JPH0247254A - Production of conductive metal oxide - Google Patents
Production of conductive metal oxideInfo
- Publication number
- JPH0247254A JPH0247254A JP19448988A JP19448988A JPH0247254A JP H0247254 A JPH0247254 A JP H0247254A JP 19448988 A JP19448988 A JP 19448988A JP 19448988 A JP19448988 A JP 19448988A JP H0247254 A JPH0247254 A JP H0247254A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- plasma
- metal oxide
- substrate
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 14
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title description 3
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 238000004544 sputter deposition Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- 150000002739 metals Chemical class 0.000 claims abstract description 6
- 239000010408 film Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 9
- 239000010409 thin film Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000000203 mixture Substances 0.000 description 7
- 239000013077 target material Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000004453 electron probe microanalysis Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 150000002602 lanthanoids Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 101100096650 Mus musculus Srms gene Proteins 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000000921 elemental analysis Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UFZOPKFMKMAWLU-UHFFFAOYSA-N ethoxy(methyl)phosphinic acid Chemical compound CCOP(C)(O)=O UFZOPKFMKMAWLU-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Physical Vapour Deposition (AREA)
- Conductive Materials (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、導電性酸化物の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a conductive oxide.
これらの化合物の中には、液体窒素温度以上で超伝導性
を示すものもあり、本発明は、送電線、エネルギー貯蔵
、発電、磁気浮上列車、ジョセフソン素子等々、産業上
のいろいろな分野で利用可能な導電性酸化物の製造方法
に関する。Some of these compounds exhibit superconductivity above liquid nitrogen temperature, and the present invention can be used in various industrial fields such as power transmission lines, energy storage, power generation, magnetic levitation trains, Josephson devices, etc. The present invention relates to a method for producing a conductive oxide that can be used.
従来、Li−Ti−0、Ba−Pb−B1−0 、 B
a−Ti−0というような導電性酸化物薄膜は、RF及
びマグネトロンスパッタ法や電子ビーム法で成膜されて
きた。Conventionally, Li-Ti-0, Ba-Pb-B1-0, B
Conductive oxide thin films such as a-Ti-0 have been formed by RF and magnetron sputtering methods and electron beam methods.
(発明が解決しようとする課題)
しかし、これらの方法で成膜したものは、均一な組成に
ならず、蒸着後、熱処理をしなければ所期の物性が得ら
れないという欠点がある。(Problems to be Solved by the Invention) However, films formed by these methods do not have a uniform composition, and have the disadvantage that desired physical properties cannot be obtained unless heat treatment is performed after vapor deposition.
また、成膜速度も数十人/分と遅く、必要な膜厚を得る
ために、長時間にわたる成膜が必要であり、成膜中のタ
ーゲットの組成ずれが問題となってくる。In addition, the deposition rate is slow at several tens of people per minute, and in order to obtain the required film thickness, deposition is required over a long period of time, and compositional deviation of the target during deposition becomes a problem.
C課題を解決するための手段〕
本発明は、ランタノイド、Cu、アルカリ土類金属等か
ら成る、二元、三元、四元酸化物等の多元系の、電導性
酸化物を製造するに際して、(a)成膜後の熱処理を不
要にすること(b)成膜速度を上げ、成膜中のターゲッ
トの組成ずれの影響を少なくすること
を主要目的として、
磁場とマイクロ波とが電子サイクロトロン共鳴(ECR
)条件のもとに供給されている真空装置中にガスを導入
することによって、プラズマを発生させつつ、二種以上
の金属または二種以上の金属酸化物のターゲットをスパ
ッタして、基体上に導電性金属酸化物薄膜を成膜し、膜
の均一性の向上、成膜速度の上昇等を可能にしたもので
ある。Means for Solving Problem C] The present invention provides the following steps when producing multi-component conductive oxides such as binary, ternary, and quaternary oxides made of lanthanoids, Cu, alkaline earth metals, etc. (a) Eliminate the need for post-deposition heat treatment (b) Increase the deposition rate and reduce the effects of target composition shifts during deposition (ECR
