[go: up one dir, main page]

JPH0247359A - Compound construction and manufacture thereof - Google Patents

Compound construction and manufacture thereof

Info

Publication number
JPH0247359A
JPH0247359A JP11715189A JP11715189A JPH0247359A JP H0247359 A JPH0247359 A JP H0247359A JP 11715189 A JP11715189 A JP 11715189A JP 11715189 A JP11715189 A JP 11715189A JP H0247359 A JPH0247359 A JP H0247359A
Authority
JP
Japan
Prior art keywords
metal
coating
oxide
titanium
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11715189A
Other languages
Japanese (ja)
Inventor
Judith Ann Hooker
ジュディス・アン・フーカー
Phillip J Doorbar
フィリップ・ジョン・ドアバー
Trevor William Clyne
トレバー・ウィリアム・クライン
Robert Richard Kieschke
ロバート・リチャード・キーシュケ
Robert Ernest Somiekh
ロバート・アーネスト・サムク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce PLC
Original Assignee
Rolls Royce PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce PLC filed Critical Rolls Royce PLC
Publication of JPH0247359A publication Critical patent/JPH0247359A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4584Coating or impregnating of particulate or fibrous ceramic material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/04Pretreatment of the fibres or filaments by coating, e.g. with a protective or activated covering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/10Refractory metals
    • C22C49/11Titanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)

Abstract

PURPOSE: To obtain a reinforcing fiber prevented from deterioration which is used as a titanium matrix compost material by forming diffusion-inhibited coatings consisting of a specified metal coating and an outer layer coating of the oxide of the same metal, on the surface of a ceramic fiber. CONSTITUTION: One metal from among the groups including yttrium, zirconium and hafnium is deposited on the surface of a silicon carbide base ceramic fiber to form a coating of the metal by plasma sputtering. The obtained coated fiber is subjected to heat treatment and the thermodynamically stable oxide of the same metal is formed as the outer layer to obtain the ceramic fiber having the diffusion-inhibited coatings consisting of two different kinds of coatings. When a fiber-reinforced metal composite material is produced by embedding this coated fiber in a titanium matrix, titanium and oxygen are absorbed by the diffusion-inhibited coatings to prevent the deterioration of the ceramic fiber.

Description

【発明の詳細な説明】 本発明は金属マトリックスの中にセットされて、それに
より強力で軽量の複合構造を生ずるセラミック繊維に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ceramic fibers set within a metal matrix, thereby creating a strong, lightweight composite structure.

本発明はさらに前記種類のセラミック繊維を含む金属マ
トリックス複合材をも含む。
The invention further includes metal matrix composites comprising ceramic fibers of the type described above.

航空宇宙産業は常に、より軽量で、しかも今日公知の材
料と少なくとも等しい強度の材料を探し求めている。こ
の方向への一歩は、単に実例としてであるが、チタンお
よびチタン系合金の採用であった。軽量と強度は得られ
たが、周囲の環境条件における材料表面の反応のために
、加工上、かなりの経費と困難性を伴つた。
The aerospace industry is constantly seeking materials that are lighter, yet at least as strong as materials known today. A step in this direction was, by way of example only, the adoption of titanium and titanium-based alloys. Light weight and strength were achieved, but at the expense and difficulty of processing due to the reaction of the material surface to ambient environmental conditions.

次の一歩は強度を失うことなく、できれば強度を増しな
がら、製品構造の体積当りの軽量金属の体積を減するこ
とに向けられ、この目的のために、除去された金属の部
分にセラミック繊維が代用された。このような複合材の
一例は、シリコンカーバイド繊維をチタンの中に埋め込
んだものである。
The next step is directed towards reducing the volume of lightweight metal per volume of the product structure, without loss of strength and preferably with increased strength, and for this purpose ceramic fibers are added to the removed metal parts. Substituted. An example of such a composite is silicon carbide fibers embedded in titanium.

しかし、チタンが界面を通って拡散する結果、繊維は急
激に劣化した。
However, as a result of the diffusion of titanium through the interface, the fibers deteriorated rapidly.

