JPH0244019A - Impregnating pitch for producing carbon composite material reinforced with carbon fiber and its production - Google Patents
Impregnating pitch for producing carbon composite material reinforced with carbon fiber and its productionInfo
- Publication number
- JPH0244019A JPH0244019A JP63192125A JP19212588A JPH0244019A JP H0244019 A JPH0244019 A JP H0244019A JP 63192125 A JP63192125 A JP 63192125A JP 19212588 A JP19212588 A JP 19212588A JP H0244019 A JPH0244019 A JP H0244019A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- softening point
- mesophase
- free carbon
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Working-Up Tar And Pitch (AREA)
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は炭素繊維強化炭素複合材料の製造に際して、そ
の嵩密度を上げるために用いる含浸用ピッチ及びその製
造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an impregnating pitch used to increase the bulk density of a carbon fiber-reinforced carbon composite material and a method for manufacturing the same.
〈従来の技術〉
炭素をマトリックスとして炭素繊維で強化した炭素複合
材料は、炭素繊維強化炭素複合材料(以下C/C−コン
ポジットと言う)と呼ばれ、このC/C−コンポジット
は機械特性、耐熱特性、耐蝕性、摩擦制動特性に優れて
おり、この特性を利用して、ロケットノズル、スペース
シャトルのノーズおよびリーディングエッヂ、航空機の
ブレーキディスクなどの宇宙航空機器部材として実用化
されている。最近では原子炉や核融合炉用容器の第一壁
材料および骨、関節などの医療用材料やタービン材料と
しての実用化も進められている。<Prior art> A carbon composite material made of carbon as a matrix and reinforced with carbon fibers is called a carbon fiber-reinforced carbon composite material (hereinafter referred to as C/C-composite), and this C/C-composite has excellent mechanical properties and heat resistance. It has excellent properties, corrosion resistance, and frictional braking properties. Utilizing these properties, it has been put into practical use as aerospace equipment components such as rocket nozzles, space shuttle noses and leading edges, and aircraft brake discs. Recently, it has been put to practical use as a material for the first wall of containers for nuclear reactors and fusion reactors, as a medical material for bones and joints, and as a turbine material.
この様に優れた特性を有するC/C−コンポジットの製
造方法としては種々あるが、炭素繊維のトウ、クロス、
フェルトなどにフェノール樹脂等の熱硬化性樹脂を含浸
させ、プリプレグをつくり、これらを積層、硬化させて
成形体にし、さらに不活性雰囲気中で炭化処理する方法
が一般的である。There are various methods for producing C/C-composites with such excellent properties, including carbon fiber tow, cloth,
A common method is to impregnate felt or the like with a thermosetting resin such as a phenolic resin to make a prepreg, which is then laminated and cured to form a molded body, which is then carbonized in an inert atmosphere.
しかしこの段階のC/C−コンポジット(以下C/C−
基材と言う)は、嵩密度が理論値の60%程度しかなく
、強度の面から非常に不十分なものである。However, at this stage, the C/C-composite (hereinafter referred to as C/C-
The bulk density of the base material (referred to as the base material) is only about 60% of the theoretical value, which is extremely insufficient in terms of strength.
そこで通常、高密度化処理(ち密化処理)が行なわれる
が、処理方法とし、熱硬化性樹脂であるフェノール、エ
ポキシ、フランや熱可塑性樹脂であるピッチを含浸物と
する樹脂含浸法が一般的である。この方法はC/C−基
材を焼成した後更に上記の樹脂を真空及び加圧下で含浸
し、再度炭素化処理する工程を8〜15回繰り返す事に
よって、嵩密度を理論値の80%程度(C/C−コンポ
ジットの嵩密度1.6〜1.88/C11)まで上げ、
C/C−:7ンボジツトを高密度とするものである。こ
の様にち密化処理は通常8〜15回繰り返さなければな
らず、その為に多大の労力と時間を要していて、C/C
−コンポジットは非常に高価なものとなっている。Therefore, densification treatment (densification treatment) is usually performed, but the most common treatment method is resin impregnation, which uses thermosetting resins such as phenol, epoxy, and furan, and thermoplastic resin pitch as impregnants. It is. This method involves firing the C/C-base material, then impregnating it with the above resin under vacuum and pressure, and repeating the process of carbonizing it again 8 to 15 times to reduce the bulk density to about 80% of the theoretical value. (C/C-composite bulk density 1.6 to 1.88/C11),
C/C-: 7 embosites are made to have a high density. In this way, the densification process usually has to be repeated 8 to 15 times, which requires a lot of effort and time.
-Composites have become very expensive.
含浸物として、熱硬化性樹脂を用いた場合、この樹脂は
値段が高く、更にはC/C−基材に含浸させた後、加熱
、硬化させるプロセスにおいて、かなり厳密な温度コン
トロールが必要であり、またこのプロセス自体工程が?
!雑であり、多大の労力と時間を要する。更にこの熱硬
化性樹脂の炭化物の真密度は、1.4〜1.5 g /
cjであり、熱可塑性樹脂であるピッチの炭化物の真密
度1.8〜1.9g/ cjに比較して小さく、熱硬化
性樹脂を含浸物とした場合、C/C−コンポジットの嵩
密度があまり上がらないという問題点がある。When a thermosetting resin is used as the impregnating material, this resin is expensive, and furthermore, it requires very strict temperature control in the process of impregnating the C/C-base material and then heating and curing it. , and what about this process itself?
! It is complicated and requires a lot of effort and time. Furthermore, the true density of the carbide of this thermosetting resin is 1.4 to 1.5 g/
cj, which is smaller than the true density of pitch carbide, which is a thermoplastic resin, 1.8 to 1.9 g/cj, and when a thermosetting resin is impregnated, the bulk density of the C/C-composite is The problem is that it doesn't go up very much.
