[go: up one dir, main page]

JPH0247254A - Production of conductive metal oxide - Google Patents

Production of conductive metal oxide

Info

Publication number
JPH0247254A
JPH0247254A JP19448988A JP19448988A JPH0247254A JP H0247254 A JPH0247254 A JP H0247254A JP 19448988 A JP19448988 A JP 19448988A JP 19448988 A JP19448988 A JP 19448988A JP H0247254 A JPH0247254 A JP H0247254A
Authority
JP
Japan
Prior art keywords
magnetic field
plasma
metal oxide
substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19448988A
Other languages
Japanese (ja)
Inventor
Yuji Kasanuki
有二 笠貫
Fumio Kishi
岸 文夫
Kiyozumi Niitsuma
清純 新妻
Atsuko Tanaka
温子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP19448988A priority Critical patent/JPH0247254A/en
Publication of JPH0247254A publication Critical patent/JPH0247254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To produce a thin conductive metal oxide film having a uniform compsn. at a high film forming speed by supplying a magnetic field and microwaves to generate the plasma of an introduced gas and sputtering plural metals or plural metal oxide targets. CONSTITUTION:The magnetic field and microwaves are supplied under electron cyclotron resonance conditions into a vacuum vessel 3 having an electromagnet 1 and a microwave guide 2. Further, the gas such as O2 or Ar is introduced into the vessel from a gas introducing port 6 to generate the plasma. The target 4 or 4' consisting of >=2 kinds of the metals or >=2 kinds of the metal oxides is sputtered by this plasma. The targets 4, 4' are disposed in a plasma supply opening or in the magnetic field. The magnetic field can be made to the magnitude larger than the magnitude of the resonance conditions at need. The thin conductive metal oxide film having the uniform compsn. is formed at a high film forming speed of about several hundreds Angstrom /min. onto a substrate held at about 200-800 deg.C by a substrate holder 5 without requiring a heat treatment in this way. The need for heating the above-mentioned substrate is eliminated by disposing the same in the magnetic field.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性酸化物の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a conductive oxide.

これらの化合物の中には、液体窒素温度以上で超伝導性
を示すものもあり、本発明は、送電線、エネルギー貯蔵
、発電、磁気浮上列車、ジョセフソン素子等々、産業上
のいろいろな分野で利用可能な導電性酸化物の製造方法
に関する。
Some of these compounds exhibit superconductivity above liquid nitrogen temperature, and the present invention can be used in various industrial fields such as power transmission lines, energy storage, power generation, magnetic levitation trains, Josephson devices, etc. The present invention relates to a method for producing a conductive oxide that can be used.

〔従来の技術〕[Conventional technology]

従来、Li−Ti−0、Ba−Pb−B1−0 、 B
a−Ti−0というような導電性酸化物薄膜は、RF及
びマグネトロンスパッタ法や電子ビーム法で成膜されて
きた。
Conventionally, Li-Ti-0, Ba-Pb-B1-0, B
Conductive oxide thin films such as a-Ti-0 have been formed by RF and magnetron sputtering methods and electron beam methods.

(発明が解決しようとする課題) しかし、これらの方法で成膜したものは、均一な組成に
ならず、蒸着後、熱処理をしなければ所期の物性が得ら
れないという欠点がある。
(Problems to be Solved by the Invention) However, films formed by these methods do not have a uniform composition, and have the disadvantage that desired physical properties cannot be obtained unless heat treatment is performed after vapor deposition.

また、成膜速度も数十人/分と遅く、必要な膜厚を得る
ために、長時間にわたる成膜が必要であり、成膜中のタ
ーゲットの組成ずれが問題となってくる。
In addition, the deposition rate is slow at several tens of people per minute, and in order to obtain the required film thickness, deposition is required over a long period of time, and compositional deviation of the target during deposition becomes a problem.