拡散の問題を対決する一つの試みは、シリコンカーバイ
ド繊維にカーボンに富んだ外層を与えることであった。
One attempt to combat the diffusion problem has been to provide silicon carbide fibers with a carbon-rich outer layer.

繊維へのチタンの拡散は鈍化した。The diffusion of titanium into the fibers was slowed down.

本発明の一局面は、繊維が埋め込まれたマトリックス材
の拡散に対する抵抗力を強めた、改良被膜を有するセラ
ミック繊維を与えることを目的とする。
One aspect of the present invention is to provide ceramic fibers with an improved coating that increases the resistance to diffusion of the matrix material in which the fibers are embedded.

本発明の一局面によれば、セラミック繊維は、内層被膜
が熱力学的に安定な酸化物を生ずる金属であり、外層被
膜がその金属の、その安定酸化物である、2重被膜を含
む。
According to one aspect of the invention, the ceramic fibers include a dual coating in which the inner coating is a thermodynamically stable oxide-producing metal and the outer coating is a stable oxide of the metal.

さらに本発明は、熱力学的に安定な酸化物を生ずる金属
の第1の内層被膜と、その金属の、その安定酸化物であ
る第2の外層被膜とを有するセラミ・2り繊維を含む、
チタンまたはチタン合金のマトリックスを有する金属マ
トリックス複合構造を与える。
Further, the present invention includes a ceramic bifiber having a first inner coating of a metal that produces a thermodynamically stable oxide and a second outer coating that is a stable oxide of the metal.
A metal matrix composite structure is provided with a matrix of titanium or titanium alloy.

本発明のいま一つの局面によれば、拡散被膜を有するセ
ラミック繊維を与える方法は、イツトリウム、ハフニウ
ムおよびジルコニウムを含む族の中の金属で繊維を包み
、つぎにその金属被膜にその金属の酸化物をかぶせる段
階を含む。
According to another aspect of the invention, a method for providing ceramic fibers with a diffusion coating includes wrapping the fibers with a metal in the group including yttrium, hafnium, and zirconium, and then applying an oxide of the metal to the metal coating. including the step of covering the

以下に添付図面を参照しつつ、実例により本発明を説明
する。
The invention will now be explained by way of example with reference to the accompanying drawings.

第1図を参照する。細長いシリコンカーバイド繊維がチ
タン12のマトリックスの中に配置される。
Please refer to FIG. Elongated silicon carbide fibers are disposed within the titanium 12 matrix.

全体は薄板の形での複合構造を与える。The whole gives a composite structure in the form of lamellae.

繊維10の各々は、タングステンまたはカーボンから構
成されることのできる支持心線14を有する。
Each of the fibers 10 has a support core 14 that can be constructed of tungsten or carbon.

各繊維10はまた2重被膜に包まれ、その外層被膜16
は苛酷な条件、殊に高温の環境の下で安定な酸化物を生
ずることのできる金属である。外層被膜18はその金属
の安定酸化物である。
Each fiber 10 is also encased in a double coating, the outer coating 16
is a metal that can form stable oxides under harsh conditions, especially at high temperatures. Outer coating 18 is a stable oxide of the metal.

酸化物の被膜18はチタンが界面を通過して、究極的に
はセラミック繊維の中に拡散するのを防止する働きがあ
る。そのような拡散は、もしも発生すると、セラミック
を劣化させ、結果的に、そのセラミックが一部を形成す
る複合構造の実用寿命を著しく短縮する。従って、酸化
物18は、そのイオン形成がチタンのイオン形成に対し
て抑止を生ずるような種類のものでなければならないこ
とになる。よって、陽イオン間の電荷の差とイオン半径
の大きさの差とが拡散の過程を促進するので、陽イオン
の自己拡散性は低くなければならず、イオン半径はでき
るだけマトリックス材のイオン半径と同等近くでなけれ
ばならない。
The oxide coating 18 serves to prevent titanium from passing through the interface and ultimately diffusing into the ceramic fibers. Such diffusion, if it occurs, degrades the ceramic and, as a result, significantly shortens the service life of the composite structure of which it forms a part. It follows therefore that the oxide 18 must be of such a type that its ion formation results in inhibition to the ion formation of titanium. Therefore, the difference in charge between cations and the difference in ionic radius promote the diffusion process, so the self-diffusivity of cations must be low, and the ionic radius should be as close as possible to the ionic radius of the matrix material. Must be close to equal.