一方、ピッチなどの熱可塑性樹脂を含浸物とした場合、
ピッチは値段が安く、またC/C−コンポジットの嵩密
度が上がりやすいという利点はあるものの、炭化歩留が
小さく、更には炭化i!3程でピンチは溶融相を経て炭
素化する為に、バブリングが起きたり、また−度含浸さ
れたピッチがC/C−基材より流出するという問題点が
あり、結局C/C−コンポジットの嵩密度を上げる為に
、かなりの回数のち密化処理をおこなっている。ピンチ
の場合再炭化処理の際に加圧下(10〜1000kg/
c+i )で炭素化すると、炭化歩留が上昇し、得ら
れたC/C−コンポジットの嵩密度が上がるのは事実で
あるが、この処理は加圧下で行うことで特殊な装置が必
要となり、結局、経済的にしかも工業的規模でC/C−
コンポジットを製造するには問題がある。On the other hand, when impregnated with thermoplastic resin such as pitch,
Although pitch has the advantage of being cheap and easily increasing the bulk density of the C/C-composite, it has a low carbonization yield, and furthermore, carbonization i! After about 3 seconds, the pinch goes through the melt phase and carbonizes, which causes problems such as bubbling and impregnated pitch flowing out from the C/C base material. In order to increase the bulk density, a considerable number of densification treatments are performed. In a pinch, under pressure (10 to 1000 kg/
It is true that carbonization with c+i) increases the carbonization yield and increases the bulk density of the resulting C/C-composite, but this treatment requires special equipment because it is performed under pressure. After all, C/C-
There are problems in manufacturing composites.
現在、使用されている含浸用ピッチはほとんどがコール
タール軟ピツチか、コールタール中ピッチである。しか
し−最にピッチ中には粒径がl1Pa以下のキノリン不
溶分である不溶性物質(以下フリーカーボンと称す)が
数パーセント存在し、これがC/C−基材の気孔内部へ
のピッチの浸透を妨げている。この為大型のC/C−基
材の場合には、ピッチが内部まで均一に含浸するのに多
大の時間を要しているのが実情であり、またC/C−基
材の内部まで十分に含浸せず、不良品の発生の一要因と
もなっている。Currently, most of the impregnating pitches used are coal tar soft pitch or coal tar medium pitch. However, in the pitch, there is a few percent of an insoluble substance (hereinafter referred to as free carbon) that is quinoline insoluble with a particle size of 1 Pa or less, and this prevents the pitch from penetrating into the pores of the C/C base material. hindering. For this reason, in the case of large C/C-base materials, it actually takes a long time to impregnate the inside of the C/C-base uniformly with pitch, and This is one of the reasons for the occurrence of defective products.
このコールタールピッチ中に存在するフリーカーボンを
工業的規模でトレースまで除(には、多大の設備と労力
を要する。またフリーカーボンの量を11%以下まで下
げたとしても、フリーカーボン量の低減に比例して浸透
速度が大きくなるとは限らず、逆に著しく小さくなる1
頃向を示す場合が多い。Removing the free carbon present in this coal tar pitch to the trace level on an industrial scale requires a great deal of equipment and labor.Also, even if the amount of free carbon is reduced to 11% or less, the amount of free carbon will still be reduced. The penetration rate does not necessarily increase in proportion to , but on the contrary, it decreases significantly 1
It often indicates the current direction.
通常ピッチ中のフリーカーボンは含浸操作に際して、C
/C−基材の表面で濾別されてフリーカーボンの濾床を
形成する。含浸用ピッチ中にフリーカーボンが多いと(
1−1%以上)、この濾床の抵抗が大きくなり浸透速度
を小さくする。逆にフリーカーボンが少ないもの(1w
t%以下)では、C/C−基材内を通過するフリーカー
ボンの抵抗が、浸透速度を小さくする支配的要因となる
。つまりフリーカーボンの含有■が少ないピッチでは、
フリーカーボンの濾床を充分に形成せず、C/C−基材
の内部気孔を閉塞させ、従ってフリーカーボンの含有量
が少ないにも拘らず、含浸操作における浸透速度を著し
く小さくするものと思われる。即ち、フリーカーボンの
含有量が少ない場合に、浸透性を高めるには気孔の閉塞
を避ける様にする必要がある。Normally, free carbon in the pitch is removed by C during the impregnation operation.
/C- is filtered on the surface of the substrate to form a free carbon filter bed. If there is a lot of free carbon in the pitch for impregnation (
(1-1% or more), the resistance of this filter bed increases and reduces the permeation rate. On the other hand, those with less free carbon (1w
t% or less), the resistance of free carbon passing through the C/C-base material becomes the dominant factor that reduces the permeation rate. In other words, pitches with low free carbon content,
It is thought that it does not form a sufficient free carbon filter bed and blocks the internal pores of the C/C-substrate, thus significantly reducing the permeation rate in the impregnation operation despite the low free carbon content. It will be done. That is, when the content of free carbon is small, it is necessary to avoid clogging of pores in order to increase permeability.
〈発明が解決しようとする!!題〉
以上の様に、C/C−コンポジット製造におけるち密化
処理において、8〜15回も繰り返さなければC/C−
コンポジットの嵩密度が上がらず、それが為にC/C−
コンポジットが非常に高価になっていること、更にはコ
ールタールピッチを含浸物とした場合、C/C−基材の
内部まで均一に十分に含浸しないという問題点を、本発
明は解決するための含浸用に好適なり−ルピッチ及びそ
の製造方法を提案するものである。<Invention tries to solve! ! Problem> As mentioned above, C/C-
The bulk density of the composite does not increase, which is why C/C-
The present invention aims to solve the problem that composites have become very expensive and that when coal tar pitch is impregnated, it is not uniformly and sufficiently impregnated into the inside of the C/C base material. The present invention proposes lupitch suitable for impregnation and a method for producing the same.
〈課題解決のための手段〉
本発明はフリーカーボンと直径がlO〜15μmのほぼ
球状のメソフェーズで構成されるキノリン不溶分を10
〜2511 t%含み、軟化点が200〜250℃であ
ることを特徴とする炭素繊維強化炭素複合材料向は含浸
用ピッチ、及びフリーカーボンを3〜10wt’%含む
ピッチを不活性ガス雰囲気中で350〜500℃の温度
範囲にて熱処理し粒径が10〜15nである球状のメソ
フェーズを生成せしめ、次いで20閥11g以下の減圧
下で300℃以下の温度にて熱処理し軟化点を調整する
ことを特徴とする炭素繊維強化炭素複合材料向は含浸用
ピッチの製造方法である。<Means for Solving the Problems> The present invention provides quinoline insoluble matter composed of free carbon and a nearly spherical mesophase with a diameter of 10 to 15 μm.
For carbon fiber-reinforced carbon composite materials containing ~2511 t% and having a softening point of 200-250°C, pitch for impregnation and pitch containing 3-10 wt'% of free carbon are prepared in an inert gas atmosphere. Heat treatment in a temperature range of 350 to 500°C to generate spherical mesophase with a particle size of 10 to 15n, then heat treatment at a temperature of 300°C or less under reduced pressure of 20 to 11 g or less to adjust the softening point. A method for producing impregnated pitch for carbon fiber-reinforced carbon composite materials characterized by the following.
