[go: up one dir, main page]

JPH0243911A - Gas filter - Google Patents

Gas filter

Info

Publication number
JPH0243911A
JPH0243911A JP19297588A JP19297588A JPH0243911A JP H0243911 A JPH0243911 A JP H0243911A JP 19297588 A JP19297588 A JP 19297588A JP 19297588 A JP19297588 A JP 19297588A JP H0243911 A JPH0243911 A JP H0243911A
Authority
JP
Japan
Prior art keywords
gas filter
membrane
pore
pores
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19297588A
Other languages
Japanese (ja)
Inventor
Kunihiro Aoki
青木 邦廣
Hiroshi Takahashi
洋 高橋
Koji Takehata
竹端 幸治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP19297588A priority Critical patent/JPH0243911A/en
Publication of JPH0243911A publication Critical patent/JPH0243911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To enhance particle removal performance by forming a gas filter of a porous membrane of the polymer having the pores vertical to the membrane surface and the average hole diameter thereof, wherein the ratio of major to minor diameter, being within a specified range. CONSTITUTION:A gas filter is formed of a porous membrane of the polymer capable of being formed into a film which has pores substantially vertical to at least one side of the membrane surface. The aforesaid pore having an average hole diameter of 0.5-10mum, the ratio of major to minor diameter being 1.0-2.0 and a coefficient of hole diameter variation being 0-50% is present at an opening rate of 35-75%, the hole rate of the porous membrane being 50-90% as a whole. As the polymer capable of being formed into the aforesaid film, poly vinylidene fluoride or polytetrafluoroethylene copolymer is used in this example. The gas filter thus formed is small in pressure loss yet excellent in the particle removal performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気浄化、集塵、除塵等を目的として気体中に
混入している微粒子の除去に使用されるガスフィルター
またはそのプレフィルタ−に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a gas filter or its pre-filter used for removing particulates mixed in gas for the purpose of air purification, dust collection, dust removal, etc. .

〔従来の技術] 従来ガスフィルターまたはそのプレフィルタ−としては
無機系、有機系の不織布、ワインデインブタイブのフィ
ルター あるいはメンブランフィルタ−等が矧らnてい
る。
[Prior Art] Conventional gas filters or their pre-filters include inorganic and organic non-woven fabrics, wine membrane filters, and membrane filters.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記不、餓布、ワインディングフィルタ
ー等は孔径が大さく、内部で捕捉する機構のため、除去
性能の信頼性が低い点、又、前記メンブランフィルタ−
は除去性能の信頼性は若干向上したものの非対称構造、
均質構造いずれの4造を有するものも圧力損失が大きい
点が問題である。
However, the above-mentioned membrane filters, etc. have large pore diameters and have a mechanism that traps them internally, so their removal performance is unreliable.
Although the reliability of the removal performance was slightly improved, the asymmetric structure
The problem with any homogeneous structure is that the pressure loss is large.

〔課題(i−解決するための手段〕[Issues (i-Means to solve)]

本発明の要旨は、少なくとも一方の表面において膜面に
対して実質的に垂直に開孔した孔が、平均孔径を(L5
〜10μm 長径/短径の比を1.0〜2.0、孔径変
動係数全0〜50%として開孔率55〜75%の割合で
存在し、多孔質膜全体の空孔率が50〜90%であるフ
ィルム成形可能な重合体の多孔質膜からなるガスフィル
ターにある。
The gist of the present invention is that pores opened substantially perpendicularly to the membrane surface on at least one surface have an average pore diameter of (L5
~10 μm The ratio of major axis/breadth axis is 1.0 to 2.0, the total pore size variation coefficient is 0 to 50%, and the porosity is 55 to 75%, and the porosity of the entire porous membrane is 50 to 75%. The gas filter consists of a porous membrane of 90% film-formable polymer.