) sputtering targets of two or more metals or two or more metal oxides onto a substrate while generating plasma by introducing gas into a vacuum device supplied under the following conditions: This method forms a conductive metal oxide thin film, making it possible to improve the uniformity of the film and increase the film formation rate.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
第1図に本発明に使用するECR発生装置の一例を示す
。この装置は、電磁石1、マイクロ波導波管2、真空n
13、ターゲット4または4′、基体ホルダー5および
ガス導入口6を主要部とする。このような装置で、電子
サイクロトロン共鳴条件を満たす磁場と電磁波とによっ
てプラズマを発生させる。発生したプラズマは、電子密
度が他のプラズマ発生法に比べて一桁程大きく、基体上
に効率良く膜が形成され、成膜速度の向上、膜の均質化
が達成される。なお、電子サイクロトロン共鳴条件とは
、 ν= e B / 2πmシ:電磁波の周波数
e:電子の電荷m:電子の質量 B:磁場
を溝たすことである。FIG. 1 shows an example of an ECR generator used in the present invention. This device consists of an electromagnet 1, a microwave waveguide 2, a vacuum n
13, target 4 or 4', substrate holder 5, and gas inlet 6 are the main parts. In such a device, plasma is generated using a magnetic field and electromagnetic waves that satisfy electron cyclotron resonance conditions. The electron density of the generated plasma is about an order of magnitude higher than that of other plasma generation methods, and a film can be efficiently formed on the substrate, increasing the film formation rate and making the film more homogeneous. In addition, the electron cyclotron resonance condition is ν= e B / 2πm: frequency of electromagnetic wave
e: Charge of electron m: Mass of electron B: To add a groove to the magnetic field.
現在、定常的に発生できる磁場は10テスラ程であり、
最大200 G)lz程度の電磁波まで使用できる。汎
用となっている2、45GHzのマイクロ波発振器を使
うと、電子サイクロトロン条件を満たす磁場の大きさは
、875ガウスである。Currently, the magnetic field that can be generated steadily is about 10 Tesla.
Can be used with electromagnetic waves of up to 200G)lz. If a general-purpose 2.45 GHz microwave oscillator is used, the magnitude of the magnetic field that satisfies the electron cyclotron conditions is 875 Gauss.
スパッタガスとしては、02、Ar、およびこれらの混
合ガス0.−Ar等が適当である。As the sputtering gas, 0.02, Ar, and a mixed gas of these are used. -Ar etc. are suitable.
こわらのスパッタガスでは、10〜10−’Torr程
度の圧力範囲でプラズマの発生が可能であるが、好まし
い範囲は10−2〜10−’ Torr程度である。With a stiff sputtering gas, plasma can be generated in a pressure range of about 10 to 10 Torr, but the preferred range is about 10 to 10 Torr.
基体温度は200℃〜800℃の範囲が好ましい。20
0℃以下ではアモルファスとなってしまうことが多い。The substrate temperature is preferably in the range of 200°C to 800°C. 20
At temperatures below 0°C, it often becomes amorphous.
なお、基体の最適温度は基体の種類や必要とする物性に
よって異なる。Note that the optimum temperature of the substrate varies depending on the type of substrate and required physical properties.
ターゲットは第2図(a) 、 (b)のような形状
のものを用いる。Targets with shapes as shown in Figures 2(a) and 2(b) are used.
ターゲットを備える位置は、ECR条件で発生したプラ
ズマの吹き出し口(ターゲット4の位置)とECR条件
を満たした磁場内[ECR条件下コ (ターゲット4′
の位置)の2通りが可能である。The target is located at the outlet of the plasma generated under ECR conditions (target 4's position) and within the magnetic field that satisfies the ECR conditions [under ECR conditions (target 4').
2 positions are possible.
ターゲツト材は、金属のみから成るもの、酸化物から成
るもの両方共に可能である。ただし、前者の場合はスパ
ッタガスとして02を含むガスを利用する必要がある。The target material can be made of both metals and oxides. However, in the former case, it is necessary to use a gas containing 02 as the sputtering gas.
基体を設置すべき位置(即ち、基体ホルダー5の位置)
はプラズマ吹き出し口の先方(この場合、ターゲットの
位置は4または4′)とECR条件下(この場合、ター
ゲットの位置は4′)の二通りがある。The position where the substrate should be installed (i.e. the position of the substrate holder 5)
There are two types: ahead of the plasma outlet (in this case, the target position is 4 or 4') and under ECR conditions (in this case, the target position is 4').