〈作 用〉 次に本発明の内容を更に詳細に説明する。<For production> Next, the content of the present invention will be explained in more detail.
本発明はC/C−基材への含浸物の原料として、安価な
コールクールピッチ或は石油系のクールピッチを用いる
0石炭を高温乾留(1000〜1300℃)して得られ
るコールクールを蒸留した残渣であるコールタールピッ
チは芳香族性に富み、真比重が大きく、またその割りに
は粘性が低いという特性を有しており、C/C−基材へ
の含浸物として適している。The present invention uses inexpensive coal cool pitch or petroleum-based cool pitch as a raw material for impregnating C/C-based materials.The present invention uses coal cool pitch obtained by high-temperature carbonization (1000 to 1300 degrees Celsius) to distill coal. Coal tar pitch, which is the residue obtained from the above, is rich in aromatic properties, has a large true specific gravity, and has relatively low viscosity, and is suitable as an impregnating material for C/C-based materials.
ところでこの高温乾留コールタール中には、フリーカー
ボンと呼ばれるキノリン不溶分が0.5〜10wt%存
在し、この含有量はコークス炉の構造及び運転条件に依
存し、更にこのフリーカーボンの大きさは直径1 pm
以下の微粒子であることが知られている。By the way, this high-temperature carbonized coal tar contains 0.5 to 10 wt% of quinoline-insoluble matter called free carbon, and this content depends on the structure and operating conditions of the coke oven, and the size of this free carbon is diameter 1 pm
The following fine particles are known.
このフリーカーボンはC/C−基材の気孔内部へのピッ
チの浸透を妨げるので、ピッチ中にフリーカーボンが存
在すると、浸透性の上から好ましくない、更に、このフ
リーカーボンはコールタールピッチの熱処理に際して、
メソフェーズ(球晶)発生の核になると言われているが
、メソフェーズの発生過程においては、フリーカーボン
がメソフェーズの中に1壱き込まれることなく、メソフ
ェーズのまわりに耐着し、メソフェーズの合体を阻害す
ることが知られている。このメソフェーズもキノリン不
溶分であり発生初期段階では球状である。This free carbon prevents the pitch from penetrating into the pores of the C/C-base material, so the presence of free carbon in the pitch is unfavorable in terms of permeability. On the occasion of
It is said that it becomes the nucleus for the generation of mesophase (spherulites), but during the generation process of mesophase, free carbon does not get sucked into the mesophase, but instead sticks around the mesophase and prevents the coalescence of the mesophase. known to inhibit This mesophase is also quinoline-insoluble and is spherical in the early stages of development.
コールタールを蒸留して、軽質分を分離、除去した残渣
がコールタールピッチであるが、本発明では、フリーカ
ーボン含有量が3〜10−t%である軟ピツチ(軟化点
30〜70℃)または中ピツチ(軟化点70〜110℃
)を出発原料として用いる。これラノピッチを窒素、ア
ルゴンのような不活性ガス雰囲気中で、350〜500
℃で熱処理し、粒径が10〜15−である球状のメソフ
ェーズを、生成せしめる。Coal tar pitch is the residue obtained by distilling coal tar and separating and removing light components.In the present invention, we use soft pitch with a free carbon content of 3 to 10-t% (softening point of 30 to 70°C). Or medium pitch (softening point 70-110℃)
) is used as the starting material. This ranopitch is heated to 350 to 500 in an inert gas atmosphere such as nitrogen or argon.
C. to produce spherical mesophase with a particle size of 10-15.
このメソフェーズを含むピッチをピッチの炭化収率を上
げる目的で、20閣11g以下の減圧下で、蒸留により
低分子成分を除去しピッチの軟化点を200〜250℃
とし、このピッチを含浸物として使用する。In order to increase the carbonization yield of the pitch containing this mesophase, low molecular components are removed by distillation under reduced pressure of 20 to 11 g or less, and the softening point of the pitch is adjusted to 200 to 250 °C.
and this pitch is used as an impregnation material.
ピッチ中のフリーカーボンは粒径が1−以下で、ピッチ
のC/C−基材への浸透性を妨げる固体粒子であるが、
熱処理によって生じたメソフェーズのまわりに付着して
おり、一方メソフエーズは、粒径が10〜1strmと
大きい為に、フリーカーボン単独の場合のような緻密な
濾床を形成することなく、また浸透性の抵抗となること
もない。The free carbon in the pitch is a solid particle with a particle size of 1- or less that impedes the permeability of the pitch into the C/C-substrate.
Mesophase is attached around the mesophase generated by heat treatment.Mesophase, on the other hand, has a large particle size of 10 to 1 strm, so it does not form a dense filter bed as in the case of free carbon alone, and it has no permeability. There will be no resistance.
ここで粒径がlθ〜15nの球状メソフェーズを生成さ
せることが必要である。粒径がlOn未満だとC/C−
基材の表面に緻密な濾床を形成し、この濾床の抵抗が大
きくなり、浸透速度は小さくなる。Here, it is necessary to generate a spherical mesophase with a particle size of lθ to 15n. If the particle size is less than lOn, C/C-
A dense filter bed is formed on the surface of the base material, the resistance of this filter bed increases, and the permeation rate decreases.
一方粒径が15fa超だとC/C−基材の表面に厚いi
It床を形成してしまい、濾床抵抗が大となり、結局浸
透速度は小さくなって好ましくない、即ち表面がフ、リ
ーカーボンでおおわれた粒径が10〜15nのメソフェ
ーズが含浸に際してC/C−基材の表面に適度の厚さ(
0,5〜1.0I1m+)の濾床を形成する為に、フリ
ーカーボンのみを含むピッチと比較して、浸透性は著し
く改善される。On the other hand, if the particle size exceeds 15fa, a thick i
This is undesirable because it forms an It bed, which increases the filter bed resistance and ultimately reduces the permeation rate.In other words, the mesophase whose surface is covered with free carbon and whose particle size is 10 to 15 nm is not preferable during impregnation. Appropriate thickness (
In order to form a filter bed of 0.5 to 1.0 I1 m+), the permeability is significantly improved compared to pitch containing only free carbon.
