JPH0244800B2 - TANKETSUSHOSEICHOSOCHI - Google Patents
TANKETSUSHOSEICHOSOCHIInfo
- Publication number
- JPH0244800B2 JPH0244800B2 JP16612182A JP16612182A JPH0244800B2 JP H0244800 B2 JPH0244800 B2 JP H0244800B2 JP 16612182 A JP16612182 A JP 16612182A JP 16612182 A JP16612182 A JP 16612182A JP H0244800 B2 JPH0244800 B2 JP H0244800B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- tube
- reaction tube
- substrate
- processed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は気相エピタキシヤル成長における温度
測定および膜厚制御を改良した単結晶成長装置に
関する。DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a single crystal growth apparatus with improved temperature measurement and film thickness control in vapor phase epitaxial growth.
(b) 技術の背景
ガリウム砒素(GaAs)、アルミニウムガリウ
ム砒素(AlxGa1−xAs)などの化合物半導体結
晶を用いた半導体デバイスは公知である。(b) Background of the Technology Semiconductor devices using compound semiconductor crystals such as gallium arsenide (GaAs) and aluminum gallium arsenide (AlxGa 1 -xAs) are well known.
こゝでマイクロ波用ダイオード、トランジスタ
などの半導体素子は上記のような化合物半導体か
らなる単結晶ウエハ上にドナー不純物或はアクセ
プタ不純物を含んだ同種の結晶をエピタキシヤル
成長させるか或はこれらの不純物を直接に拡散さ
せて半導体の電導のタイプ(電子電導型或は正孔
電導型)および電導度の違つた半導体領域を作
り、これを用いて各種の半導体デバイスが作られ
ている。またAlxGa1−xAsをバツフア層として
その上にGaAsを成長させ(ヘテロバツフア)、
トランジスタを形成することも行われている。 Semiconductor devices such as microwave diodes and transistors are produced by epitaxially growing crystals of the same type containing donor impurities or acceptor impurities on a single crystal wafer made of the above-mentioned compound semiconductor, or by growing these impurities. A variety of semiconductor devices are made by directly diffusing semiconductors to create semiconductor regions with different conductivity types (electron conduction type or hole conductivity type) and conductivity. In addition, GaAs is grown on AlxGa 1 −xAs as a buffer layer (hetero buffer),
It has also been used to form transistors.
さてダイオード、トランジスタなど電導キヤリ
ヤの種類が違う半導体層の接合を利用するデバイ
スにおいては高い整流比と均質な特性をもつこと
が必要であり、そのためにはエピタキシヤル層の
厚さが正確にコントロールされていること、およ
び急峻な不純物濃度勾配をもつていることが必要
である。また良好なヘテロバツフア構造を形成す
るためには、急峻な組成勾配を実現することが必
要である。 Now, devices such as diodes and transistors that utilize junctions of semiconductor layers with different types of conductive carriers need to have high rectification ratios and uniform characteristics, and to achieve this, the thickness of the epitaxial layer must be precisely controlled. It is necessary for the impurity concentration gradient to be steep. Furthermore, in order to form a good hetero buffer structure, it is necessary to realize a steep composition gradient.
本発明はこのような条件を満した半導体層を気
相エピタキシヤル成長させる装置の構成に関する
ものである。 The present invention relates to the configuration of an apparatus for vapor phase epitaxial growth of a semiconductor layer that satisfies these conditions.
(c) 従来技術と問題点
半導体単結晶ウエハ(以下ウエハ)上に急峻な
不純物濃度勾配及び組成勾配をもつエピタキシヤ
ル層を成長させるには反応容器内の反応ガスの交
換が迅速に行われることが必要であり今まで次の
何れかの方法がとられていた。(c) Prior art and problems In order to grow an epitaxial layer with a steep impurity concentration gradient and composition gradient on a semiconductor single crystal wafer (hereinafter referred to as wafer), the reaction gas in the reaction vessel must be exchanged quickly. is necessary, and until now one of the following methods has been used.
(1) 反応ガスの流量を大にする。(1) Increase the flow rate of the reaction gas.
(2) 反応ガスをウエハの近くまで細管を用いて導
入する。(2) Introduce the reaction gas close to the wafer using a thin tube.
(3) ライナ管を用いる。(3) Use a liner tube.