後者のECR条件下に基体を置いたときは、加熱の必要
がなく、基体をプラズマにさらすだけで、500〜80
0℃になってしまう。従って、基体の種類によっては、
ECR条件では成膜できない場合がある。When the substrate is placed under the latter ECR conditions, there is no need for heating and the substrate can be heated to 500 to 800
The temperature will drop to 0℃. Therefore, depending on the type of substrate,
Film formation may not be possible under ECR conditions.
また、プラズマ中にマイクロ波を進入させ易くするため
に、ECR条件より大きな磁場を設定することもある。Further, in order to make it easier for microwaves to enter the plasma, a magnetic field larger than the ECR conditions may be set.
特に電子密度が高い場合は有効で°ある。This is particularly effective when the electron density is high.
なお、導伝性酸化物としては、例えばA、BおよびC(
ただし、AはLa、Ce、Pr、Nd。In addition, examples of conductive oxides include A, B, and C (
However, A is La, Ce, Pr, and Nd.
Sm、Eu、Gd、Tb、Dy、Ho、Er。Sm, Eu, Gd, Tb, Dy, Ho, Er.
Tm、Yb、Lu、Y、Bi、Tj2及びScから成る
群、BはCa、Sr、Pb、Baからなる群、CはV、
Ti、Cr、Mn、Fe、Ni、Co。A group consisting of Tm, Yb, Lu, Y, Bi, Tj2 and Sc, B is a group consisting of Ca, Sr, Pb, Ba, C is V,
Ti, Cr, Mn, Fe, Ni, Co.
Ag、Cd、Cu、Zr及び)Igからなる群より、そ
れぞれ選ばれた1種以上の元素である。)と酸素元素と
から成る、液体窒素温度以上で超伝導性を示すものや、
BaPbB iO,PbB iOt、LIXTf2−X
(+。Each element is one or more elements selected from the group consisting of Ag, Cd, Cu, Zr, and )Ig. ) and oxygen element, which exhibit superconductivity above liquid nitrogen temperature,
BaPbB iO, PbB iOt, LIXTf2-X
(+.
などが挙げられる。Examples include.
以下、代表的実施例により本発明をより詳細に説明する
。Hereinafter, the present invention will be explained in more detail with reference to representative examples.
実施例1
第1図に示した装置を利用してLa2Cu04−aを次
のようにして製造した。Example 1 La2Cu04-a was produced in the following manner using the apparatus shown in FIG.
ターゲツト材は、LaとGuの原子比が1:10で、第
2図(a)のような形状のものを利用した。The target material used had an atomic ratio of La and Gu of 1:10 and had a shape as shown in FIG. 2(a).
ターゲットの位置は、4(試料1)と4′試料2)とし
た。基体位置はそれぞれターゲット位置に依存して5(
試料1)および4(試料2)の近傍とした。基体は1c
m角の5rTiO,を用いた。酸素20 secmを導
入管より導入し、2.45GHzのマイクロ波と875
ガウスの磁場により酸素プラズマを発生させ、ターゲッ
トを化学スパッタして、成膜した。成膜の際、ガス圧力
は、5X10−’Torrであった。ECR条件下に置
いた試料2の基体温度は760℃であったので、試料1
も基体内部に組み込んだカンタルヒータにより760℃
に加熱した。マイクロ波電力は300W、試料1.2の
成膜速度は、それぞれ500人/分、120人/分であ
った。The target positions were 4 (sample 1) and 4' (sample 2). The base position is 5(
It was set near Samples 1) and 4 (Sample 2). The base is 1c
An m-square 5rTiO was used. 20 sec of oxygen was introduced from the introduction tube, and 2.45 GHz microwave and 875
Oxygen plasma was generated using a Gaussian magnetic field, and the target was chemically sputtered to form a film. During film formation, the gas pressure was 5×10 −′ Torr. The substrate temperature of sample 2 placed under ECR conditions was 760°C, so sample 1
760℃ due to the Kanthal heater built into the base.
heated to. The microwave power was 300 W, and the film formation rates for Samples 1 and 2 were 500 people/min and 120 people/minute, respectively.