C課題を解決するための手段〕 本発明は、ランタノイド、Cu、アルカリ土類金属等か
ら成る、二元、三元、四元酸化物等の多元系の、電導性
酸化物を製造するに際して、(a)成膜後の熱処理を不
要にすること(b)成膜速度を上げ、成膜中のターゲッ
トの組成ずれの影響を少なくすること を主要目的として、 磁場とマイクロ波とが電子サイクロトロン共鳴(ECR
)条件のもとに供給されている真空装置中にガスを導入
することによって、プラズマを発生させつつ、二種以上
の金属または二種以上の金属酸化物のターゲットをスパ
ッタして、基体上に導電性金属酸化物薄膜を成膜し、膜
の均一性の向上、成膜速度の上昇等を可能にしたもので
ある。
Means for Solving Problem C] The present invention provides the following steps when producing multi-component conductive oxides such as binary, ternary, and quaternary oxides made of lanthanoids, Cu, alkaline earth metals, etc. (a) Eliminate the need for post-deposition heat treatment (b) Increase the deposition rate and reduce the effects of target composition shifts during deposition (ECR
) sputtering targets of two or more metals or two or more metal oxides onto a substrate while generating plasma by introducing gas into a vacuum device supplied under the following conditions: This method forms a conductive metal oxide thin film, making it possible to improve the uniformity of the film and increase the film formation rate.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図に本発明に使用するECR発生装置の一例を示す
。この装置は、電磁石1、マイクロ波導波管2、真空n
13、ターゲット4または4′、基体ホルダー5および
ガス導入口6を主要部とする。このような装置で、電子
サイクロトロン共鳴条件を満たす磁場と電磁波とによっ
てプラズマを発生させる。発生したプラズマは、電子密
度が他のプラズマ発生法に比べて一桁程大きく、基体上
に効率良く膜が形成され、成膜速度の向上、膜の均質化
が達成される。なお、電子サイクロトロン共鳴条件とは
、 ν= e B / 2πmシ:電磁波の周波数  
e:電子の電荷m:電子の質量     B:磁場 を溝たすことである。
FIG. 1 shows an example of an ECR generator used in the present invention. This device consists of an electromagnet 1, a microwave waveguide 2, a vacuum n
13, target 4 or 4', substrate holder 5, and gas inlet 6 are the main parts. In such a device, plasma is generated using a magnetic field and electromagnetic waves that satisfy electron cyclotron resonance conditions. The electron density of the generated plasma is about an order of magnitude higher than that of other plasma generation methods, and a film can be efficiently formed on the substrate, increasing the film formation rate and making the film more homogeneous. In addition, the electron cyclotron resonance condition is ν= e B / 2πm: frequency of electromagnetic wave
e: Charge of electron m: Mass of electron B: To add a groove to the magnetic field.

現在、定常的に発生できる磁場は10テスラ程であり、
最大200 G)lz程度の電磁波まで使用できる。汎
用となっている2、45GHzのマイクロ波発振器を使
うと、電子サイクロトロン条件を満たす磁場の大きさは
、875ガウスである。
Currently, the magnetic field that can be generated steadily is about 10 Tesla.
Can be used with electromagnetic waves of up to 200G)lz. If a general-purpose 2.45 GHz microwave oscillator is used, the magnitude of the magnetic field that satisfies the electron cyclotron conditions is 875 Gauss.

スパッタガスとしては、02、Ar、およびこれらの混
合ガス0.−Ar等が適当である。
As the sputtering gas, 0.02, Ar, and a mixed gas of these are used. -Ar etc. are suitable.

こわらのスパッタガスでは、10〜10−’Torr程
度の圧力範囲でプラズマの発生が可能であるが、好まし
い範囲は10−2〜10−’ Torr程度である。
With a stiff sputtering gas, plasma can be generated in a pressure range of about 10 to 10 Torr, but the preferred range is about 10 to 10 Torr.

基体温度は200℃〜800℃の範囲が好ましい。20
0℃以下ではアモルファスとなってしまうことが多い。
The substrate temperature is preferably in the range of 200°C to 800°C. 20
At temperatures below 0°C, it often becomes amorphous.

なお、基体の最適温度は基体の種類や必要とする物性に
よって異なる。
Note that the optimum temperature of the substrate varies depending on the type of substrate and required physical properties.

ターゲットは第2図(a) 、  (b)のような形状
のものを用いる。
Targets with shapes as shown in Figures 2(a) and 2(b) are used.

ターゲットを備える位置は、ECR条件で発生したプラ
ズマの吹き出し口(ターゲット4の位置)とECR条件
を満たした磁場内[ECR条件下コ (ターゲット4′
の位置)の2通りが可能である。
The target is located at the outlet of the plasma generated under ECR conditions (target 4's position) and within the magnetic field that satisfies the ECR conditions [under ECR conditions (target 4').
2 positions are possible.