これらの方法の内、(1)の方法は反応容器内のガ
スの交換は速に行われるが、ウエハおよび原料ガ
スの分解温度やガスの流れなどが変化する結果と
してエピタキシヤル成長の均一性が損われると云
う欠点がある。 Among these methods, method (1) allows for rapid gas exchange within the reaction vessel, but as a result of changes in the decomposition temperature of the wafer and source gas, the gas flow, etc., the uniformity of epitaxial growth may be affected. There is a drawback that it can be damaged.
また(2)の方法は成長過程の温度調節を熱電対に
よらず赤外線温度計を用いて行う場合や、成長層
の厚さを干渉光を用いて行う場合には視野が遮ら
れるため使用できない欠点がある。 In addition, method (2) cannot be used when the temperature during the growth process is controlled using an infrared thermometer instead of a thermocouple, or when the thickness of the growth layer is measured using interference light because the field of view is obstructed. There are drawbacks.
然し(3)のライナ管を用いる方法は反応容器内の
実効容積を狭めると共に反応容器側壁の汚染を防
ぐ点で甚だ有効である。 However, method (3) using a liner tube is extremely effective in narrowing the effective volume inside the reaction vessel and preventing contamination of the side wall of the reaction vessel.
次にエピタキシヤル成長中にこの膜厚を測定す
る方法としては縦形反応管の上部に透明石英製の
覗き窓を有する治具を設け、これよりタングステ
ンランプ、キセノンランプ或いはレーザからの単
色光を投射しこの干渉を利用して膜厚を測定する
ことを行つていた。 Next, to measure the film thickness during epitaxial growth, a jig with a transparent quartz viewing window is installed at the top of the vertical reaction tube, and monochromatic light from a tungsten lamp, xenon lamp, or laser is projected from this jig. This interference was used to measure film thickness.
然し縦形反応管の上部は同時に反応ガスの導入
路であり、異種のエピタキシヤル成長を行う際に
急峻な組成勾配及び不純物濃度勾配を得るため反
応管上部の容積を広くとることは許されない。 However, the upper part of the vertical reaction tube is also an introduction path for the reaction gas, and in order to obtain a steep composition gradient and impurity concentration gradient when performing epitaxial growth of different types, it is not allowed to increase the volume of the upper part of the reaction tube.
それでガス導入路を狭く作るため反応管の上部
より膜厚測定用の入射光と反射光を分離すること
が困難であり、また観測装置を成長装置の上に置
くか或は反射鏡を用いて光導路を形成する必要が
あり複雑な操作を必要とした。 Therefore, it is difficult to separate the incident light and reflected light for film thickness measurement from the top of the reaction tube because the gas introduction path is made narrow, and the observation device must be placed on top of the growth device or a reflecting mirror must be used. It was necessary to form a light guide, which required complicated operations.
なお膜厚の測定は反応容器が透明石英製である
ため容器の側面からも可能であるがエピタキシヤ
ル成長中に容器内壁にも反応物の分解析出が起る
ので観測は不可能である。 Note that since the reaction vessel is made of transparent quartz, it is possible to measure the film thickness from the side of the vessel, but observation is impossible because the reactants are separated and deposited on the inner wall of the vessel during epitaxial growth.
(d) 発明の目的
本発明の目的は化合物半導体の気相エピタキシ
ヤル成長中に外部より膜厚、温度などの測定が可
能で且つ急峻な組成勾配及び濃度勾配をもつ半導
体層の成長が可能な装置の構成を提供することを
目的とする。(d) Purpose of the Invention The purpose of the present invention is to provide a method that enables external measurement of film thickness, temperature, etc. during vapor phase epitaxial growth of compound semiconductors, and also enables the growth of semiconductor layers with steep compositional and concentration gradients. The purpose is to provide the configuration of the device.
(e) 発明の構成
本発明の目的は透明石英よりなる反応管の中央
部にライナ管を設けると共にこの上部にライナ管
に支承される石英ブロツクを設けこのブロツクに
反応管上部より導入される反応ガスが一度反応管
壁に当つた後反射してウエハへと流入するよう複
数の流通孔を設け、この流通孔を反応ガスの流通
孔と膜厚および温度測定用の観測孔として使用す
る半導体結晶成長装置により達成することができ
る。(e) Structure of the Invention The object of the present invention is to provide a liner tube in the center of a reaction tube made of transparent quartz, and to provide a quartz block supported by the liner tube in the upper part of the liner tube, so that a reaction introduced from the upper part of the reaction tube can be carried into the block. A semiconductor crystal in which multiple flow holes are provided so that the gas once hits the reaction tube wall and then reflects and flows into the wafer, and these flow holes are used as reaction gas flow holes and observation holes for measuring film thickness and temperature. This can be achieved using a growth device.