成膜の完成した試料1と試料2の酸化物の膜厚はそれぞ
れ、1鱗、0.8μであった。The film thicknesses of the oxides of sample 1 and sample 2, which were completely formed, were 1 scale and 0.8 μm, respectively.
各試料の電気抵抗の温度依存性を第3図に示す。試料1
は4.2Kまで下げても超伝導は示さないが、試料2は
21にで抵抗が零になった。また4、2にで45%のマ
イスナー効果を示した。Figure 3 shows the temperature dependence of the electrical resistance of each sample. Sample 1
does not show superconductivity even when the temperature is lowered to 4.2K, but the resistance of sample 2 became zero at 21K. In addition, 4 and 2 showed a Meissner effect of 45%.
X線粉末回折では、両者共にLa2(:uonの斜方晶
形パターンを示した。EPMAによる成分分析を表1に
示す。試料2ではほとんど完全に酸素がつまっているの
に対して、試料1では酸素がぬけているのがわかった。In X-ray powder diffraction, both showed an orthorhombic pattern of La2(:uon). The component analysis by EPMA is shown in Table 1. Sample 2 was almost completely filled with oxygen, while sample 1 was I found out that the oxygen was leaking.
。この酸素の量が低温での電気抵抗の抛舞の差になって
いる。. The amount of oxygen is the difference in electrical resistance at low temperatures.
SrMSによる膜厚方向の元素分析結果によると、元素
組成は均一であり、ターゲットの組成ずれの影響はほと
んど観察されなかった。According to the elemental analysis results in the film thickness direction by SrMS, the elemental composition was uniform, and almost no effect of compositional deviation of the target was observed.
表I La2fl:u O<−+sのEPMA分析(
atomic%)実施例2
ターゲツト材にLa、 Da、 Cu [原子比=1
+ 1 :10]合金(試料3)とLaBa(:uo
[混合組成比=2+1:10:5]の金属酸化物(試料
4)を用いて実施例1と同条件で成膜した。ただし、両
者ともECR条件下に基体を置いて成膜を行った。Table I EPMA analysis of La2fl:u O<-+s (
atomic%) Example 2 Target material contains La, Da, Cu [atomic ratio = 1
+ 1:10] alloy (sample 3) and LaBa (:uo
A film was formed under the same conditions as in Example 1 using a metal oxide (sample 4) with a [mixture composition ratio = 2+1:10:5]. However, in both cases, film formation was performed with the substrate placed under ECR conditions.
基体温度は試料3,4でそれぞれ730℃、680℃、
成膜速度は400A/分、90人/分であった。The substrate temperature was 730°C and 680°C for samples 3 and 4, respectively.
The film formation rate was 400 A/min and 90 people/min.
得られた酸化物の電気抵抗の温度依存性を第4図に示す
。両者共に超伝導性を示したが、臨界温度は30K、4
にであった。FIG. 4 shows the temperature dependence of the electrical resistance of the obtained oxide. Both showed superconductivity, but the critical temperature was 30K, 4
It was.
また、HaをSr、 Caで置換したものでも成膜を行
なったが、傾向は同じで合金ターゲットの方が臨界温度
の高いものが得られた。Films were also formed with Sr and Ca substituted for Ha, but the tendency was the same, and the alloy target had a higher critical temperature.
実施例3
ターゲツト材は実施例2の試料3と同じ組成のものを用
い、ECR条件下に基体を置いてスパッタガスを変えて
成膜を行なった。試料5のスパッタガスは酸素、流量は
205C(:M、試料6のスパッタガスはAr+酸素、
流量はArが2 Stl:CM、酸素が185CCMで
ある。各資料の臨界温度はそれぞれ30、30.2にで
あった。EMPA分所によりArを含むガスのスパッタ
では酸素ガスでのそれよりも膜中の酸素量が多かった。Example 3 A target material having the same composition as Sample 3 of Example 2 was used, and film formation was carried out by placing the substrate under ECR conditions and changing the sputtering gas. The sputtering gas for sample 5 is oxygen, the flow rate is 205C (:M), the sputtering gas for sample 6 is Ar + oxygen,
The flow rates were 2 Stl:CM for Ar and 185 CCM for oxygen. The critical temperatures of each material were 30 and 30.2, respectively. According to the EMPA branch, the amount of oxygen in the film was higher when sputtering with a gas containing Ar than when using oxygen gas.