本発明のガスフィルターに用いられる多孔質B!Xは、
少なくとも一方の表面において膜面に対して実質的に垂
直に開孔した孔を有するが、膜面に対して実質的に垂直
に開孔した孔(以下「ストレート孔」という)とは膜面
と垂直な任意の切断面において聞路比が1.0〜1.2
で変化比が[16〜1.7である孔をいう。
Porous B used in the gas filter of the present invention! X is
At least one surface has pores that are opened substantially perpendicular to the membrane surface, but pores that are opened substantially perpendicular to the membrane surface (hereinafter referred to as "straight pores") are defined as pores that are opened substantially perpendicular to the membrane surface. The hearing path ratio is 1.0 to 1.2 on any vertical cut plane.
refers to a hole with a change ratio of [16 to 1.7].

ここで、血路比とは、前記切断面に現われたひとつの孔
についてその孔の中心部2通るS線又は直線ktとし、
ストレート孔からなる多孔質層(以下「ストレート孔層
」という)の厚みkt。とじたときのt7t0の比をい
う。
Here, the blood flow ratio is defined as the S line or straight line kt passing through the center 2 of the hole for one hole appearing on the cut surface,
Thickness kt of a porous layer consisting of straight pores (hereinafter referred to as "straight pore layer"). This refers to the ratio of t7t0 when the paper is closed.

また、変化比とは、前記切断面に現われたひとつのスト
レート孔について表面における孔の幅をdo  とし、
ストレート孔層の内部における任意の位置の孔の幅id
としたときのa/a、の比tいう。
In addition, the change ratio is defined as the width of the hole on the surface of one straight hole appearing on the cut surface, and
Width id of the hole at any position inside the straight hole layer
The ratio t of a/a is called.

変化比が前記範囲より小さいと分画精度が低下するので
好ましくなく、前記範囲よジ大きいと隣接する孔間の距
離が極端に小さくなシ開孔率ヲ上げることが難しいので
好ましくない。
If the change ratio is smaller than the above range, the fractionation accuracy will be lowered, which is undesirable, and if it is larger than the range, it will be difficult to increase the pore area ratio since the distance between adjacent holes is extremely small, which is not preferable.

血路比が前記範囲より大きいとF通抵抗が増加して透過
率が低下するので好筐しくない。
If the blood flow ratio is larger than the above range, the F flow resistance will increase and the transmittance will decrease, which is not favorable.

尚、細孔の血路比、又は変化比が前記範囲からはずれる
部分は当然ストレート孔ではなく、たとえばストレート
孔層とボイドj−からなる非対称膜は、ボイド層におけ
る孔の径が両層の界面から徐々に、又は急激に増大する
構造を有している。
Note that the portion where the blood flow ratio or change ratio of the pores deviates from the above range is naturally not a straight pore. For example, in an asymmetric membrane consisting of a straight pore layer and a void j-, the diameter of the pore in the void layer differs from the interface between both layers. It has a structure that increases gradually or rapidly.

変化比は0.7〜1.5であることがより好ましく、α
8〜1.2でろることが特に好ましい。又、血路比は1
,0〜1.1でめることが二り好ましく、1.0〜1.
05であることが特に好ましい。
It is more preferable that the change ratio is 0.7 to 1.5, and α
It is particularly preferable that the weight is 8 to 1.2. Also, the blood line ratio is 1
, 0 to 1.1, preferably 1.0 to 1.
05 is particularly preferred.

この多孔質膜において、ストレート孔層の表面に存在す
る孔(以下「巽面孔」という)は、形状が円形又は楕円
形でめって長径/短径の比50%である。またその平均
孔径r1合寺→〜1aettmoa囲でめる。ここに、
各々の表面孔についての長径と短径の相加平均値をその
表面孔の孔径といい、表面孔の平均孔径とはN 1vA
の表面孔の孔径の相加平均値という。通常NO値は10
0が採用さnる。また、孔径変動係数とは表面孔の孔径
について以下の式で示される値をいう。
In this porous membrane, the pores present on the surface of the straight pore layer (hereinafter referred to as "cross-face pores") are circular or elliptical in shape, and rarely have a major axis/minor axis ratio of 50%. Also, the average pore diameter r1 aett moa is enclosed. Here,
The arithmetic average value of the major axis and minor axis of each surface pore is called the pore diameter of the surface pore, and the average pore diameter of the surface pore is N 1vA.
is called the arithmetic mean value of the pore diameters of the surface pores. Normal NO value is 10
0 is adopted. In addition, the pore diameter variation coefficient refers to a value expressed by the following formula regarding the pore diameter of surface pores.