(f) 発明の実施例
本発明はガス吹出し孔には熱分解生成物が析出
しないことおよび半導体結晶成長装置の反応管が
透明石英製であることを利用し、反応ガスの流入
孔を反応管壁まで屈曲して設けこれを膜厚、温度
などを測定する観測窓に併用するものである。(f) Embodiments of the Invention The present invention takes advantage of the fact that thermal decomposition products do not precipitate in the gas blow-off hole and that the reaction tube of the semiconductor crystal growth apparatus is made of transparent quartz, and the reaction gas inflow hole is connected to the reaction tube. It is bent to the wall and used as an observation window to measure film thickness, temperature, etc.
以下化合物半導体としてGaAsをとり図面によ
り本発明を説明する。 The present invention will be explained below with reference to the drawings, using GaAs as a compound semiconductor.
第1図は本発明を実施した半導体結晶成長装置
の正面図、第2図および第3図は本発明に係る石
英ブロツクの断面図Aと平面図Bである。 FIG. 1 is a front view of a semiconductor crystal growth apparatus embodying the present invention, and FIGS. 2 and 3 are a cross-sectional view A and a plan view B of a quartz block according to the present invention.
第1図においてこの装置は透明石英製の反応管
1と熱分解を行う高周波誘導コイル2からなり、
反応管1の上部にはアルシン(AsH3)、トリメ
チールガリウム〔Ga(CH3)3〕トリメチールアル
ミニウム〔Al(CH3)3〕、硫化水素(H2S)などの
原料ガスを供給する導入口3と水素(H2)など
のキヤリヤガスを供給する導入口4とがある。 In Fig. 1, this device consists of a reaction tube 1 made of transparent quartz and a high-frequency induction coil 2 for performing thermal decomposition.
Raw material gases such as arsine (AsH 3 ), trimethylgallium [Ga(CH 3 ) 3 ], trimethylaluminum [Al(CH 3 ) 3 ], and hydrogen sulfide (H 2 S) are supplied to the upper part of the reaction tube 1. There are an inlet 3 and an inlet 4 for supplying a carrier gas such as hydrogen (H 2 ).
また反応管1の中央部にはライナ管5に囲まれ
てGaAsウエハ6がカーボンサセプタ7の上に載
置されており、このカーボンサセプタ7は下部が
保持棒8と連結し結晶成長中はモータにより低速
回転されるよう構成されている。 Further, in the center of the reaction tube 1, surrounded by a liner tube 5, a GaAs wafer 6 is placed on a carbon susceptor 7, and the lower part of the carbon susceptor 7 is connected to a holding rod 8, which is connected to a motor during crystal growth. It is configured to rotate at a low speed.
こゝで気相エピタキシヤル成長は上方より規定
の流量に調節された反応ガスとキヤリヤガスを上
部の導入口3,4から流入させ排出口9から排出
し乍ら高周波誘導コイル2に通電してカーボンサ
セプタ7を加熱することによりウエハ上で化学反
応を起させてエピタキシヤル成長を行うものであ
る。 Here, in vapor phase epitaxial growth, the reactant gas and carrier gas, which are adjusted to a specified flow rate, flow from above through the upper inlets 3 and 4 and are discharged from the outlet 9, while the high frequency induction coil 2 is energized to grow carbon. By heating the susceptor 7, a chemical reaction is caused on the wafer to perform epitaxial growth.
こゝでライナ管5は反応管1内の実効容積を少
くして反応ガスの置換を容易にすることゝ反応管
1への分解生成物への析出汚染を防ぐために設け
られているもので従来の結晶成長装置にも用いら
れている。 Here, the liner tube 5 is provided to reduce the effective volume inside the reaction tube 1 to facilitate the replacement of the reaction gas, and to prevent contamination of the reaction tube 1 by decomposition products by precipitation. It is also used in crystal growth equipment.
