにとりこまれる。この様に
2つのスポツトで同じアドレスを読むことによ
り、アドレスの正確な読み取りが可能になる。な
おV溝デイスク上のレーザスポツト11,12は
第11図に示した様にデイスクの半径方向にそろ
つている必要はなく第13図の様にトラツク方向
にSだけずれていてもよい。この場合にはレーザ
スポツト12′がレーザスポツト11′よりもアド
レスNを先に読むことになる。この場合には第1
4図に示した様に、レーザスポツト11′のアド
レス読み取り時間の遅れをデイレイ回路DLを入
れて補償しておけばよい。
Next, a method for reproducing addresses will be described. The signal can be reproduced by using the reflected light from the two spots 1 and 2 focused on the disk in the same manner as described in the conventional example. Two laser spots 1,
The reflected lights 9 and 10 (Fig. 10) of 2 contain the signals of the slopes A and B, respectively, and are received by the two photodetectors D 1 and D 2 shown in Fig. 10 a and b, and the signals are reproduced. It is done. Address regeneration can basically be performed in the same way as signal regeneration, and the photodetector D 1 ,
Just read the address when the same address is detected in D 2 . For example, in Figure 11, playback spot 1
1 and 12 pass through the address area 6, the photodetector
D 1 detects the address P by the reflected light 9 of the laser spot 11, but the photodetector D 2 detects the address Q by the reflection groove 10 of the laser spot 12 and does not read it, but the reproduction spots 11 and 12 are in the address area. 4, the photodetector D 1 ,
D 2 is the reflected light 9, 1 of the laser spots 11, 12
Since the same address M is detected by 0, it can be reproduced as an address. FIG. 12 shows the configuration of the address reproducing circuit. In Figure 12,
D 1 and D 2 are photodetectors, 13 and 14 are address signal amplifiers, 15 and 16 are signal amplifiers, and 17 and 1
8 is an address demodulator, 19 is an address match detection circuit, and 20 is an address buffer that outputs an address when the match detection circuit detects address match. In Figure 12, reflected lights 9 and 10 are photodetectors.
The signals are detected by D 1 and D 2 , amplified by amplifiers 13 to 16, and in the case of an address, passed through address demodulation circuits 17 and 18 that demodulate the modulated address on the disk, and then sent to a coincidence detection circuit 19. is input. The coincidence detection circuit 19 detects whether or not the addresses that have entered the photodetectors D 1 and D 2 are the same. If they are the same, the addresses are taken into the controller from the address buffer 20. By reading the same address at two spots in this way, it becomes possible to read the address accurately. Note that the laser spots 11 and 12 on the V-groove disk need not be aligned in the radial direction of the disk as shown in FIG. 11, but may be offset by S in the track direction as shown in FIG. In this case, laser spot 12' reads address N before laser spot 11'. In this case, the first
As shown in FIG. 4, a delay circuit DL may be inserted to compensate for the delay in the address reading time of the laser spot 11'.

以下本発明の他の実施例例について図面を参照
しながら説明する。
Other embodiments of the present invention will be described below with reference to the drawings.