(標準偏差/平均孔径) X 100 (%)長径/短
径の比が2.0より大きいと、濾過物質が球状でない場
合や一過時に濾過物質が形状変化する場合に分画特注が
低下するので好ましくなく、また、孔径変動係数が50
%より大きいと分画特性が低下するので好ましくない。
(Standard deviation/average pore diameter) Therefore, it is not preferable, and the pore diameter variation coefficient is 50.
If it is larger than %, the fractionation characteristics will deteriorate, which is not preferable.

平均孔径がα5μmよシ小さいものは充分な透過率が得
られないので好ましくなく、10μmより大きいものは
実用的でない。孔径変動係数は0〜40俤であることが
より好ましい。
If the average pore diameter is smaller than α5 μm, sufficient transmittance cannot be obtained, so it is not preferable, and if it is larger than 10 μm, it is not practical. It is more preferable that the pore size variation coefficient is 0 to 40.

R’tl 記ストレート孔については、ストレート孔層
の厚みLo  と表面孔の平均孔径りの比は特に限定さ
れないが、t0/Dの値はα1程度以上であればよく、
15程度以上であることが好ましく、1.0程度以上で
あることがよ)好ましく、3程度以上であることが特に
好ましい。
R'tl Regarding the straight pores, the ratio between the thickness Lo of the straight pore layer and the average pore diameter of the surface pores is not particularly limited, but the value of t0/D may be approximately α1 or more,
It is preferably about 15 or more, more preferably about 1.0 or more, and particularly preferably about 3 or more.

長径/短径の比及び平均孔径は走査型電子顕微鏡によっ
て測定することができる。
The length/breadth ratio and average pore diameter can be measured by scanning electron microscopy.

ここで開孔率とは前記表面孔全面積の膜外部界面積に占
める割合をいい、該開孔率は35〜75%である。開孔
率が35%未満であると流体の透過率が低くなるので好
ましくなく、また75%を超えると多孔質膜の強度が低
下し損傷さ九やすいので好ましくない。
Here, the porosity refers to the ratio of the total surface pore area to the membrane external interface area, and the porosity is 35 to 75%. If the porosity is less than 35%, the fluid permeability will be low, which is undesirable, and if it exceeds 75%, the strength of the porous membrane will decrease and it will be easily damaged, which is undesirable.

本発明のガスフィルターに用いられる多孔質膜としては
、前記ストレート孔層のみからなる均質膜、−面がスト
レート孔層で他面がストレート孔より大きな孔径を有す
るボイド層で構成されてなる非対称膜、両面がストレー
ト孔層で内部がボイド層で構成されてなる不均質膜の構
造を有するものを挙げることができる。
Porous membranes used in the gas filter of the present invention include homogeneous membranes consisting only of the straight pore layer, and asymmetric membranes consisting of a straight pore layer on one side and a void layer having a larger pore diameter than the straight pores on the other side. Examples include those having a heterogeneous membrane structure consisting of straight pore layers on both sides and a void layer inside.

ストレート孔層の厚みは特に限定されないがおよそα0
1〜50μm程度であることが好ましく、均質膜の場合
は、ストレート孔の孔径や膜の用途に応じて5μm〜数
■の値をとシうる。
The thickness of the straight hole layer is not particularly limited, but is approximately α0
It is preferably about 1 to 50 μm, and in the case of a homogeneous membrane, the value can be from 5 μm to several μm depending on the diameter of the straight pores and the purpose of the membrane.

非対称膜及び不均質膜においては、ストレート孔層の厚
みは同様にα01μm〜1錫程度のfff t、全体の
膜厚は5μm−数■程度の値をとりうる。
In asymmetric membranes and heterogeneous membranes, the thickness of the straight pore layer can similarly be α01 μm to about 1 tin, and the total film thickness can be about 5 μm to several square meters.