ここで、粒径が10〜15p+*のメソフェーズを生成
させるには、フリーカーボンを3〜10−t%含むピッ
チを熱処理することが必要である。このフリーカーボン
はピッチの熱処理に際し、メソフェーズ発生の核となる
が、メソフェーズの表面に付着して、メソフェーズ同志
の合体を阻害する働きも持っている。ピッチ中のフリー
カーボン含有量が3wt%未満だと熱処理に際してメソ
フェーズ同志が合体しやすく、粒径が15μ+*超のメ
ソフェーズが生成しやすい、逆にフリーカーボン含有量
がIO++t%超だとメソフェーズ同志の合体が阻害さ
れ粒径が10−未満のメソフェーズが生成しやすく、好
ましくない、即ちフリーカーボンを3〜10wt%含む
ピッチを350〜500℃で熱処理すれば、粒径の範囲
が、すべて10〜15nの値をもつメソフェーズが生成
される。この温度範囲より低い温度ではメソフェーズが
発生し難く、高い温度では分解1重合。Here, in order to generate mesophase with a particle size of 10 to 15p+*, it is necessary to heat-treat pitch containing 3 to 10-t% of free carbon. This free carbon becomes the core of mesophase generation during the heat treatment of pitch, but it also adheres to the surface of the mesophase and has the function of inhibiting the coalescence of mesophases. If the free carbon content in the pitch is less than 3wt%, mesophases tend to coalesce during heat treatment, and mesophases with a particle size of more than 15μ+* are likely to be generated.On the other hand, if the free carbon content exceeds IO++t%, mesophases tend to coalesce together during heat treatment, and mesophases with a particle size of more than 15μ+* tend to form. If coalescence is inhibited and mesophase with a particle size of less than 10 nm is easily generated, which is not desirable, if pitch containing 3 to 10 wt% of free carbon is heat-treated at 350 to 500°C, the particle size range will be 10 to 15 nm. A mesophase with a value of is generated. At temperatures lower than this temperature range, mesophase is difficult to occur, and at higher temperatures, decomposition and monopolymerization occur.
コークス化等の原因となり好ましくない。This is undesirable as it causes coking, etc.
本発明の含浸用ピッチにおいて、キノリン不溶分が10
wt%未満ではフリーカーボンをメソフェーズ周囲に充
分に固定することができない、 25wt%超では濾床
が厚くなり、浸透速度が遅くなる。従ってキノリン不溶
分は10〜25w t%に限定される。In the pitch for impregnation of the present invention, the quinoline insoluble content is 10
If it is less than 25 wt%, free carbon cannot be sufficiently fixed around the mesophase, and if it exceeds 25 wt%, the filter bed becomes thick and the permeation rate becomes slow. Therefore, the quinoline insoluble content is limited to 10 to 25 wt%.
メソフェーズの存在、更には粒径の大きさは、偏光顕微
鏡観察によってIIn認できる。フリーカーボンでまわ
りをおおわれたメソフェーズは、キノリン不溶分であり
、液状ピッチ中では、このキノリン不溶分は固体粒子と
して存在する。フリーカーボンとメソフェーズで構成さ
れるこのキノリン不溶分が含浸に際してC/C−基材の
表面に濾床を形成するが、C/C−基材内部に含浸され
るのはピッチ中のキノリン可溶分である為に、このキノ
リン可溶分は芳香族性が高く、かつ炭化率の大きいもの
でなくてはならない。The presence of mesophase and further the size of the particles can be confirmed by observation using a polarized light microscope. The mesophase surrounded by free carbon is quinoline insoluble matter, and in the liquid pitch, this quinoline insoluble matter exists as solid particles. This quinoline-insoluble content composed of free carbon and mesophase forms a filter bed on the surface of the C/C-base material during impregnation, but what is impregnated inside the C/C-base material is the quinoline-soluble content in the pitch. , the quinoline-soluble component must have high aromaticity and a high carbonization rate.
メソフェーズを生成させる為に、ピンチを350〜50
0℃で熱処理するが、この熱処理によって、ピンチ中の
キノリン可溶分は芳香族性が高くなり、かつ炭化収率も
大きくなるので、含浸物として好ましい特性を有する様
になる。Pinch 350-50 to generate mesophase
The heat treatment is carried out at 0°C, and as a result of this heat treatment, the quinoline-soluble content in the pinch becomes more aromatic and the carbonization yield increases, so that it has desirable characteristics as an impregnated material.
熱処理されたピッチの炭化率を上げる目的で、ピッチ中
の低分子成分を減圧蒸留により除き、軟化点を200〜
250℃とし、このピッチを含浸ピッチとする。ピッチ
の軟化点は200〜250℃が望ましい、軟化点が20
0℃未満であると、ピッチ中に低分子成分がかなり多(
残存し、炭化収率が低いものとなる。更に、軟化点が2
50℃を超えると、ピッチ含浸温度において、粘度が高
くて充分な浸透性が得られない、減圧蒸留は、熱処理さ
れたピッチ中の低分子成分だけを除くという目的から、
300℃以下の温度で、20閣11g以下の減圧度が望
ましい。300℃超であれば、ピッチの熱変質がおこり
、好ましくなく、減圧度が20m11g未満だと減圧が
不充分で、低分子成分の充分な除去がおこなわれない。In order to increase the carbonization rate of the heat-treated pitch, low molecular components in the pitch are removed by vacuum distillation, and the softening point is lowered to 200~200.
The temperature is set at 250° C., and this pitch is used as an impregnated pitch. The softening point of the pitch is preferably 200 to 250°C, and the softening point is 20
If the temperature is below 0°C, there will be a considerable amount of low molecular weight components in the pitch (
The carbonization yield will be low. Furthermore, the softening point is 2
If the temperature exceeds 50°C, the viscosity is high and sufficient permeability cannot be obtained at the pitch impregnation temperature.The purpose of vacuum distillation is to remove only the low molecular components in the heat-treated pitch.
At a temperature of 300°C or less, a degree of vacuum of 20 to 11 g or less is desirable. If it exceeds 300°C, thermal deterioration of the pitch will occur, which is undesirable, and if the degree of vacuum is less than 20ml11g, the vacuum will be insufficient and low molecular components will not be removed sufficiently.
この様にして得られた含浸用ピッチは、軟化点が200
〜250℃であり、キノリン不溶分を10〜25−(%
含み、更に偏光顕微鏡下で観察すると、lO〜15−の
大きさのほぼ球状のメソフェーズ(光学的異方性組犠)
が認められる。The pitch for impregnation obtained in this way has a softening point of 200
~250℃, and the quinoline insoluble content was reduced to 10~25-(%).