ターゲツト材は、金属のみから成るもの、酸化物から成
るもの両方共に可能である。ただし、前者の場合はスパ
ッタガスとして02を含むガスを利用する必要がある。
The target material can be made of both metals and oxides. However, in the former case, it is necessary to use a gas containing 02 as the sputtering gas.

基体を設置すべき位置(即ち、基体ホルダー5の位置)
はプラズマ吹き出し口の先方(この場合、ターゲットの
位置は4または4′)とECR条件下(この場合、ター
ゲットの位置は4′)の二通りがある。
The position where the substrate should be installed (i.e. the position of the substrate holder 5)
There are two types: ahead of the plasma outlet (in this case, the target position is 4 or 4') and under ECR conditions (in this case, the target position is 4').

後者のECR条件下に基体を置いたときは、加熱の必要
がなく、基体をプラズマにさらすだけで、500〜80
0℃になってしまう。従って、基体の種類によっては、
ECR条件では成膜できない場合がある。
When the substrate is placed under the latter ECR conditions, there is no need for heating and the substrate can be heated to 500 to 800
The temperature will drop to 0℃. Therefore, depending on the type of substrate,
Film formation may not be possible under ECR conditions.

また、プラズマ中にマイクロ波を進入させ易くするため
に、ECR条件より大きな磁場を設定することもある。
Further, in order to make it easier for microwaves to enter the plasma, a magnetic field larger than the ECR conditions may be set.

特に電子密度が高い場合は有効で°ある。This is particularly effective when the electron density is high.

なお、導伝性酸化物としては、例えばA、BおよびC(
ただし、AはLa、Ce、Pr、Nd。
In addition, examples of conductive oxides include A, B, and C (
However, A is La, Ce, Pr, and Nd.

Sm、Eu、Gd、Tb、Dy、Ho、Er。Sm, Eu, Gd, Tb, Dy, Ho, Er.

Tm、Yb、Lu、Y、Bi、Tj2及びScから成る
群、BはCa、Sr、Pb、Baからなる群、CはV、
Ti、Cr、Mn、Fe、Ni、Co。
A group consisting of Tm, Yb, Lu, Y, Bi, Tj2 and Sc, B is a group consisting of Ca, Sr, Pb, Ba, C is V,
Ti, Cr, Mn, Fe, Ni, Co.

Ag、Cd、Cu、Zr及び)Igからなる群より、そ
れぞれ選ばれた1種以上の元素である。)と酸素元素と
から成る、液体窒素温度以上で超伝導性を示すものや、
BaPbB iO,PbB iOt、LIXTf2−X
(+。
Each element is one or more elements selected from the group consisting of Ag, Cd, Cu, Zr, and )Ig. ) and oxygen element, which exhibit superconductivity above liquid nitrogen temperature,
BaPbB iO, PbB iOt, LIXTf2-X
(+.

などが挙げられる。Examples include.

〔実施例〕〔Example〕

以下、代表的実施例により本発明をより詳細に説明する
Hereinafter, the present invention will be explained in more detail with reference to representative examples.

実施例1 第1図に示した装置を利用してLa2Cu04−aを次
のようにして製造した。
Example 1 La2Cu04-a was produced in the following manner using the apparatus shown in FIG.

ターゲツト材は、LaとGuの原子比が1:10で、第
2図(a)のような形状のものを利用した。
The target material used had an atomic ratio of La and Gu of 1:10 and had a shape as shown in FIG. 2(a).

ターゲットの位置は、4(試料1)と4′試料2)とし
た。基体位置はそれぞれターゲット位置に依存して5(
試料1)および4(試料2)の近傍とした。基体は1c
m角の5rTiO,を用いた。酸素20 secmを導
入管より導入し、2.45GHzのマイクロ波と875
ガウスの磁場により酸素プラズマを発生させ、ターゲッ
トを化学スパッタして、成膜した。成膜の際、ガス圧力
は、5X10−’Torrであった。ECR条件下に置
いた試料2の基体温度は760℃であったので、試料1
も基体内部に組み込んだカンタルヒータにより760℃
に加熱した。マイクロ波電力は300W、試料1.2の
成膜速度は、それぞれ500人/分、120人/分であ
った。
The target positions were 4 (sample 1) and 4' (sample 2). The base position is 5(
It was set near Samples 1) and 4 (Sample 2). The base is 1c
An m-square 5rTiO was used. 20 sec of oxygen was introduced from the introduction tube, and 2.45 GHz microwave and 875
Oxygen plasma was generated using a Gaussian magnetic field, and the target was chemically sputtered to form a film. During film formation, the gas pressure was 5×10 −′ Torr. The substrate temperature of sample 2 placed under ECR conditions was 760°C, so sample 1
760℃ due to the Kanthal heater built into the base.
heated to. The microwave power was 300 W, and the film formation rates for Samples 1 and 2 were 500 people/min and 120 people/minute, respectively.