次表に、適切な酸素親和力を有し、その酸化物が上記の
所要のイオン特性を有する幾つかの金属を例示する。
The following table exemplifies some metals which have suitable oxygen affinities and whose oxides have the required ionic properties mentioned above.

熱力学および拡散のデータ の要約 つぎに第2図を参照する。 1000″Kから1200
°Kまで変えられた温度にて1000時間の期間にチタ
ンとイツトリアとの間でなされるであろう反応の量につ
いて行われた計算の結果からグラフを作成した。
Summary of Thermodynamic and Diffusion Data Reference is now made to FIG. 1000″K to 1200
A graph was created from the results of calculations made on the amount of reaction that would take place between titanium and ittria over a period of 1000 hours at temperatures varied up to 0.degree.

拡散値が被膜の厚さの関数としてプロットされ、一定期
間における反応は温度が高いと著しく増加することが判
る。このことは、後述するように製造モードに成る影響
を与える。しかし、このグラフはまた、保護被膜の厚さ
が少なくとも0.7μであるならば、少なくとも110
0’Kまでは、反応層は約0.02μに保たれることを
も示す、イツトリア層は第1図のイツトリウム被膜16
を包むイツトリア被膜18に相当する。2つの被膜、を
用いることから、2重の利点が得られる。一つの利点は
、イツトリウムの内層被膜16がイツトリアの外層被膜
18よりも柔軟性があるので、使用中に成る程度の衝撃
荷重を吸収するのに役立つことである。イツトリアの外
層被膜は脆いかも知れない。しかし剥離が生ずるとして
も、イツトリウムの新鮮な被膜が露出して急速に酸化す
るので、事実上、自然回復性被膜を与える。
Diffusion values are plotted as a function of coating thickness and it can be seen that the response over time increases significantly at higher temperatures. This has an effect on the manufacturing mode as described below. However, this graph also shows that if the thickness of the protective coating is at least 0.7μ, then at least 110μ
It also shows that up to 0'K, the reaction layer is kept at about 0.02μ.
This corresponds to the ittria coating 18 that covers the . A double advantage is obtained from using two coatings. One advantage is that the inner yttrium coating 16 is more flexible than the outer yttrium coating 18, thereby helping to absorb the degree of shock loading that occurs during use. The outer coating of Ittoria may be fragile. However, even if flaking does occur, a fresh coating of yttrium is exposed and oxidizes rapidly, effectively providing a self-healing coating.

イツトリウムは繊維の上にプラズマスパッター被膜され
る。しかし、イツトリアはイツトリウムの上に同じ方法
で被膜されるか、またはその代りに、イツトリウム被膜
された繊維に従来の酸化物生成熱処理を施こすか、また
は単にイツトリウム被膜繊維をマトリックス材で覆って
イツトリウムがそれから酸素を吸収するようにさせて、
イツトリアをイツトリウムの上に適用する。発生する応
力を成る程度制御することができるので、プラズマスパ
ッタリングの方が望ましい。つまり、スパッタされた被
膜に圧縮応力が発生し、これが、被膜の熱膨張係数が繊
維のそれと異なる場合に、冷却に際して発生するかも知
れない引張りのフープ応力に対抗する。
Yttrium is plasma sputter coated onto the fibers. However, yttrium can be coated over yttrium in the same manner, or alternatively, the yttrium-coated fibers can be subjected to a conventional oxide-forming heat treatment, or the yttrium-coated fibers can simply be covered with a matrix material to coat the yttrium. is then allowed to absorb oxygen,
Apply itztrium on top of itztrium. Plasma sputtering is preferred because the stress generated can be controlled to a greater extent. That is, compressive stresses are generated in the sputtered coating, which counteract the tensile hoop stresses that may occur upon cooling if the coefficient of thermal expansion of the coating is different from that of the fibers.