以上述べたように本発明の多孔質膜からなるガスフィル
ターは種々の細孔構造ととVうるが、流体透過率を大き
くすることが容易で取扱い性に潰れている点から、−面
がストレート孔JfIで、他面がストレート孔層の孔よ
シ大きな孔径?有するボイド層で構成されてなる非附称
膜でめることが特に好ましい。
As mentioned above, the gas filter made of the porous membrane of the present invention can have various pore structures, but since it is easy to increase the fluid permeability and is easy to handle, the gas filter made of the porous membrane of the present invention has a straight surface. Is the hole JfI larger than the hole with a straight hole layer on the other side? It is particularly preferable to use a non-named membrane composed of a void layer having a void layer.

の透過率が低下するので好ましくなく、前記範囲より大
きいと多孔質膜の機械的特性が低下するので好ましくな
い。
If it is larger than the above range, the mechanical properties of the porous membrane will deteriorate, which is not preferable.

尚、空孔率は水銀ポロシメーターによって求めることが
できる。
Note that the porosity can be determined using a mercury porosimeter.

本発明におけるフィルム成形可能な重合体とば、有機浴
剤に可溶で水に不溶な重合体であってその溶液が鬼延可
能なものをいう。その列としてポリフッ化ビニリデン、
ポリテトラフルオロエチレン系共重合体、トリフルオロ
エチレン等のフッ素系重合体、ポリスルホン、ポリエー
テルスルホン、ポリカーボネート、ポリエーテルイミド
、ポリエチレンテレフタレート、ポリメチルメタクリレ
ート、ポリブチル(メタ)アクリレート等のポリ(メタ
)アクリル酸エステル、ポリアクリロニトリル、酢酸セ
ルロース、硝酸セルロース等のセルロースエステル類、
ポリエチレン、ポリ−4−メチル−1−ぺ/テン、ポリ
ブタジェン等のポリオレフィン、ポリ酢酸ビニル、ポリ
スチレン、ポリ−α−メチルスチレン、ポリ−4−ビニ
ルピリジン、ポリビニルピロリドン、ポリ塩化ビニル、
ポリ塩化ビニリデン、シリコン系ポリマー ポリフェニ
レンオキサイド等の重合体、あるいぼこれらの共重合体
を挙げることができ、11を熱性、耐薬品性等を考慰し
てそれぞれの目的にかなった重合体を適宜還択使用する
ことができる。
The polymer that can be formed into a film in the present invention refers to a polymer that is soluble in organic bath agents and insoluble in water, and whose solution can be spread. Polyvinylidene fluoride as the column,
Fluoropolymers such as polytetrafluoroethylene copolymers and trifluoroethylene, poly(meth)acrylics such as polysulfone, polyethersulfone, polycarbonate, polyetherimide, polyethylene terephthalate, polymethyl methacrylate, and polybutyl (meth)acrylate. Cellulose esters such as acid esters, polyacrylonitrile, cellulose acetate, cellulose nitrate,
Polyolefins such as polyethylene, poly-4-methyl-1-pe/tene, polybutadiene, polyvinyl acetate, polystyrene, poly-α-methylstyrene, poly-4-vinylpyridine, polyvinylpyrrolidone, polyvinyl chloride,
Examples include polymers such as polyvinylidene chloride, silicone polymers, polyphenylene oxide, and copolymers of these. Can be used selectively.

又本発明においては重合体(共重合体も含む)は単独系
のみならず互に相浴性のある241以上の重合体のブレ
ンド物を用いることができる。
In addition, in the present invention, the polymer (including copolymer) can be used not only as a single system but also as a blend of 241 or more polymers that are compatible with each other.

このようなブレンド物は、ある溶剤に対して通常重合体
成分の溶解度が異なるのでその性質を利用して多孔質膜
の構造を微妙にコントロールすることができるという利
点を有している。こ02うなブレンド物としてはたとえ
ばフッ化ビニリデン・テトラフルオロエチレン共重合体
トポリアルキル(メタ)アクリレートとのポリマーアロ
イをはじめとしてポリ塩化ビニルとポリアルキル(メタ
)アクリレート、ポリスチレンとポリブタジェン、スチ
レン・アクリロニトリル共重合体とポリフェニレンオキ
サイド等のブレンド物を挙げることができる。
Such a blend has the advantage that the structure of the porous membrane can be delicately controlled by utilizing the different solubility of the polymer components in a certain solvent. Examples of such blends include polymer alloys of vinylidene fluoride and tetrafluoroethylene copolymers and polyalkyl (meth)acrylates, polyvinyl chloride and polyalkyl (meth)acrylates, polystyrene and polybutadiene, and styrene-acrylonitrile copolymers. Examples include blends of coalescence and polyphenylene oxide.