本発明はこのライナ管5を支持台としこの上に
ガス流入孔と観測孔をもつ石英ブロツク10を備
える点に特徴がある。すなわち、かかる石英ブロ
ツク10は円筒状を有しその中央に設けてあるガ
ス流入孔11が反応管側に向つて複数個に分岐
し、石英ブロツク10の外周部に達して後再びサ
セプタ上に置かれたウエハ6に向つて屈折する流
入孔を備えるものである。 The present invention is characterized in that the liner tube 5 is used as a support and a quartz block 10 having a gas inflow hole and an observation hole is provided thereon. That is, the quartz block 10 has a cylindrical shape, and a gas inlet hole 11 provided at the center branches into a plurality of holes toward the reaction tube, and after reaching the outer circumference of the quartz block 10, it is placed on the susceptor again. The wafer 6 is provided with an inflow hole that is bent toward the wafer 6 that is bent.
こゝで石英ブロツク10の下側に設けられてい
る流入孔12は反応管壁1を通してウエハ6の膜
厚測定および温度測定を行うもので、そのために
はウエハ6の中央部が複数個の何れの孔からも充
分に目視が出来るような角度と大きさをもつて作
られていることが必要で本実施例においては石英
ブロツク10の直径60mmに対して流入孔12の直
径は20mmにとつた。 The inlet hole 12 provided below the quartz block 10 is used to measure the film thickness and temperature of the wafer 6 through the reaction tube wall 1. The diameter of the inlet hole 12 is 20 mm compared to the diameter of the quartz block 10 of 60 mm in this example. .
なお第2図は2つの流通孔12が対称位置に設
けられている場合で第3図は4つの流通孔12が
直交して設けられている場合である。 Note that FIG. 2 shows a case where two communication holes 12 are provided at symmetrical positions, and FIG. 3 shows a case where four communication holes 12 are provided orthogonally.
このように流通孔12を観測孔と兼用させると
従来は反応管壁に分解生成物が析出して観測不能
な状態となるが反応ガスが流れているためこの部
分には析出が生せず従つて視野が遮られる心配は
ない。 Conventionally, when the flow hole 12 was used also as an observation hole, decomposition products would precipitate on the wall of the reaction tube and become unobservable, but since the reaction gas is flowing, no precipitation occurs in this area. You don't have to worry about it blocking your view.
次にこの石英ブロツク10の利点はエピタキシ
ヤル層の膜厚測定を行う場合に第2図Aで示すよ
うに入射光13と反射光14とが完全に分離され
るために観測が容易なことである。また第3図に
示すように4個の流通孔12を備えている場合は
波長を異にする2つのレーザ光源を用いて成長膜
厚の測定が可能となる。またこの流通孔12を用
いてウエハ6の温度測定を行うことは当然可能で
ある。 Next, the advantage of this quartz block 10 is that when measuring the thickness of an epitaxial layer, the incident light 13 and the reflected light 14 are completely separated, making it easy to observe. be. Further, when four communication holes 12 are provided as shown in FIG. 3, the thickness of the grown film can be measured using two laser light sources with different wavelengths. Furthermore, it is naturally possible to measure the temperature of the wafer 6 using this communication hole 12.
このように本発明は反応ガスの流入孔を反応管
壁よりウエハに向けて斜向して設けることにより
反応管壁を分解生成物で汚染させずそのため従来
は目視ができなかつた反応管壁位置より入射光と
反射光を分離して膜厚測定ができる。 In this way, the present invention prevents the reaction tube wall from being contaminated with decomposition products by providing the reaction gas inflow hole obliquely toward the wafer from the reaction tube wall, thereby allowing the reaction tube wall to be located at a position that could not be visually observed in the past. Film thickness can be measured by separating incident light and reflected light.
(g) 発明の効果
本発明の実施によりエピタキシヤル成長中にお
ける膜厚のコントロールが容易となり半導体デバ
イスの特性と歩留りを向上することができる。(g) Effects of the Invention By carrying out the present invention, the film thickness can be easily controlled during epitaxial growth, and the characteristics and yield of semiconductor devices can be improved.