第15図にV溝光デイスクに等線速度駆動(以
下CLVと略す)の場合における本発明の実施例
を示す。第15図で斜線部がアドレス領域を示
し、21〜24がそれぞれV溝を表わしている。
この場合信号のアクセスの基本単位をlバイトと
すると、このlバイトが占める記録の物理的な長
さは光デイスクの外周、内周にかかわらずどこで
も一定である。この長さをRLとし、このRLは信
号のアドレスを含むものとする。前の実施例で示
したCAVの場合の様にアドレスが半径方向に全
ては並ばぬがこの場合にも第16図に示したアド
レス領域が半径方向に重なつてしまう様な場合が
ある。それはRLの整数倍が、光デイスクの中心
CEから注目しているV溝V1の半径γの2π倍(π
は円周率)となつたときである。つまりN・RL
=2πγ(N:整数) なるときである。第16図に示す様に隣接する溝
V0,V1,V2に注目する。このときあるV溝と隣
接するV溝の間隔を2Pとすると、今注目してい
る溝V1と一つ外側の溝V2又は1つ内側の溝V0
円周の差δは、約2π・2Pある。今2P=1.6(μm)
とすると、δ10(μm)となる。V1にあるアド
レス26とV0にあるアドレス25又はV2にある
アドレス27は、アドレス長ARがδよりも長く
なれば半径方向で重なつてしまい、前の実施例で
述べたと同様の理由で、アドレス25,26,2
7を正確に読むことが難かしくなる。この難点を
解決するために本実施例では第17図に示す様に
アドレス領域の長さをカツテイングに必要な物理
的長さの2倍(2・AR)に、δを加えたものに
して、アドレス領域9の両端にアドレスのカツテ
イングする領域をもうけ、アドレス領域の中央付
近にアドレスをカツテイングしない領域8をもう
ける。
FIG. 15 shows an embodiment of the present invention in which a V-groove optical disk is driven at constant linear velocity (hereinafter abbreviated as CLV). In FIG. 15, the hatched area represents the address area, and 21 to 24 represent V grooves, respectively.
In this case, assuming that the basic unit of signal access is 1 byte, the physical length of the record occupied by this 1 byte is constant regardless of the outer or inner circumference of the optical disk. Let this length be RL, and this RL shall include the address of the signal. Although the addresses are not all arranged in the radial direction as in the case of the CAV shown in the previous embodiment, there are also cases in which the address areas shown in FIG. 16 overlap in the radial direction. It is an integer multiple of RL, but the center of the optical disk
times
is pi). In other words, N・RL
= 2πγ (N: integer). Adjacent grooves as shown in Figure 16
Pay attention to V 0 , V 1 , and V 2 . At this time, if the distance between one V groove and the adjacent V groove is 2P, then the difference δ in the circumference between the groove V 1 we are currently focusing on and the groove V 2 one groove outside or the groove V 0 one groove inside is approximately There are 2π and 2P. Now 2P=1.6 (μm)
Then, it becomes δ10 (μm). Address 26 in V 1 and address 25 in V 0 or address 27 in V 2 will overlap in the radial direction if the address length AR is longer than δ, for the same reason as described in the previous embodiment. So, address 25, 26, 2
It becomes difficult to read 7 accurately. In order to solve this difficulty, in this embodiment, as shown in FIG. 17, the length of the address area is twice the physical length required for cutting (2・AR) plus δ. Areas for cutting addresses are provided at both ends of the address area 9, and an area 8 for not cutting addresses is provided near the center of the address area.

この領域内で第17図の様に、アドレス領域9
のアドレスカツテイング領域の前半、後半、前半
の様に隣接するV溝でアドレス28,29,30
が半径方向に重らぬ様にカツテイングする。この
場合のアドレス28,29,30は必ずしも一連
のアドレスではないが、アクセスの基本単位lと
アドレスのフオーマツトが決定し、アドレスのカ
ツテイングに必要なビツト長が決まると、アドレ
ス領域とその領域にカツテイングするアドレスと
カツテイングする領域は一義的に前もつて決定す
ることができる。アドレスの再生は、前の実施例
で説明したと同様に行なうことができる。以上の
ようにアドレスをカツテイングすることで、V溝
光デイスクにCLVでカツテイングされたアドレ
スをより正確に読むことが可能となる。
Within this area, as shown in Figure 17, the address area 9
Addresses 28, 29, and 30 are placed in the adjacent V grooves in the first half, second half, and first half of the address cutting area.
Cut so that they do not overlap in the radial direction. Addresses 28, 29, and 30 in this case are not necessarily a series of addresses, but once the basic unit of access l and address format are determined, and the bit length required for address cutting is determined, the address area and the cutting in that area are determined. The address to be cut and the area to be cut can be uniquely determined in advance. Regeneration of addresses can be performed in the same manner as described in the previous embodiment. By cutting the addresses as described above, it becomes possible to more accurately read the addresses cut by CLV on the V-groove optical disk.