Furthermore, when observed under a polarizing microscope, a nearly spherical mesophase (optical anisotropy structure) with a size of 10~15-
is recognized.
C/C−基材へのピッチの含浸は、内部まで均一に含浸
する為に、ピッチが充分に低い粘度(0,5poise
以下、フローテスターによる)を呈する温度を選ぶ必要
があり、通常この含浸温度はピッチの軟化点より100
−150℃上の温度である。即ち本発明によるピッチを
用いれば、含浸温度は300〜400℃となるが、この
温度において、本発明のピッチは熱的に安定で、熱によ
って特性が変化することはない0元来、ピッチ中に存在
する熱反応性の高い成分は、既に熱処理でメソフェーズ
として生成させてしまっており、本発明のメソフェーズ
を含むピッチは非常に熱に対して安定であり、300〜
400℃の含浸温度において、特性が変化することは無
い。Impregnation of pitch into the C/C-base material requires that the pitch has a sufficiently low viscosity (0.5 poise) to uniformly impregnate the inside.
It is necessary to select a temperature that exhibits the following (as measured by a flow tester), and usually this impregnation temperature is 100
The temperature is above -150°C. That is, if the pitch according to the present invention is used, the impregnation temperature will be 300 to 400°C, but at this temperature, the pitch of the present invention is thermally stable and its properties do not change due to heat. The highly thermally reactive components that exist in
At an impregnation temperature of 400°C, the properties do not change.
本発明はコールタールピンチについての記載であるが、
これに限るものではなく、石炭を低温乾留(700〜1
000℃)して得られるコールタールからのコールター
ルピッチ、更にフリーカーボンを含む石油系ピッチを出
発原料として本発明の方法によって、浸透性が優れ、か
つ炭化歩留の大きい含浸ピッチが製造できる。Although the present invention is a description of coal tar pinch,
It is not limited to this, but coal is carbonized at low temperature (700 to 1
By the method of the present invention, impregnated pitch with excellent permeability and high carbonization yield can be produced using coal tar pitch obtained from coal tar obtained by heating at 0.000° C. and petroleum pitch containing free carbon as starting materials.
〈実施例〉
実施例−1
軟化点55.0℃,フリーカーボン含有量3Jwt%(
これらの特性の測定は、JXSに−2425に従った、
以下同じ)のコールタールピッチを480’Cにて窒素
ガス雰囲気で30分間加熱処理し、軟化点175”C。<Example> Example-1 Softening point: 55.0°C, free carbon content: 3 Jwt% (
Measurements of these properties were carried out according to JXS-2425.
Coal tar pitch (same below) was heat-treated at 480'C in a nitrogen gas atmosphere for 30 minutes, resulting in a softening point of 175'C.
キノリン不溶分9.8wL%の熱処理ピッチを得た。A heat-treated pitch with a quinoline insoluble content of 9.8 wL% was obtained.
このピッチを、真空度20m11gで300℃で蒸留し
、低分子成分を留去して、キノリン不溶分10.7wt
%、偏光顕微鏡下に観察して直径が10〜15p+*の
ほぼ球状の軟化点205℃の含浸ピッチを得た。This pitch was distilled at 300°C in a vacuum of 20ml and 11g to remove low molecular components, and the quinoline insoluble content was 10.7w.
%, an approximately spherical impregnated pitch with a diameter of 10 to 15 p+* and a softening point of 205° C. was obtained when observed under a polarizing microscope.
この含浸ピッチを用いて、C/C−基材(r’AN系高
強度系を強化繊維として2次元配向したものにマトリッ
クスとしてフェノール系樹脂を原料として1000℃で
焼成したもの、サイズ:300m×300IIIIlx
6.5mm (長さ×巾×厚み)嵩密度1.30g/
c+りに330℃で含浸した後、不活性ガス雰囲気中で
1000℃で再炭化処理した。このピッチ含浸、再炭化
処理を合計4回繰り返し、嵩密度1.70g/ctlの
高密度C/C−コンポジットを得た。Using this impregnated pitch, a C/C-base material (2-dimensionally oriented r'AN-based high-strength system as reinforcing fibers and phenolic resin as a matrix and fired at 1000°C, size: 300 m x 300IIIlx
6.5mm (length x width x thickness) bulk density 1.30g/
After impregnation at 330°C, recarbonization treatment was performed at 1000°C in an inert gas atmosphere. This pitch impregnation and recarbonization treatment was repeated a total of four times to obtain a high-density C/C-composite with a bulk density of 1.70 g/ctl.
実施例−2
軟化点90.0℃,フリーカーボン7.5wt%のコー
ルクールピッチを350’Cにて窒素ガス雰囲気で8時
間熱処理し、軟化点185℃、キノリン不溶分22.0
wt%の熱処理ピッチを得た0次にこのピッチを真空度
20w11gで280’Cで蒸留して低分子成分を留去
して、軟化点245”C,キノリン不溶分=24.3w
t%、偏光顕微鏡下に観察して、直径が10〜15nの
ほぼ球状のメソフェーズを含む含浸ピッチを得た。Example-2 Coal cool pitch with a softening point of 90.0°C and 7.5 wt% free carbon was heat-treated at 350'C in a nitrogen gas atmosphere for 8 hours, resulting in a softening point of 185°C and a quinoline insoluble content of 22.0.
After obtaining the heat-treated pitch of wt%, this pitch was distilled at 280'C with a vacuum degree of 20W11g to remove low molecular components, and the softening point was 245"C, and the quinoline insoluble content was 24.3W.
t%, an impregnated pitch containing approximately spherical mesophases with a diameter of 10 to 15 nm was obtained when observed under a polarizing microscope.
この含浸ピッチを用いて、実施例−1で用いたC/C−
基材に、350℃で含浸処理した後不活性ガス雰囲気中
で1000℃で再炭化処理した。このピッチ含浸、再炭
化処理を合計3回繰り返し、嵩密度1.69g/cdの
高密度C/C−コンポジットを得た。Using this impregnated pitch, C/C-
The base material was impregnated at 350°C and then recarbonized at 1000°C in an inert gas atmosphere. This pitch impregnation and recarbonization treatment was repeated a total of three times to obtain a high-density C/C-composite with a bulk density of 1.69 g/cd.