前記の何れかの材料とその酸化物を前記のように被覆し
たシリコンカーバイド繊維を埋め込んだチタン・マトリ
ックス材から成る複合構造は幾つかの方法のうちの任意
の一つにより製造されることができる。例えば、チタン
の薄板を、その密着面の各組の間に細長い被膜繊維10
をはさんで、重ね合せる。つぎにこの組立体を不活性ふ
ん囲気の中に包んで、適切な期間をかけて圧力と温度に
さらして、チタン薄板の拡散結合を起こさせるものであ
る。しかし欠点は、この方法では、組立体を時間単位の
期間に高温にさらす必要があることである。これは、第
2図で推論されるように、チタンと被膜の間に過度の反
応を促す可能性がある。
A composite structure consisting of a titanium matrix material embedded with silicon carbide fibers coated with any of the above materials and their oxides as described above can be manufactured by any one of several methods. . For example, a thin plate of titanium may be placed between each pair of its cohesive surfaces with 10 elongated coated fibers.
Sandwich and overlap. The assembly is then enclosed in an inert atmosphere and exposed to pressure and temperature for an appropriate period of time to cause diffusion bonding of the titanium sheets. However, a disadvantage is that this method requires exposing the assembly to high temperatures for a period of hours. This may encourage excessive reaction between the titanium and the coating, as deduced from FIG.

いま一つの方法は、被膜繊維10の配列を含んだ型の中
に、これも不活性ふん囲気の中で溶融チタンを射出する
ことから成る。これにも高温度が使用されるが、冷却期
間が、拡散結合を採用する時に必要な曝露時間に比較し
て、曝露時間を短くする。
Another method consists of injecting molten titanium into a mold containing an array of coated fibers 10, also under an inert atmosphere. High temperatures are also used, but the cooling period shortens the exposure time compared to that required when diffusion bonding is employed.

いま一つの、そして望ましい方法は、銅のヒートシンク
(heat 5ink)  (図示せず)の上に1枚の
チタン薄板を横たえ、薄板の上面に被膜繊維10を配置
し、繊維10を所要の厚さで覆うように、この組立体上
にチタンを真空プラズマ・スプレーすることである。
Another and preferred method is to lay a sheet of titanium on a copper heat sink (not shown), place the coated fibers 10 on top of the sheet, and roll the fibers 10 to the desired thickness. Vacuum plasma spray titanium onto this assembly so that it is covered.

高温にさらしながら、チタン粉末を繊維の上に真空プラ
ズマ・スプレーすることはミリ秒単位の時間になされる
ので、後者の方法が望ましいことになる。これは有害な
反応を生ずる程の時間でない。
The latter method is preferred since the vacuum plasma spraying of titanium powder onto the fibers while exposed to high temperatures takes place in milliseconds. This is not long enough to cause any harmful reactions.

下表は、イツトリウムおよびイツトリアを被膜したシリ
コンカーバイド繊維をチタン・マトリックス材で成功裡
に包むのに使用されるプラズマスプレーのパラメータを
示す。
The table below shows plasma spray parameters used to successfully wrap yttrium and yttria coated silicon carbide fibers with titanium matrix material.

チタン・プラズマスプレー条件 室圧(アルゴン)  : 175 mbarガン電流 
   ニア50A プラズマガス流量:アルゴン i/分 粉末粒子範囲  :45〜63μ ガン・基板距離 :330ff111 粉末供給量   :20g/分 He        : 25 !!、/分81   
     :  84!/分第1図に図解するセラミッ
ク繊維lOの配置は制限的なものと見なすべきでない。
Titanium plasma spray conditions Room pressure (argon): 175 mbar Gun current
Near 50A Plasma gas flow rate: Argon i/min Powder particle range: 45-63μ Gun-substrate distance: 330ff111 Powder supply amount: 20g/min He: 25! ! ,/min81
: 84! /min The arrangement of the ceramic fibers IO illustrated in FIG. 1 is not to be regarded as limiting.