発明の効果 以上の様に本発明はV溝光デイスクに、V溝形
成時に、アドレス領域を、アドレスのカツテイン
グに必要な長さの少くなくとも2倍の長さをと
り、信号のアドレスが隣接するV溝の半径方向で
重らない様に、アドレス領域内でアドレスをカツ
テイングする場所を決めることで、V溝光デイス
ク上の信号のより正確な読み取りを可能にするこ
とができ、その実用的効果は大なるものがある。
Effects of the Invention As described above, the present invention provides a V-groove optical disk in which, when forming a V-groove, the address area is at least twice as long as the length required for address cutting, and signal addresses are adjacent to each other. By deciding where to cut the addresses within the address area so that they do not overlap in the radial direction of the V-grooves, it is possible to more accurately read the signals on the V-groove optical disc, and this makes it practical. The effects are huge.

また本発明は2つのレーザでそれぞれ再生した
アドレスが一致したときに真のアドレスとするこ
とにより、アドレスの正確な読取りを行なうこと
ができる。
Further, according to the present invention, when the addresses reproduced by two lasers match each other, it is regarded as a true address, thereby making it possible to read the address accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はV溝光デイスクの部分断面図、第2図
はV溝光デイスク上に照射されたレーザスポツト
を示す図、第3図はV溝光デイスクの深さ方向に
カツテイングされたアドレスのピツトおよびピツ
トをカツテイングするカツタを示す図、第4図は
隣接するV溝でアドレスが重なつた場合を示す
図、第5図は深さ方向にアドレスをカツテイング
したときのV溝の変化を示す図、第6図はV溝デ
イスクのアドレスが半径方向で重なつた場合を示
す図、第7図は従来例におけるV溝のアドレスと
その再生について示す正面図、第8図aはCAV
で信号再生する際の本発明の一実施例におけるア
ドレス領域を示す図、第8図bは本発明の一実施
例におけるデイスク上のアドレスを示す図、第9
図aは本発明の一実施例におけるアドレスピツト
を示す斜視図、第9図bは本発明の一実施例にお
けるデイスク上のアドレスを示す正面図、第10
図はV溝デイスクの信号再生のための光検出器と
反射レーザビームを示す図、第11図は本発明に
おけるデイスクのアドレス領域にアドレスが記録
された様子を示す図、第12図は本発明の一実施
例におけるアドレスおよび信号再生のための回路
構成を示す回路図、第13図は2つのレーザスポ
ツトがデイスク回転方向で離れている場合を示す
図、第14図は2つのレーザスポツトがデイスク
回転方向に離れている場合のアドレス再生回路を
示す回路図、第15図は等線速駆動(CLV)で
信号の記録再生を行なう場合の本発明の一実施例
におけるデイスク上のアドレスを示す図、第16
図は従来例においてCLVで信号の記録再生を行
う際のアドレスの重なりを示す図、第17図は本
発明におけるアドレス領域とアドレスがカツテイ
ングされた様子を示す図である。 1,2,11,12……レーザスポツト、3,
4,6,7……アドレスカツテイングエリア、8
……アドレス領域、5……V溝の山、9,10…
…反射されたレーザスポツト、17,18……ア
ドレス復調回路、19……一致検出回路、Pi……
アドレスピツト、VC……V溝とアドレスのカツ
タ、PT……V溝信号トラツクの幅、M,N,P,
Q……アドレス信号、D1,D2……光検出器、S
……2つのスポツト間の距離。
Figure 1 is a partial cross-sectional view of a V-groove optical disc, Figure 2 is a diagram showing a laser spot irradiated onto the V-groove optical disc, and Figure 3 is a diagram showing addresses cut in the depth direction of the V-groove optical disc. Figure 4 shows a pit and the cutter used to cut the pit. Figure 4 shows a case where addresses overlap in adjacent V grooves. Figure 5 shows changes in the V groove when addresses are cut in the depth direction. Figure 6 is a diagram showing the case where the addresses of the V-groove disks overlap in the radial direction, Figure 7 is a front view showing the V-groove addresses and their reproduction in the conventional example, and Figure 8a is the CAV
FIG. 8b is a diagram showing addresses on a disk in an embodiment of the present invention when a signal is reproduced in an embodiment of the present invention, FIG.
Figure 9a is a perspective view showing an address pit in an embodiment of the present invention, Figure 9b is a front view showing addresses on a disk in an embodiment of the invention, and Figure 10 is a perspective view showing an address pit in an embodiment of the present invention.
The figure shows a photodetector and reflected laser beam for signal reproduction of a V-groove disk, FIG. 11 shows how addresses are recorded in the address area of the disk in the present invention, and FIG. 12 shows the present invention. A circuit diagram showing a circuit configuration for address and signal reproduction in one embodiment. FIG. 13 is a diagram showing a case where two laser spots are separated in the disk rotation direction. FIG. 14 is a diagram showing a case where two laser spots are separated from each other in the disk rotation direction. A circuit diagram showing an address reproducing circuit when they are separated in the rotational direction. FIG. 15 is a diagram showing addresses on a disk in an embodiment of the present invention when recording and reproducing signals by constant linear velocity drive (CLV). , 16th
The figure shows the overlap of addresses when recording and reproducing signals using CLV in the conventional example, and FIG. 17 is a diagram showing how address areas and addresses are cut in the present invention. 1, 2, 11, 12...Laser spot, 3,
4, 6, 7...Address cutting area, 8
... Address area, 5 ... V-groove peak, 9, 10 ...
...Reflected laser spot, 17, 18... Address demodulation circuit, 19... Coincidence detection circuit, Pi...
Address pit, VC...V groove and address cutter, PT...Width of V groove signal track, M, N, P,
Q...Address signal, D1 , D2 ...Photodetector, S
...Distance between two spots.