実施例−3
軟化点102.5℃,フリーカーボン9.8wt%のコ
ールタールピッチを430℃にて窒素ガス雰囲気中で1
00分間加熱処理して、軟化点200℃,キノリン不溶
分18.9wt%の熱処理ピ・ンチを得た1次にこのピ
ッチを真空度10mm+!Igで280℃で蒸留し、低
分子成分を留去して、軟化点230℃,キノリン不溶分
21.0wt%、偏光顕微鏡下に観察すると直径が10
〜151Mのほぼ球状のメソフェーズを含む含浸ピッチ
を得た。Example-3 Coal tar pitch with a softening point of 102.5°C and 9.8 wt% free carbon was heated to 430°C in a nitrogen gas atmosphere.
Heat treated for 00 minutes to obtain a heat treated pinch with a softening point of 200°C and a quinoline insoluble content of 18.9wt%. Distillation with Ig at 280°C to remove low molecular components resulted in a product with a softening point of 230°C, a quinoline insoluble content of 21.0 wt%, and a diameter of 10% when observed under a polarizing microscope.
An impregnated pitch containing ~151M approximately spherical mesophase was obtained.
この含浸ピッチを用いて、C/C−基材(PAN系高弾
性糸を強化繊維として2次元配向し、マトリックスとし
てはコールタールピッチを原料として1000℃で焼成
したもの。サイズ: 30(1wX 300IaX
6.5m (長さ×巾×厚み)嵩密度1.34 g /
c+4 )に360’Cで含浸処理した後、不活性ガ
ス雰囲気中で1ooo’cで再炭化処理した。このピッ
チ含浸再炭化処理を合計4回繰り返し、嵩密度115B
/cdの高密度C/C−コンボジントを得た。This impregnated pitch was used to create a C/C-base material (2-dimensionally oriented PAN-based high-elastic yarn as reinforcing fibers and fired at 1000°C using coal tar pitch as the raw material for the matrix. Size: 30 (1wX 300IaX)
6.5m (length x width x thickness) bulk density 1.34 g /
C+4) was impregnated at 360'C, and then recarbonized at 100'C in an inert gas atmosphere. This pitch impregnation recarbonization treatment was repeated a total of 4 times, and the bulk density was 115B.
A high-density C/C-combinant of /cd was obtained.
実施例−4
軟化点75.0’C,フリーカーボン6.2wt%のコ
ールタールピッチを500℃にてアルゴンガス雰囲気で
30分間加熱処理して、軟化点185℃,キノリン不溶
分18.0wt%の熱処理ピッチを得た。このピッチを
真空度5m11gで250℃で蒸留し、低分子成分を留
去して軟化点248℃,キノリン不溶分23.7wt%
、偏光顕微鏡下に観察すると直径が10〜15ttts
のほぼ球状のメソフェーズを含む含浸ピッチを得た。Example-4 Coal tar pitch with a softening point of 75.0'C and 6.2 wt% of free carbon was heat-treated at 500°C for 30 minutes in an argon gas atmosphere, resulting in a softening point of 185°C and a quinoline insoluble content of 18.0 wt%. A heat-treated pitch was obtained. This pitch was distilled at 250°C with a degree of vacuum of 5ml and 11g to remove low molecular components, resulting in a softening point of 248°C and a quinoline insoluble content of 23.7wt%.
, the diameter is 10-15ttts when observed under a polarizing microscope.
An impregnated pitch containing approximately spherical mesophase was obtained.
この含浸ピッチを用いて、実施例−3で示したC/C−
基材に、370℃で含浸した後、不活性ガス雰囲気中で
1ooo″Cで再炭化処理した。このピッチ含浸、再炭
化処理を合計4回繰り返し、嵩密度1.15g/cdの
高密度C/C−コンポジットを得た。Using this impregnated pitch, C/C-
After impregnating the base material at 370°C, it was recarbonized at 1ooo''C in an inert gas atmosphere. This pitch impregnation and recarbonization process was repeated a total of 4 times to form a high density C with a bulk density of 1.15g/cd. /C-composite was obtained.
実施例−5
軟化点= 108.0’C,フリーカーボン3.0wt
%の石油系ピッチを、480℃にて窒素ガス雰囲気中で
60分間熱処理して軟化点=200℃,キノリン不溶分
8.9wt%の熱処理ピッチを得た。このピッチを真空
度8nml1gで280℃で蒸留し、低分子成分を留去
して、軟化点2.110℃、キノリン不溶分10.3w
t%、偏光顕微鏡下に観察すると直径lO〜15μsの
ほぼ球状のメソフェーズを含む含浸ピンチを得た。Example-5 Softening point = 108.0'C, free carbon 3.0wt
% of petroleum-based pitch was heat-treated at 480° C. for 60 minutes in a nitrogen gas atmosphere to obtain heat-treated pitch with a softening point of 200° C. and a quinoline insoluble content of 8.9 wt %. This pitch was distilled at 280°C in a vacuum of 8nml 1g to remove low molecular components, resulting in a softening point of 2.110°C and a quinoline insoluble content of 10.3w.
t%, an impregnated pinch was obtained containing approximately spherical mesophases with a diameter of lO~15 μs when observed under a polarizing microscope.
この含浸ピッチを用いて、実施例−1で示したC/C−
基材に330℃で含浸した後、窒素ガス雰囲気中で10
00’Cで再炭化処理した。このピッチ含浸再炭化処理
を合計4回繰り返して嵩密度1.68 g /cdの高
密度C/C−コンポジットを得た。Using this impregnated pitch, C/C-
After impregnating the base material at 330°C, it was soaked for 10 minutes in a nitrogen gas atmosphere.
Recarbonization treatment was carried out at 00'C. This pitch impregnation recarbonization treatment was repeated a total of four times to obtain a high-density C/C-composite with a bulk density of 1.68 g/cd.
比較例−1
実施例−2で用いた軟化点90.0℃,フリーカーボン
7.5wt%のコールタールピッチを真空度5II11
11gで、300’Cで蒸留して、低分子成分を留去し
て軟化点205℃,キノリン不溶分12.5wt%のピ
ッチを得た。このピッチを偏光顕微鏡下で観察すると、
メソフェーズの生成は認められなかった。Comparative Example-1 Coal tar pitch with a softening point of 90.0°C and free carbon of 7.5 wt% used in Example-2 was heated to a vacuum degree of 5II11.
11 g was distilled at 300'C to remove low molecular weight components to obtain pitch with a softening point of 205°C and a quinoline insoluble content of 12.5 wt%. When this pitch is observed under a polarizing microscope,
No mesophase formation was observed.