第1図は本発明を適用した半導体結晶成長装置
の構成図、第2図および第3図は本発明に係る石
英ブロツクの形状でAは断面図、Bは平面図であ
る。
図において、1は反応管、5はライナ管、6は
半導体単結晶ウエハ、7はカーボンサセプタ、1
0は石英ブロツク、11はガス流入孔、12は反
応ガス流通孔。
FIG. 1 is a block diagram of a semiconductor crystal growth apparatus to which the present invention is applied, and FIGS. 2 and 3 show the shape of a quartz block according to the present invention, with A being a cross-sectional view and B being a plan view. In the figure, 1 is a reaction tube, 5 is a liner tube, 6 is a semiconductor single crystal wafer, 7 is a carbon susceptor, 1
0 is a quartz block, 11 is a gas inflow hole, and 12 is a reaction gas distribution hole.
Claims (1)
ると共にサセプタに載置された被処理基板があ
り、該被処理基板の上部に前記ライナ管に支承さ
れたブロツク体があり、該ブロツク体には反応管
上部より供給される反応ガスを一度反応管壁に向
けて誘導した後に該管壁で反射して被処理基板へ
と導く複数の屈折した反応ガス流通孔を備えてお
り、該ブロツク体の流通孔を通して反応ガスを供
給し乍ら、外部より被処理基板を加熱して気相エ
ピタキシヤル成長を行うと共に該流通孔を用いて
温度測定および膜厚制御を行うことを特徴とする
単結晶成長装置。1. In the center of the reaction tube, there is a substrate to be processed surrounded by a liner tube and placed on a susceptor, and above the substrate to be processed is a block body supported by the liner tube. It is equipped with a plurality of bent reaction gas flow holes that guide the reaction gas supplied from the upper part of the tube toward the reaction tube wall, and then reflect it on the tube wall and guide it to the substrate to be processed. A single crystal growth apparatus characterized by performing vapor phase epitaxial growth by heating a substrate to be processed from the outside while supplying a reactive gas through a hole, and also performing temperature measurement and film thickness control using the communication hole. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16612182A JPH0244800B2 (en) | 1982-09-24 | 1982-09-24 | TANKETSUSHOSEICHOSOCHI |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16612182A JPH0244800B2 (en) | 1982-09-24 | 1982-09-24 | TANKETSUSHOSEICHOSOCHI |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5954698A JPS5954698A (en) | 1984-03-29 |
JPH0244800B2 true JPH0244800B2 (en) | 1990-10-05 |
Family
ID=15825415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16612182A Expired - Lifetime JPH0244800B2 (en) | 1982-09-24 | 1982-09-24 | TANKETSUSHOSEICHOSOCHI |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0244800B2 (en) |
-
1982
- 1982-09-24 JP JP16612182A patent/JPH0244800B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS5954698A (en) | 1984-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6134929A (en) | Growing device of semiconductor device | |
JPH0691020B2 (en) | Vapor growth method and apparatus | |
US5525156A (en) | Apparatus for epitaxially growing a chemical compound crystal | |
US5463977A (en) | Method of and apparatus for epitaxially growing chemical compound crystal | |
US4365588A (en) | Fixture for VPE reactor | |
JPH0244800B2 (en) | TANKETSUSHOSEICHOSOCHI | |
US3235418A (en) | Method for producing crystalline layers of high-boiling substances from the gaseous phase | |
JPS6136372B2 (en) | ||
JP2733535B2 (en) | Semiconductor thin film vapor deposition equipment | |
JPH02291113A (en) | Vapor growth apparatus for compound semiconductor | |
Lu et al. | Device quality Hg1− x Cd x Te material by low‐temperature precracking metalorganic chemical vapor deposition | |
JPH0136691B2 (en) | ||
JPS5958326A (en) | Method for measuring furnace temperature | |
JPH02284417A (en) | Vapor phase epitaxy device | |
JPS60264399A (en) | Production of single crystal of silicon carbide | |
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor | |
JPS63198322A (en) | Semiconductor crystal growing apparatus | |
JPS62182196A (en) | Vapor growth apparatus | |
JPS62230693A (en) | Vapor growth apparatus | |
JPS61284915A (en) | Thin film vapor growth apparatus | |
JPH0142488B2 (en) | ||
JPS61155292A (en) | Vapor growth device | |
JPS6226171B2 (en) | ||
JPS62182195A (en) | Method for growing iii-v compound semiconductor | |
JPS61155291A (en) | Vapor growth process |