製品の複合構造の所要の強度特性によって決まる態様で
セラミック繊維IOを配置することができる。例えば、
セラミック繊維10を複数の層に、各層を隣りの層に対
して角度を付けて、配置することができる。
The ceramic fibers IO can be arranged in a manner determined by the desired strength properties of the composite structure of the product. for example,
Ceramic fibers 10 can be arranged in multiple layers, each layer angled relative to the adjacent layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による被膜されたセラミック繊維を含
む複合構造の略式断面図、 第2図は被膜厚さに対する界面拡散の深さのグラフであ
る。 10・・・繊維。 12・・・チタンマトリックス。 14・・・支持心線。 16・・・イツトリウム被膜。 18・・・外層被膜。
FIG. 1 is a schematic cross-sectional view of a composite structure comprising coated ceramic fibers according to the present invention, and FIG. 2 is a graph of interfacial diffusion depth versus coating thickness. 10...Fiber. 12...Titanium matrix. 14...Support core line. 16...Yttrium coating. 18...Outer layer coating.

Claims (1)

【特許請求の範囲】 1、内層被膜は熱力学的に安定な酸化物を生成すること
のできる金属であり、外層被膜は前記金属の前記安定な
酸化物である、2重の被膜を有するセラミック繊維。 2、前記金属はイットリウム、ジルコニウムおよびハフ
ニウムを含む群の中の一つである、請求項1記載のセラ
ミック繊維。 3、前記セラミックはシリコンカーバイドである、請求
項1または2記載のセラミック繊維。 4、イットリウム、ジルコニウムおよびハフニウムを含
む群から選んだ金属を前記セラミック繊維の上にプラズ
マスパッターし、つぎに前記金属をその酸化物で包む段
階を含む、拡散防止被膜をセラミック繊維に施こす方法
。 5、前記酸化物が粉末形式の前記酸化物をプラズマ・ス
パッターすることにより前記金属の上に施こされる、請
求項4記載の拡散防止被膜をセラミック繊維に施こす方
法。 6、前記金属被膜された繊維の熱処理によって前記酸化
物が前記金属から生成される、請求項4記載の拡散防止
被膜をセラミック繊維に施こす方法。 7、前記金属の外面がチタン酸素を吸収することができ
るように、前記金属被膜されたセラミック繊維をチタン
マトリックスの中に埋め込む段階を含む、請求項4記載
の拡散防止被膜をセラミック繊維に施こす方法。 8、熱力学的に安定な酸化物を生成することのできる金
属の内側被膜と、前記金属を被覆する前記酸化物の外側
被膜と、を各々が有する複数の細長いセラミック繊維を
包むチタンまたはチタン合金のマトリックスを含む複合
構造。 9、前記セラミック繊維はシリコンカーバイド繊維であ
る、請求項8記載の複合構造。 10、前記金属はイットリウム、ジルコニウムおよびハ
フニウムを含む群から選ばれた1つである、請求項8ま
たは9記載の複合構造。
[Claims] 1. A ceramic having a double coating, in which the inner layer coating is a metal capable of producing a thermodynamically stable oxide, and the outer layer coating is the stable oxide of the metal. fiber. 2. The ceramic fiber of claim 1, wherein the metal is one of the group comprising yttrium, zirconium and hafnium. 3. The ceramic fiber according to claim 1 or 2, wherein the ceramic is silicon carbide. 4. A method of applying an anti-diffusion coating to ceramic fibers, comprising plasma sputtering a metal selected from the group comprising yttrium, zirconium and hafnium onto the ceramic fibers, and then encasing the metal with its oxide. 5. A method of applying a diffusion barrier coating to ceramic fibers according to claim 4, wherein said oxide is applied onto said metal by plasma sputtering said oxide in powder form. 6. The method of applying a diffusion prevention coating to ceramic fibers according to claim 4, wherein the oxide is generated from the metal by heat treating the metal-coated fiber. 7. Applying the anti-diffusion coating of claim 4 to the ceramic fibers, comprising the step of embedding the metal-coated ceramic fibers in a titanium matrix so that the outer surface of the metal can absorb titanium oxygen. Method. 8. Titanium or a titanium alloy encasing a plurality of elongated ceramic fibers each having an inner coating of a metal capable of forming a thermodynamically stable oxide and an outer coating of said oxide covering said metal. A composite structure containing a matrix of. 9. The composite structure of claim 8, wherein the ceramic fibers are silicon carbide fibers. 10. The composite structure according to claim 8 or 9, wherein the metal is one selected from the group comprising yttrium, zirconium and hafnium.
JP11715189A 1988-05-26 1989-05-10 Compound construction and manufacture thereof Pending JPH0247359A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8812556A GB2219006A (en) 1988-05-26 1988-05-26 Coated fibre for use in a metal matrix
GB8812556.2 1988-05-26