実施例4
ターゲツト材はY、 Ba、 Cu [原子比=5:1
:101の合金(試料10)とYBa(:uo [混合
組成比=5:1:10:5]の金属酸化物(試料11)
を用いて実施例1と同条件で成膜した。Example 4 Target materials were Y, Ba, Cu [atomic ratio = 5:1
:101 alloy (sample 10) and YBa(:uo [mixing composition ratio = 5:1:10:5] metal oxide (sample 11)
A film was formed using the same conditions as in Example 1.
基体はECR条件下に置いた。基体温度は710℃、6
50℃、成膜速度は520人分、130人/分であった
。The substrate was placed under ECR conditions. Substrate temperature is 710℃, 6
The temperature was 50° C., and the film formation rate was 130 people/min for 520 people.
得られた酸化物は、両者共に92に付近で超伝導を示し
たが、転移中はそれぞれIK、IOKと異なった。Both of the obtained oxides showed superconductivity near 92, but the transitions were different from IK and IOK, respectively.
X線粉末回折の結果は、Y B82CIJ3Or−&
の酸素欠陥プロブスカイト構造を示していることがわ
かった。The results of X-ray powder diffraction are YB82CIJ3Or-&
was found to exhibit an oxygen-deficient provskite structure.
また、Yを他のランタノイド元素で置換したターゲット
を用いても転移点は少しずつ異なるが、はぼ同様な結果
が得られた。Furthermore, even when targets in which Y was replaced with other lanthanide elements were used, similar results were obtained, although the transition points were slightly different.
実施例5
8iI、3SrlCalCuI、5ox(x>O)から
成るターゲツト材を用いて実施例1と同条件下で成膜し
た。成膜速度は400人/分であり、70に付近で超伝
導性を示した。Example 5 A film was formed under the same conditions as in Example 1 using a target material consisting of 8iI, 3SrlCalCuI, and 5ox (x>O). The film formation rate was 400 persons/min, and superconductivity was exhibited at around 70 pm.
(発明の効果)
以上説明したように、伝導性金属酸化物の成膜において
、電子密度の高いECRプラズマを用いることにより、
(a)成膜速度が数百人/分と従来よりも10倍程度速
くなり、
(b)従って、成膜中のターゲツト材の組成ずれの問題
が解決され、
(C)成膜後の熱処理が不要になった。(Effects of the invention) As explained above, by using ECR plasma with high electron density in film formation of conductive metal oxides, (a) the film formation speed is several hundred people/min, 10 times faster than conventional methods; (b) Therefore, the problem of compositional deviation of the target material during film formation is solved, and (C) heat treatment after film formation is no longer necessary.
第1図は、二種以上の金属または金属酸化物から成るタ
ーゲットをスパッタし、金属酸化物薄膜を合成するEC
Rプラズマ発生装置、第2図はターゲットの形状、第3
図はLa2Cu04−iの電気抵抗の温度依存性を示す
図、第4.5図はそれぞれρ(電気抵抗)の温度依存性
を示す図である。
1:電磁石 2:マイクロ波導波管3:真空容器
4.4′ :ターゲット5:基体ホルダー 6:ガス
導入口
特許出願人 キャノン株式会社Figure 1 shows an EC system in which a target consisting of two or more metals or metal oxides is sputtered to synthesize a metal oxide thin film.
R plasma generator, Figure 2 shows the shape of the target, Figure 3
The figure shows the temperature dependence of the electrical resistance of La2Cu04-i, and FIG. 4.5 shows the temperature dependence of ρ (electrical resistance). 1: Electromagnet 2: Microwave waveguide 3: Vacuum container
4.4': Target 5: Substrate holder 6: Gas inlet Patent applicant Canon Co., Ltd.