Claims (1)

【特許請求の範囲】 1 半径方向の断面がV字状の溝を有し、前記V
字状溝に沿つて深さ方向にカツテイングされるア
ドレスのアドレス領域が前記アドレスのV字状溝
に沿つたカツテイング長の少なくとも2倍の長さ
を有し、かつ隣接するV字状溝で前記カツテイン
グされたアドレスが半径方向に重ならないように
アドレス領域内でアドレスがカツテイングされて
いることを特徴とする光デイスク。 2 アドレス領域が、V字状溝に沿つて前半の領
域と後半の領域に、2等分され、かつ前記前半ま
たは後半の領域に、隣接するV字状溝の半径方向
で重ならないように、交互にアドレスがカツテイ
ングされ、等角速度駆動されて記録または再生さ
れる特許請求の範囲第1項記載の光デイスク。 3 アドレス領域が、少なくともアドレスのカツ
テイング長の2倍の長さにV字状溝の幅の2π倍
の長さを加えた長さを有し、等線速度駆動されて
記録または再生される特許請求の範囲第1項記載
の光デイスク。 4 半径方向の断面がV字状の溝を有し、前記V
字状溝に沿つて深さ方向にカツテイングされるア
ドレスのアドレス領域が前記アドレスのV字状溝
に沿つたカツテイング長の少なくとも2倍の長さ
を有し、かつ隣接するV字状溝で前記カツテイン
グされたアドレスが半径方向に重ならないように
アドレス領域内でアドレスがカツテイングされて
いる光デイスクの隣り合う2つの斜面上に、独立
に駆動できる2つのレーザを絞つて照射し、前記
2斜面上に独立に信号を記録または再生する際
に、前記2つのレーザでそれぞれ再生したアドレ
スが一致した場合に真のアドレスとすることを特
徴とする光デイスクのアドレス再生方法。
[Claims] 1. A groove having a V-shaped cross section in the radial direction;
The address area of the address cut in the depth direction along the V-shaped groove has a length at least twice the cutting length of the address along the V-shaped groove, and An optical disk characterized in that addresses are cut within an address area so that the cut addresses do not overlap in the radial direction. 2. The address area is equally divided into a first half region and a second half region along the V-shaped groove, and so that the first half or the second half region does not overlap in the radial direction of the adjacent V-shaped groove, 2. The optical disc according to claim 1, wherein the optical disc is recorded or reproduced by cutting addresses alternately and driving at a constant angular velocity. 3. A patent in which the address area has a length that is at least twice the cutting length of the address plus 2π times the width of the V-shaped groove, and is recorded or reproduced by being driven at a constant linear speed. An optical disc according to claim 1. 4. A groove having a V-shaped cross section in the radial direction, and the V
The address area of the address cut in the depth direction along the V-shaped groove has a length at least twice the cutting length of the address along the V-shaped groove, and Two lasers that can be driven independently are focused and irradiated onto the two adjacent slopes of the optical disk where the addresses are cut within the address area so that the cut addresses do not overlap in the radial direction. 1. A method for reproducing an address for an optical disk, characterized in that when addresses reproduced by the two lasers match each other when a signal is independently recorded or reproduced on the disc, the address is determined to be a true address.
JP59181752A 1984-08-31 1984-08-31 Optical disk and address reproduction method of optical disk Granted JPS6161237A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59181752A JPS6161237A (en) 1984-08-31 1984-08-31 Optical disk and address reproduction method of optical disk
US06/768,843 US4712204A (en) 1984-08-31 1985-08-23 Optical disk and method for reproducing reference signal therefrom
EP85110716A EP0176755B1 (en) 1984-08-31 1985-08-26 Optical disk and method for reproducing reference signal therefrom
DE8585110716T DE3574644D1 (en) 1984-08-31 1985-08-26 OPTICAL PLATE AND METHOD FOR GENERATING A SIGNAL THEREOF.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59181752A JPS6161237A (en) 1984-08-31 1984-08-31 Optical disk and address reproduction method of optical disk