成膜の完成した試料1と試料2の酸化物の膜厚はそれぞ
れ、1鱗、0.8μであった。
The film thicknesses of the oxides of sample 1 and sample 2, which were completely formed, were 1 scale and 0.8 μm, respectively.

各試料の電気抵抗の温度依存性を第3図に示す。試料1
は4.2Kまで下げても超伝導は示さないが、試料2は
21にで抵抗が零になった。また4、2にで45%のマ
イスナー効果を示した。
Figure 3 shows the temperature dependence of the electrical resistance of each sample. Sample 1
does not show superconductivity even when the temperature is lowered to 4.2K, but the resistance of sample 2 became zero at 21K. In addition, 4 and 2 showed a Meissner effect of 45%.

X線粉末回折では、両者共にLa2(:uonの斜方晶
形パターンを示した。EPMAによる成分分析を表1に
示す。試料2ではほとんど完全に酸素がつまっているの
に対して、試料1では酸素がぬけているのがわかった。
In X-ray powder diffraction, both showed an orthorhombic pattern of La2(:uon). The component analysis by EPMA is shown in Table 1. Sample 2 was almost completely filled with oxygen, while sample 1 was I found out that the oxygen was leaking.

。この酸素の量が低温での電気抵抗の抛舞の差になって
いる。
. The amount of oxygen is the difference in electrical resistance at low temperatures.

SrMSによる膜厚方向の元素分析結果によると、元素
組成は均一であり、ターゲットの組成ずれの影響はほと
んど観察されなかった。
According to the elemental analysis results in the film thickness direction by SrMS, the elemental composition was uniform, and almost no effect of compositional deviation of the target was observed.

表I  La2fl:u O<−+sのEPMA分析(
atomic%)実施例2 ターゲツト材にLa、 Da、 Cu [原子比=1 
+ 1 :10]合金(試料3)とLaBa(:uo 
[混合組成比=2+1:10:5]の金属酸化物(試料
4)を用いて実施例1と同条件で成膜した。ただし、両
者ともECR条件下に基体を置いて成膜を行った。
Table I EPMA analysis of La2fl:u O<-+s (
atomic%) Example 2 Target material contains La, Da, Cu [atomic ratio = 1
+ 1:10] alloy (sample 3) and LaBa (:uo
A film was formed under the same conditions as in Example 1 using a metal oxide (sample 4) with a [mixture composition ratio = 2+1:10:5]. However, in both cases, film formation was performed with the substrate placed under ECR conditions.

基体温度は試料3,4でそれぞれ730℃、680℃、
成膜速度は400A/分、90人/分であった。
The substrate temperature was 730°C and 680°C for samples 3 and 4, respectively.
The film formation rate was 400 A/min and 90 people/min.

得られた酸化物の電気抵抗の温度依存性を第4図に示す
。両者共に超伝導性を示したが、臨界温度は30K、4
にであった。
FIG. 4 shows the temperature dependence of the electrical resistance of the obtained oxide. Both showed superconductivity, but the critical temperature was 30K, 4
It was.

また、HaをSr、 Caで置換したものでも成膜を行
なったが、傾向は同じで合金ターゲットの方が臨界温度
の高いものが得られた。
Films were also formed with Sr and Ca substituted for Ha, but the tendency was the same, and the alloy target had a higher critical temperature.