このピッチを用いて実施例−1と同様のC/C−基材に
、含浸−再炭化処理を4回繰り返し、C/C−コンポジ
ットを得た。このものは嵩密度1.41 g/c4で、
低密度孔であり、このC/C−コンボジフトを切断して
、切断面を観察すると、表面(1〜21111i)は、
気孔が無かったが中心部には多くの気孔が見られ、この
C/C−コンポジットは全体が均一に含浸処理されてい
なかった。Using this pitch, the impregnation-recarbonization process was repeated four times on the same C/C base material as in Example 1 to obtain a C/C composite. This material has a bulk density of 1.41 g/c4,
It is a low-density pore, and when this C/C-combodift is cut and the cut surface is observed, the surface (1 to 21111i) is as follows.
Although there were no pores, many pores were observed in the center, indicating that the entire C/C-composite was not uniformly impregnated.
比較例−2
実施例=1で用いた軟化点55.0℃,フリーカーボン
3.2wt%のコールタールピッチを300℃にて、窒
素ガス雰囲気中30時間加熱処理し、軟化点150℃,
キノリン不溶分7.5wt%の熱処理ピッチを得た0次
にこのピッチを真空度8w11gで290℃で蒸留し、
低分子成分を留去して、軟化点200℃1キノリン不溶
分6.8wt%、偏光顕微鏡下で観察すると粒径が1〜
3Inaの微小なメソフェーズを含むピッチを得た。Comparative Example-2 The coal tar pitch used in Example 1 with a softening point of 55.0°C and 3.2 wt% free carbon was heat-treated at 300°C in a nitrogen gas atmosphere for 30 hours, and the softening point was 150°C.
A heat-treated pitch with a quinoline insoluble content of 7.5 wt% was obtained. Next, this pitch was distilled at 290°C with a vacuum degree of 8w11g,
After distilling off the low molecular weight components, the softening point was 200°C, and the quinoline insoluble content was 6.8 wt%, and when observed under a polarizing microscope, the particle size was 1 to 1.
A pitch containing a minute mesophase of 3 Ina was obtained.
このピッチを用いて、実施例−1と同様のC/C基材に
含浸−再炭化処理を4回くり返して、C/C7コンボジ
ツトを得た。このものは嵩密度1.42g/c+4の低
密度孔であった。Using this pitch, the same impregnation-recarbonization treatment as in Example 1 was repeated four times to obtain a C/C7 composite. This material had low density pores with a bulk density of 1.42 g/c+4.
比較例−3
実施例−1で用いたビッヂを510 ’Cで15分間熱
処理し、軟化点260℃,キノリン不溶分30.6wt
%の熱処理ピッチを得た。このピッチを偏光顕微鏡下で
観察すると、粒径が20〜45μlの球状のメソフェー
ズ及び、大きさ50μm程度の不定形のメソフェーズが
観察された。Comparative Example-3 The bitge used in Example-1 was heat-treated at 510'C for 15 minutes, resulting in a softening point of 260°C and a quinoline insoluble content of 30.6wt.
% heat treated pitch was obtained. When this pitch was observed under a polarizing microscope, a spherical mesophase with a particle size of 20 to 45 μl and an amorphous mesophase with a size of about 50 μm were observed.
このピッチを用いて、実施例−1と同様のC/C−基材
に含浸−炭化処理を4回くり返して、C/C−コンボジ
ットを得た。このものは、嵩密度1.42g/cイの低
密度孔であった。Using this pitch, the same impregnation-carbonization treatment as in Example 1 was repeated four times to obtain a C/C-composite. This material had low density pores with a bulk density of 1.42 g/c.
比較例−4
実施例−1で示した軟化点175℃,キノリン不溶分9
.8wt%の熱処理ピッチを真空度201m11gで、
340℃で蒸留して低分子成分を留去して、軟化点26
5℃,キノリン不溶分15.2wt%のピッチを得た。Comparative Example-4 Softening point 175°C shown in Example-1, quinoline insoluble content 9
.. Heat-treated pitch of 8wt% at a vacuum level of 201m11g,
By distilling at 340℃ to remove low molecular components, the softening point is 26.
A pitch with a quinoline insoluble content of 15.2 wt% was obtained at 5°C.
このピッチを用いて実施例−1と同様のC/C−基材に
含浸−炭化処理を4回くり返してC/C−コンボジフト
を得た。このものは、嵩密度1.52 g /C艷の低
密度孔であった。Using this pitch, the same impregnation-carbonization treatment as in Example 1 was repeated four times to obtain a C/C-combodift. This had low density pores with a bulk density of 1.52 g/C.
比較例−5
実施例−1で示した軟化点175℃,キノリン不溶分9
.8wt%の熱処理ピッチを真空度50mm11gで、
300’Cで蒸留し低分子成分を除去したが、充分では
なく、軟化点181℃,キノリン不溶分10.3wt%
のピッチを得た。このピッチを用いて実施例−1と同様
のC/C−基材に含浸−炭化処理を4回くり返して、C
/C−コンポジットを得た。このものは、嵩密度1.5
8g/c+dの低密度孔であった。Comparative Example-5 Softening point 175°C shown in Example-1, quinoline insoluble content 9
.. Heat treated pitch of 8wt% at vacuum degree of 50mm and 11g,
Although low molecular components were removed by distillation at 300'C, the softening point was 181°C and quinoline insoluble content was 10.3wt%.
I got the pitch. Using this pitch, the same C/C base material as in Example 1 was subjected to impregnation and carbonization treatment four times.
/C-composite was obtained. This one has a bulk density of 1.5
It had a low density pore of 8 g/c+d.
〈発明の効果〉
このように本発明は、安価なコールタールや石油系のピ
ッチを含浸物とし、ピッチ中に存在するフリーカーボン
を分離除去する必要がない上に、本発明の含浸用ピッチ
は高温でも安定であり、C/C−基材への浸透性が良く
、しかも炭化収率が大きいので、高密度C/C−コンポ
ジット製造におけるち密化処理の回数が2〜4回で済み
、従、て高密度C/C−コンポジットが安価に得られる
という効果を奏する。<Effects of the Invention> As described above, the present invention uses inexpensive coal tar or petroleum-based pitch as an impregnant, and there is no need to separate and remove free carbon present in the pitch. It is stable even at high temperatures, has good permeability into the C/C-substrate, and has a high carbonization yield, so the number of densification treatments required in the production of high-density C/C-composites is only 2 to 4 times, making it easier than conventional This has the effect that a high-density C/C-composite can be obtained at low cost.