本発明のガスフィルターの製造方法として種々の方法を
採用しうるが、特に好ましい方法とガスフィルターのモ
ジュール構造としては、種々の形態を採用しうるが、例
えばプリ・−ツ状に折曲げてハクジ/グ内に固定しtも
の、あるいはディスク状に切り取ってメンプランホルダ
ーに組み込んだもの等が挙げられる。
Various methods can be used to manufacture the gas filter of the present invention, and a particularly preferred method and module structure of the gas filter can be various forms. Examples include those that are fixed in a holder, or those that are cut into a disk shape and incorporated into a membrane holder.

本発明のガスフィルターは使用に際し孔径が同一なもの
あるいは異なったものを複数枚積層して用いてもよ<、
また他のガスフィルターと積層構造にして用いてもよい
The gas filter of the present invention may be used by laminating a plurality of filters with the same or different pore diameters.
It may also be used in a laminated structure with other gas filters.

気体の流れの方向は特に限定されるものではないが、細
孔構造が非対称構造である場合はボイドj―′1則から
故密層側へ九す方が目詰りが遅く寿命が長くなるため好
ましい。
The direction of gas flow is not particularly limited, but if the pore structure is asymmetrical, according to the void j-'1 rule, it is better to move toward the dense layer side because clogging will be slower and the life will be longer. preferable.

〔実施例〕〔Example〕

以下実施列によシ本発明を説明する。実施列にひいては
走査型′1子顕微鏡による1000〜5ooo暗の拡大
写真2用いて、膜厚、ストレート孔層の厚み、100個
の表面孔について各々の長径と短径、又切断面に現われ
た100個の孔についてLo Lo * d * do
 ’に測定し、前述の式に従って孔径変動係数、曲路比
、変化比を求めた。
The present invention will be explained below with reference to examples. In addition to the actual rows, enlarged photographs of 1000 to 500 mm dark using a scanning microscope were used to determine the film thickness, the thickness of the straight pore layer, the major and minor axes of each of the 100 surface pores, and the information that appeared on the cut surface. Lo Lo * d * do for 100 holes
', and the pore diameter variation coefficient, curve ratio, and change ratio were determined according to the above formula.

開孔率は面積法によシ、空孔率は水銀ポロシメーターl
こより測定した。又、空気透過率は膜間差圧を10p、
s、i、とじて測定した。
The porosity is determined by the area method, and the porosity is determined by the mercury porosimeter.
It was measured from this. Also, the air permeability is 10p for the transmembrane pressure,
Measured by combining s and i.

微粒子の除去性能はガスフィルターを直径47鱈のディ
スク状に切り取シホルダーに組み込み、パーティクルカ
ウンターに接続して、室内の空気を5 G Owt /
 minで2分間吸引し、113μm以上の粒子透過数
nを計測し、一方、そのわされる+1 f!:15μm
以上の粒子の捕集効率とした。又、圧力損失はその際ガ
スフィルターにかかる差圧を、U字管水柱差圧計で実測
した。
Particulate removal performance is achieved by cutting a gas filter into a disk shape with a diameter of 47 mm and incorporating it into a holder, and connecting it to a particle counter to control indoor air at 5 G Owt /
Suction was carried out for 2 minutes at min, and the number n of particles passing through of 113 μm or more was measured, while +1 f! :15μm
The particle collection efficiency was defined as the above. In addition, the pressure loss was measured by actually measuring the differential pressure applied to the gas filter using a U-shaped water column differential pressure gauge.