実施例3 ターゲツト材は実施例2の試料3と同じ組成のものを用
い、ECR条件下に基体を置いてスパッタガスを変えて
成膜を行なった。試料5のスパッタガスは酸素、流量は
205C(:M、試料6のスパッタガスはAr+酸素、
流量はArが2 Stl:CM、酸素が185CCMで
ある。各資料の臨界温度はそれぞれ30、30.2にで
あった。EMPA分所によりArを含むガスのスパッタ
では酸素ガスでのそれよりも膜中の酸素量が多かった。
Example 3 A target material having the same composition as Sample 3 of Example 2 was used, and film formation was carried out by placing the substrate under ECR conditions and changing the sputtering gas. The sputtering gas for sample 5 is oxygen, the flow rate is 205C (:M), the sputtering gas for sample 6 is Ar + oxygen,
The flow rates were 2 Stl:CM for Ar and 185 CCM for oxygen. The critical temperatures of each material were 30 and 30.2, respectively. According to the EMPA branch, the amount of oxygen in the film was higher when sputtering with a gas containing Ar than when using oxygen gas.

実施例4 ターゲツト材はY、 Ba、 Cu [原子比=5:1
:101の合金(試料10)とYBa(:uo [混合
組成比=5:1:10:5]の金属酸化物(試料11)
を用いて実施例1と同条件で成膜した。
Example 4 Target materials were Y, Ba, Cu [atomic ratio = 5:1
:101 alloy (sample 10) and YBa(:uo [mixing composition ratio = 5:1:10:5] metal oxide (sample 11)
A film was formed using the same conditions as in Example 1.

基体はECR条件下に置いた。基体温度は710℃、6
50℃、成膜速度は520人分、130人/分であった
The substrate was placed under ECR conditions. Substrate temperature is 710℃, 6
The temperature was 50° C., and the film formation rate was 130 people/min for 520 people.

得られた酸化物は、両者共に92に付近で超伝導を示し
たが、転移中はそれぞれIK、IOKと異なった。
Both of the obtained oxides showed superconductivity near 92, but the transitions were different from IK and IOK, respectively.

X線粉末回折の結果は、Y B82CIJ3Or−& 
 の酸素欠陥プロブスカイト構造を示していることがわ
かった。
The results of X-ray powder diffraction are YB82CIJ3Or-&
was found to exhibit an oxygen-deficient provskite structure.

また、Yを他のランタノイド元素で置換したターゲット
を用いても転移点は少しずつ異なるが、はぼ同様な結果
が得られた。
Furthermore, even when targets in which Y was replaced with other lanthanide elements were used, similar results were obtained, although the transition points were slightly different.

実施例5 8iI、3SrlCalCuI、5ox(x>O)から
成るターゲツト材を用いて実施例1と同条件下で成膜し
た。成膜速度は400人/分であり、70に付近で超伝
導性を示した。
Example 5 A film was formed under the same conditions as in Example 1 using a target material consisting of 8iI, 3SrlCalCuI, and 5ox (x>O). The film formation rate was 400 persons/min, and superconductivity was exhibited at around 70 pm.

(発明の効果) 以上説明したように、伝導性金属酸化物の成膜において
、電子密度の高いECRプラズマを用いることにより、 (a)成膜速度が数百人/分と従来よりも10倍程度速
くなり、 (b)従って、成膜中のターゲツト材の組成ずれの問題
が解決され、 (C)成膜後の熱処理が不要になった。
(Effects of the invention) As explained above, by using ECR plasma with high electron density in film formation of conductive metal oxides, (a) the film formation speed is several hundred people/min, 10 times faster than conventional methods; (b) Therefore, the problem of compositional deviation of the target material during film formation is solved, and (C) heat treatment after film formation is no longer necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、二種以上の金属または金属酸化物から成るタ
ーゲットをスパッタし、金属酸化物薄膜を合成するEC
Rプラズマ発生装置、第2図はターゲットの形状、第3
図はLa2Cu04−iの電気抵抗の温度依存性を示す
図、第4.5図はそれぞれρ(電気抵抗)の温度依存性
を示す図である。 1:電磁石   2:マイクロ波導波管3:真空容器 
 4.4′ :ターゲット5:基体ホルダー 6:ガス
導入口 特許出願人  キャノン株式会社
Figure 1 shows an EC system in which a target consisting of two or more metals or metal oxides is sputtered to synthesize a metal oxide thin film.
R plasma generator, Figure 2 shows the shape of the target, Figure 3
The figure shows the temperature dependence of the electrical resistance of La2Cu04-i, and FIG. 4.5 shows the temperature dependence of ρ (electrical resistance). 1: Electromagnet 2: Microwave waveguide 3: Vacuum container
4.4': Target 5: Substrate holder 6: Gas inlet Patent applicant Canon Co., Ltd.