Claims (1)
のもとに供給されている真空装置中にガスを導入して、
プラズマを発生させつつ、二種以上の金属または二種以
上の金属酸化物ターゲットをスパッタして、基体上に導
電性金属酸化物薄膜を製造する方法。 2)前記基体を、電子サイクロトロン共鳴条件を満たす
磁場内に置いて成膜する請求項1記載の方法。 3)真空装置のプラズマ発生部分に電子サイクロトロン
共鳴条件よりも磁場の大きさが大きい箇所が存在する請
求項1記載の方法。[Claims] 1) Introducing a gas into a vacuum device in which a magnetic field and microwave are supplied under electron cyclotron resonance conditions,
A method of producing a conductive metal oxide thin film on a substrate by sputtering two or more metals or two or more metal oxide targets while generating plasma. 2) The method according to claim 1, wherein the film is formed by placing the substrate in a magnetic field that satisfies electron cyclotron resonance conditions. 3) The method according to claim 1, wherein there is a location in the plasma generation part of the vacuum apparatus where the magnitude of the magnetic field is larger than the electron cyclotron resonance conditions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19448988A JPH0247254A (en) | 1988-08-05 | 1988-08-05 | Production of conductive metal oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19448988A JPH0247254A (en) | 1988-08-05 | 1988-08-05 | Production of conductive metal oxide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0247254A true JPH0247254A (en) | 1990-02-16 |
Family
ID=16325376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19448988A Pending JPH0247254A (en) | 1988-08-05 | 1988-08-05 | Production of conductive metal oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0247254A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5106821A (en) * | 1990-03-09 | 1992-04-21 | International Superconductivity Technology Center | Process for forming thin oxide film |
JPH0597408A (en) * | 1991-10-07 | 1993-04-20 | Fujikura Ltd | Production of thin film of ionic conductor |
US5225393A (en) * | 1990-03-09 | 1993-07-06 | International Superconductivity Technology Center | Process for forming thin oxide film |
-
1988
- 1988-08-05 JP JP19448988A patent/JPH0247254A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5106821A (en) * | 1990-03-09 | 1992-04-21 | International Superconductivity Technology Center | Process for forming thin oxide film |
US5225393A (en) * | 1990-03-09 | 1993-07-06 | International Superconductivity Technology Center | Process for forming thin oxide film |
JPH0597408A (en) * | 1991-10-07 | 1993-04-20 | Fujikura Ltd | Production of thin film of ionic conductor |
JP2625053B2 (en) * | 1991-10-07 | 1997-06-25 | 株式会社フジクラ | Method for producing ion conductor thin film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Valente-Feliciano | Superconducting RF materials other than bulk niobium: a review | |
AU598113B2 (en) | Process for depositing a superconducting thin film | |
JPH08502626A (en) | Method for making thin films by pulsed excimer laser deposition | |
JPH0772349B2 (en) | Method and apparatus for producing large area compound thin film | |
JPH02255525A (en) | Production of y-containing superconducting thin film | |
CA1322514C (en) | Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same | |
JPH0247254A (en) | Production of conductive metal oxide | |
JPS63274032A (en) | Method of forming superconducting layer on substrate | |
JP2713343B2 (en) | Superconducting circuit fabrication method | |
JP2501616B2 (en) | Preparation method of superconducting thin film | |
JP2529347B2 (en) | Preparation method of superconducting thin film | |
JP2525852B2 (en) | Preparation method of superconducting thin film | |
JP2639510B2 (en) | Preparation method of superconducting thin film | |
JP2668532B2 (en) | Preparation method of superconducting thin film | |
JP2501615B2 (en) | Preparation method of superconducting thin film | |
JP2501614B2 (en) | Preparation method of superconducting thin film | |
JP2502344B2 (en) | Method for producing complex oxide superconductor thin film | |
JPH0197319A (en) | Manufacture of oxide superconductor film coated material | |
JPH02255527A (en) | Production of tl-containing superconducting thin film | |
JPH02255524A (en) | Production of y-containing superconducting thin film | |
JPH01208323A (en) | Production of thin film | |
JPH02255533A (en) | Production of bi-containing superconducting thin film | |
DiIorio | Preparation of high Tc YBa2Cu3O7-x thin films | |
JPH0297660A (en) | Production of thin-film superconductor | |
JPH029716A (en) | Method for manufacturing superconducting thin film |