Publications (1)

Publication Number Publication Date
JPH0247359A true JPH0247359A (en) 1990-02-16

Family

ID=10637617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11715189A Pending JPH0247359A (en) 1988-05-26 1989-05-10 Compound construction and manufacture thereof

Country Status (4)

Country Link
JP (1) JPH0247359A (en)
DE (1) DE3916412A1 (en)
FR (1) FR2632630A1 (en)
GB (1) GB2219006A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192818A (en) * 1992-12-25 1994-07-12 Mitsubishi Heavy Ind Ltd Sic fiber reinforced ti-al composite material
JP2009102712A (en) * 2007-10-24 2009-05-14 Tama Tlo Kk Manufacturing method of fiber reinforced composite material
JP2017043518A (en) * 2015-08-27 2017-03-02 国立研究開発法人物質・材料研究機構 SiC FIBER-CONTAINING HYBRID COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017438A (en) * 1989-12-22 1991-05-21 General Electric Company Silicon carbide filament reinforced titanium aluminide matrix with reduced cracking tendency
US5045407A (en) * 1989-12-22 1991-09-03 General Electric Company Silicon carbide fiber-reinforced titanium base composites having improved interface properties
GB9009742D0 (en) * 1990-05-01 1990-06-20 Atomic Energy Authority Uk Production of composite precursor wires by sputter ion-plating onto an electrically conducting filament
RU2020042C1 (en) * 1990-09-19 1994-09-30 Акционерное общество открытого типа "Всероссийский алюминиево-магниевый институт" Method of manufacture of composite material castings on metal base
CA2060520A1 (en) * 1991-03-11 1994-12-09 Jonathan G. Storer Metal matrix composites
US5221578A (en) * 1991-03-13 1993-06-22 Northrop Corporation Weak frangible fiber coating with unfilled pores for toughening ceramic fiber-matrix composites
US5162271A (en) * 1991-03-13 1992-11-10 Northrop Corporation Method of forming a ductile fiber coating for toughening non-oxide ceramic matrix composites
US5678298A (en) * 1991-03-21 1997-10-21 Howmet Corporation Method of making composite castings using reinforcement insert cladding
FR2729659B1 (en) * 1991-05-17 1997-04-04 Minnesota Mining & Mfg COATED FIBERS
US5135554A (en) * 1991-05-20 1992-08-04 Hughes Aircraft Company Method and apparatus for continuous sputter coating of fibers
GB2263483A (en) * 1992-01-09 1993-07-28 Secr Defence Ceramic fibre reinforcements precoated with alternating layers of matrix material; reinforced composites
US5981083A (en) * 1993-01-08 1999-11-09 Howmet Corporation Method of making composite castings using reinforcement insert cladding
ES2124180B1 (en) * 1996-12-10 1999-11-16 Estudios E Investigaciones Tec PROCEDURE FOR THE PRODUCTION OF METAL MATRIX PIECES REINFORCED WITH CERAMIC FIBERS.
US8283047B2 (en) 2006-06-08 2012-10-09 Howmet Corporation Method of making composite casting and composite casting
DE102007004531A1 (en) * 2007-01-24 2008-07-31 Eads Deutschland Gmbh Fiber composite with metallic matrix and process for its preparation
CN101899631B (en) * 2010-07-26 2012-10-03 辽宁石油化工大学 Method for modifying high-wettability coating on surface of metal-based compound material reinforcement
CN106521369A (en) * 2016-11-29 2017-03-22 中国科学院金属研究所 Dense precursor belt of SiC fiber-reinforced titanium-based composite and preparation method of dense precursor belt
US11686208B2 (en) 2020-02-06 2023-06-27 Rolls-Royce Corporation Abrasive coating for high-temperature mechanical systems
US12017297B2 (en) * 2021-12-22 2024-06-25 Spirit Aerosystems, Inc. Method for manufacturing metal matrix composite parts
CN116003152B (en) * 2023-03-13 2024-01-30 昆明理工大学 Silicon carbide ceramic connectors resistant to high-temperature water vapor oxidation and their preparation methods and applications