Publications (2)

Publication Number Publication Date
JPS6161237A JPS6161237A (en) 1986-03-29
JPH0248982B2 true JPH0248982B2 (en) 1990-10-26

Family

ID=16106264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59181752A Granted JPS6161237A (en) 1984-08-31 1984-08-31 Optical disk and address reproduction method of optical disk

Country Status (1)

Country Link
JP (1) JPS6161237A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163930A (en) * 1984-09-04 1986-04-02 Matsushita Electric Ind Co Ltd Disk recording carrier
JPH07105050B2 (en) * 1986-05-20 1995-11-13 松下電器産業株式会社 Address recovery circuit for optical disk
JPH01134727A (en) * 1987-11-19 1989-05-26 Matsushita Electric Ind Co Ltd Optical disk and its address recording and reproducing circuit
JP2868682B2 (en) 1992-05-15 1999-03-10 シャープ株式会社 optical disk
JPH06333237A (en) * 1993-05-19 1994-12-02 Nec Corp Optical information recording medium and recording, erasing and reproducing method of optical information

Also Published As

Publication number Publication date
JPS6161237A (en) 1986-03-29

Similar Documents

Publication Publication Date Title
US5537373A (en) Optical disk recording and reproducing apparatus with data recorded on wobbled grooves and lands
US5898663A (en) Optical recording medium with address information prepit for the same track at opposite boundaries of the same track
KR100284190B1 (en) Optical disc
CA2023961A1 (en) Optical recording medium
JPS6163930A (en) Disk recording carrier
KR100557799B1 (en) Optical disc and optical disc device
JPH0248982B2 (en)
KR100340993B1 (en) Multibeam optical disk readout method and apparatus
JP3954322B2 (en) Information recording medium, information reproducing apparatus, and information reproducing method
JP2568503B2 (en) Optical disk address recovery circuit
JPH09120585A (en) Information recording medium, recording control information reproducing method, and information recording / reproducing apparatus
JP2798245B2 (en) Optical disk drive
JPH09251639A (en) Optical disc and recording / reproducing apparatus thereof
JP3513017B2 (en) Optical recording medium and optical recording / reproducing apparatus using the same
TW411437B (en) Optical disk
JPH0368457B2 (en)
JP2776230B2 (en) optical disk
JP2776459B2 (en) optical disk
JPS62271227A (en) Address reproducing circuit for optical disk
EP1229522B1 (en) Optical recording medium, substrate for optical recording medium and optical disk device
JP2847993B2 (en) optical disk
JP2685440B2 (en) Magneto-optical disk
JPH01134727A (en) Optical disk and its address recording and reproducing circuit
JPH0453011B2 (en)
JPH03222127A (en) Recording medium