Claims (1)

【特許請求の範囲】 1)磁場とマイクロ波とが電子サイクロトロン共鳴条件
のもとに供給されている真空装置中にガスを導入して、
プラズマを発生させつつ、二種以上の金属または二種以
上の金属酸化物ターゲットをスパッタして、基体上に導
電性金属酸化物薄膜を製造する方法。 2)前記基体を、電子サイクロトロン共鳴条件を満たす
磁場内に置いて成膜する請求項1記載の方法。 3)真空装置のプラズマ発生部分に電子サイクロトロン
共鳴条件よりも磁場の大きさが大きい箇所が存在する請
求項1記載の方法。
[Claims] 1) Introducing a gas into a vacuum device in which a magnetic field and microwave are supplied under electron cyclotron resonance conditions,
A method of producing a conductive metal oxide thin film on a substrate by sputtering two or more metals or two or more metal oxide targets while generating plasma. 2) The method according to claim 1, wherein the film is formed by placing the substrate in a magnetic field that satisfies electron cyclotron resonance conditions. 3) The method according to claim 1, wherein there is a location in the plasma generation part of the vacuum apparatus where the magnitude of the magnetic field is larger than the electron cyclotron resonance conditions.
JP19448988A 1988-08-05 1988-08-05 Production of conductive metal oxide Pending JPH0247254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19448988A JPH0247254A (en) 1988-08-05 1988-08-05 Production of conductive metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19448988A JPH0247254A (en) 1988-08-05 1988-08-05 Production of conductive metal oxide

Publications (1)

Publication Number Publication Date
JPH0247254A true JPH0247254A (en) 1990-02-16

Family

ID=16325376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19448988A Pending JPH0247254A (en) 1988-08-05 1988-08-05 Production of conductive metal oxide

Country Status (1)

Country Link
JP (1) JPH0247254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106821A (en) * 1990-03-09 1992-04-21 International Superconductivity Technology Center Process for forming thin oxide film
JPH0597408A (en) * 1991-10-07 1993-04-20 Fujikura Ltd Production of thin film of ionic conductor
US5225393A (en) * 1990-03-09 1993-07-06 International Superconductivity Technology Center Process for forming thin oxide film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106821A (en) * 1990-03-09 1992-04-21 International Superconductivity Technology Center Process for forming thin oxide film
US5225393A (en) * 1990-03-09 1993-07-06 International Superconductivity Technology Center Process for forming thin oxide film
JPH0597408A (en) * 1991-10-07 1993-04-20 Fujikura Ltd Production of thin film of ionic conductor
JP2625053B2 (en) * 1991-10-07 1997-06-25 株式会社フジクラ Method for producing ion conductor thin film

Similar Documents

Publication Publication Date Title
Valente-Feliciano Superconducting RF materials other than bulk niobium: a review
AU598113B2 (en) Process for depositing a superconducting thin film
JPH08502626A (en) Method for making thin films by pulsed excimer laser deposition
JPH0772349B2 (en) Method and apparatus for producing large area compound thin film
JPH02255525A (en) Production of y-containing superconducting thin film
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
JPH0247254A (en) Production of conductive metal oxide
JPS63274032A (en) Method of forming superconducting layer on substrate
JP2713343B2 (en) Superconducting circuit fabrication method
JP2501616B2 (en) Preparation method of superconducting thin film
JP2529347B2 (en) Preparation method of superconducting thin film
JP2525852B2 (en) Preparation method of superconducting thin film
JP2639510B2 (en) Preparation method of superconducting thin film
JP2668532B2 (en) Preparation method of superconducting thin film
JP2501615B2 (en) Preparation method of superconducting thin film
JP2501614B2 (en) Preparation method of superconducting thin film
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH0197319A (en) Manufacture of oxide superconductor film coated material
JPH02255527A (en) Production of tl-containing superconducting thin film
JPH02255524A (en) Production of y-containing superconducting thin film
JPH01208323A (en) Production of thin film
JPH02255533A (en) Production of bi-containing superconducting thin film
DiIorio Preparation of high Tc YBa2Cu3O7-x thin films
JPH0297660A (en) Production of thin-film superconductor
JPH029716A (en) Method for manufacturing superconducting thin film