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1144904A (en) * 1965-01-27 1969-03-12 Power Jets Res & Dev Ltd Improvements in reinforced heat resistant metallic articles
US3460971A (en) * 1966-01-18 1969-08-12 Ilikon Corp Method for the production of composite materials and articles produced thereby
US3473900A (en) * 1967-02-21 1969-10-21 Union Carbide Corp Aluminum-carbon fiber composites
US3622283A (en) * 1967-05-17 1971-11-23 Union Carbide Corp Tin-carbon fiber composites
CH516644A (en) * 1970-01-07 1971-12-15 Bbc Brown Boveri & Cie Process for the production of metal reinforced with carbon fibers
DE2136405A1 (en) * 1970-07-31 1972-02-03 Gen Electric Process for protecting interfaces
US3894677A (en) * 1971-03-24 1975-07-15 Nasa Method of preparing graphite reinforced aluminum composite
US3717443A (en) * 1971-06-24 1973-02-20 Gen Motors Corp Zirconium diffusion barrier in titanium-silicon carbide composite materials
US3807996A (en) * 1972-07-10 1974-04-30 Union Carbide Corp Carbon fiber reinforced nickel matrix composite having an intermediate layer of metal carbide
CA1070142A (en) * 1975-06-09 1980-01-22 M. Javid Hakim Superalloy composite structure
JPS6041136B2 (en) * 1976-09-01 1985-09-14 財団法人特殊無機材料研究所 Method for manufacturing silicon carbide fiber reinforced light metal composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192818A (en) * 1992-12-25 1994-07-12 Mitsubishi Heavy Ind Ltd Sic fiber reinforced ti-al composite material
JP2009102712A (en) * 2007-10-24 2009-05-14 Tama Tlo Kk Manufacturing method of fiber reinforced composite material
JP2017043518A (en) * 2015-08-27 2017-03-02 国立研究開発法人物質・材料研究機構 SiC FIBER-CONTAINING HYBRID COMPOSITE MATERIAL AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
GB2219006A (en) 1989-11-29
GB8812556D0 (en) 1988-06-29
FR2632630A1 (en) 1989-12-15
DE3916412A1 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
JPH0247359A (en) Compound construction and manufacture thereof
US6716539B2 (en) Dual microstructure thermal barrier coating
US4942732A (en) Refractory metal composite coated article
EP0304176B1 (en) Refractory metal composite coated article
EP0712940A1 (en) Durable thermal barrier coating
US5223045A (en) Refractory metal composite coated article
EP2035350B1 (en) Refractory metallic oxide ceramic part having platinum group metal or platinum group metal alloy coating
US4451496A (en) Coating with overlay metallic-cermet alloy systems
US4446199A (en) Overlay metallic-cermet alloy coating systems
US20170016701A1 (en) Coated ballistic structures
US3153279A (en) Heat resistant solid structure
US4839239A (en) Metallic coating on an inorganic substrate
US4055706A (en) Processes for protecting refractory metallic components against corrosion
US4927714A (en) Refractory metal composite coated article
Kieschke et al. Sputter deposited barrier coatings on SiC monofilaments for use in reactive metallic matrices—I. Optimisation of barrier structure
US5560993A (en) Oxide-coated silicon carbide material and method of manufacturing same
JPH0978258A (en) High-temperature member having thermal insulation coating film and its production
US5741604A (en) Diffusion barrier layers
US5557927A (en) Blanching resistant coating for copper alloy rocket engine main chamber lining
JPH055186A (en) Surface coating for protecting part from titanium fire and method for forming said surface coating
US5080981A (en) Nickel-containing alloys as an adhesive layer bonding metal substrates to ceramics
EP0285313B1 (en) Compound member and method for producing the same
JPS59205468A (en) high temperature corrosion resistant material
US20180066366A1 (en) Rhenium-metal carbide-graphite article and method
JP3641500B2 (en) Gas turbine high temperature component and manufacturing method thereof