Claims (2)
キノリン不溶が直径10〜15μmのほぼ球状のメソフ
ェーズとフリーカーボンからなり、軟化点が200〜2
50℃であることを特徴とする炭素繊維強化炭素複合材
料向け含浸用ピッチ。1. Contains 10 to 25 wt% of quinoline insoluble matter, and this quinoline insoluble consists of an approximately spherical mesophase with a diameter of 10 to 15 μm and free carbon, and has a softening point of 200 to 2.
A pitch for impregnation for carbon fiber-reinforced carbon composite materials, characterized by a temperature of 50°C.
性ガス雰囲気中で350〜500℃の温度範囲にて熱処
理しメソフェーズを生成せしめ、次いで20mmHg以
下の減圧下で300℃以下の温度にて熱処理し軟化点を
調整することを特徴とする炭素繊維強化炭素複合材料向
け含浸用ピッチの製造方法。2. Pitch containing 3 to 10 wt% of free carbon is heat-treated in an inert gas atmosphere at a temperature range of 350 to 500°C to generate mesophase, and then heat-treated at a temperature of 300°C or less under reduced pressure of 20 mmHg or less to soften the softening point. A method for producing pitch for impregnation for carbon fiber-reinforced carbon composite materials, characterized by adjusting the pitch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63192125A JPH0244019A (en) | 1988-08-02 | 1988-08-02 | Impregnating pitch for producing carbon composite material reinforced with carbon fiber and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63192125A JPH0244019A (en) | 1988-08-02 | 1988-08-02 | Impregnating pitch for producing carbon composite material reinforced with carbon fiber and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0244019A true JPH0244019A (en) | 1990-02-14 |
Family
ID=16286091
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63192125A Pending JPH0244019A (en) | 1988-08-02 | 1988-08-02 | Impregnating pitch for producing carbon composite material reinforced with carbon fiber and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0244019A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5279777A (en) * | 1991-10-29 | 1994-01-18 | Mitsubishi Gas Chemical Co., Inc. | Process for the production of friction materials |
JP2008296468A (en) * | 2007-05-31 | 2008-12-11 | Toyo Mach & Metal Co Ltd | Molding machine |
JP2011168761A (en) * | 2010-02-19 | 2011-09-01 | Res Inst Of Natl Defence | Method for producing pitch for impregnating carbon-carbon composite material |
EP2363619A3 (en) * | 2001-05-11 | 2014-08-06 | Koppers Delaware, Inc. | Saturated aircraft brake preform including coal tar pitch and preparation thereof |
CN111807853A (en) * | 2020-07-07 | 2020-10-23 | 湖南碳谷新材料有限公司 | Carbon-carbon composite material and preparation process and application thereof |
JP2021128881A (en) * | 2020-02-14 | 2021-09-02 | Jfeケミカル株式会社 | Coating pitch of lithium ion secondary battery negative electrode material and manufacturing method thereof |
CN115124852A (en) * | 2022-06-24 | 2022-09-30 | 武汉科技大学 | Impregnated pitch for carbon-carbon composite material and preparation method thereof |
-
1988
- 1988-08-02 JP JP63192125A patent/JPH0244019A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5279777A (en) * | 1991-10-29 | 1994-01-18 | Mitsubishi Gas Chemical Co., Inc. | Process for the production of friction materials |
EP2363619A3 (en) * | 2001-05-11 | 2014-08-06 | Koppers Delaware, Inc. | Saturated aircraft brake preform including coal tar pitch and preparation thereof |
JP2008296468A (en) * | 2007-05-31 | 2008-12-11 | Toyo Mach & Metal Co Ltd | Molding machine |
JP2011168761A (en) * | 2010-02-19 | 2011-09-01 | Res Inst Of Natl Defence | Method for producing pitch for impregnating carbon-carbon composite material |
JP2021128881A (en) * | 2020-02-14 | 2021-09-02 | Jfeケミカル株式会社 | Coating pitch of lithium ion secondary battery negative electrode material and manufacturing method thereof |
CN111807853A (en) * | 2020-07-07 | 2020-10-23 | 湖南碳谷新材料有限公司 | Carbon-carbon composite material and preparation process and application thereof |
CN115124852A (en) * | 2022-06-24 | 2022-09-30 | 武汉科技大学 | Impregnated pitch for carbon-carbon composite material and preparation method thereof |
CN115124852B (en) * | 2022-06-24 | 2023-12-15 | 武汉科技大学 | Impregnating asphalt for carbon-carbon composite material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5382392A (en) | Process for fabrication of carbon fiber-reinforced carbon composite material | |
US5665464A (en) | Carbon fiber-reinforced carbon composite material and process for the preparation thereof | |
US8003026B2 (en) | Pitch-only densification of carbon-carbon composite materials | |
JP2002519277A (en) | Carbon matrix composites derived from phthalonitrile resin | |
Mochida et al. | Carbon disc of high density and strength prepared from heat-treated mesophase pitch grains | |
JPH0244019A (en) | Impregnating pitch for producing carbon composite material reinforced with carbon fiber and its production | |
EP1518016B1 (en) | Isotropic pitch-based materials for thermal insulation | |
US20100078839A1 (en) | Pitch densification of carbon fiber preforms | |
US5547654A (en) | Self-adhesive carbonaceous grains and high density carbon artifacts derived therefrom | |
US3993738A (en) | High strength graphite and method for preparing same | |
JPH0532494B2 (en) | ||
JP3031626B2 (en) | Binder, impregnating agent, and method for producing them | |
JPH04321559A (en) | Composition for carbon material, composite carbon material and their production | |
US6291537B1 (en) | Encapsulation of oxidants for pitch stabilization | |
JPH03247563A (en) | Production of carbon fiber-reinforced carbon material | |
JP4343312B2 (en) | Pitch-based carbon fiber | |
JP2566555B2 (en) | Method for producing carbon fiber reinforced carbon composite material | |
JP2918008B2 (en) | Self-fusing carbonaceous powder and high density carbon material | |
JP2806408B2 (en) | Self-fusing carbonaceous powder and high density carbon material | |
JPH02283666A (en) | Production of high-density carbon composite reinforced with carbon fiber | |
JP2835525B2 (en) | Method for producing carbon fiber / carbon composite material | |
JP2762461B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
JPH01305858A (en) | Production of carbon fiber reinforced carbon composite material | |
KR960004374B1 (en) | Manufacturing Method of Carbon / Carbon Composites | |
WO1993016013A1 (en) | Carbon-carbon composite material |