夷1声]1 テトラフルオロエチレン/フッ化ビニリデンが20 /
 80 (1fIo4 / mot’)からなる共重合
体60部をメチルメタクリレート40部にffi解させ
窒素雰囲気中85℃で15分間保持することによってメ
チルメタクリレートを重合し重合体組成*を得た。この
重合体組成物100部をメチルエテルケトン1900部
に浴解することによって重合体溶液を調整し、続いてフ
ィルム作製用アプリケーターを用いてガラス板上に厚み
254μmに苑地し、重合体溶液の薄膜状物を形成した
9゜ 次いで5に9/σ2の飽和水蒸気を有する配管のバルブ
を開き、該薄膜状物の表面に飽和水蒸気に20秒間接触
させて重合体を凝固させた。
1 voice] 1 Tetrafluoroethylene/vinylidene fluoride 20/
80 (1fIo4/mot') was ffi-dissolved in 40 parts of methyl methacrylate and held at 85° C. for 15 minutes in a nitrogen atmosphere to polymerize methyl methacrylate to obtain a polymer composition *. A polymer solution was prepared by dissolving 100 parts of this polymer composition in 1,900 parts of methyl ether ketone, and then it was spread on a glass plate to a thickness of 254 μm using an applicator for making a film. The valve of the pipe containing saturated steam of 9/σ2 was opened at 9° where the thin film was formed, and the surface of the thin film was brought into contact with the saturated steam for 20 seconds to solidify the polymer.

尚、同様の条件で水蒸気を供給し薄膜状物から1cr1
1手前の位置の温度を測定したところ83℃であった。
In addition, water vapor was supplied under the same conditions and 1cr1 was removed from the thin film material.
When we measured the temperature at the position one position before us, it was 83°C.

又、この時の水蒸気流量の実測値は267?/ min
であり、ノズルから50crsの位置の噴霧幅(直径1
5αφ)の面積177 cm−”から算出される単位面
積当力の水蒸気の供給量は25〜/6θC−儒スであっ
た。
Also, the actual value of the water vapor flow rate at this time is 267? /min
and the spray width at the position 50 crs from the nozzle (diameter 1
The amount of water vapor supplied per unit area calculated from the area of 177 cm-'' of 5αφ) was 25~/6θC-force.

次に25℃の空気を1分間吹きつけて乾燥した後重合体
をガラス板からはく離することによって非対称構造の多
孔質膜(ガスフィルター)を得た。走査型電子顕微鏡を
用いて該多孔質膜の表面及び膜面に垂直な断面を観察し
た。
Next, after drying by blowing air at 25° C. for 1 minute, the polymer was peeled off from the glass plate to obtain a porous membrane (gas filter) with an asymmetric structure. The surface of the porous membrane and a cross section perpendicular to the membrane surface were observed using a scanning electron microscope.

蒸気に接触さnた表面には孔径がそろった長径/短径の
比が2.0以下の円形又は楕円形の微細孔がみられ、該
表面側の膜面に垂直な断面には孔径変化が殆んどないス
トレート孔が曜祭芒れた。また膜の内部から他方の表面
にかけてはボイド層が観察され、表面におけるボイドの
孔径は10〜50μmであった。
On the surface that has been in contact with steam, circular or elliptical micropores with uniform pore diameters and a ratio of major axis/minor axis of 2.0 or less can be seen, and in the cross section perpendicular to the membrane surface on the surface side, pore size changes. A straight hole with almost no holes was planted. Further, a void layer was observed from the inside of the membrane to the other surface, and the pore size of the voids on the surface was 10 to 50 μm.

ストレート孔の曲路比、変化比を6111定し、ヌトレ
ート孔層の表面に存在する孔について長径/短径の比、
平均孔径、孔径変動係数、開孔率全測定し、又多孔質膜
全体の空孔率を測定した。
The curvature ratio and change ratio of the straight pores are set as 6111, and the ratio of the major axis / minor axis of the pores existing on the surface of the nutrate pore layer,
The average pore diameter, pore diameter variation coefficient, and porosity were all measured, and the porosity of the entire porous membrane was also measured.

更に[L5μm以上の粒子の捕集効率と圧力損失?測定
し、これらの結果を第1表に示した。
Furthermore, [Collection efficiency and pressure drop of particles larger than L5 μm? The results are shown in Table 1.

実施例2及び3 水蒸気の供給量ヲそれぞれ17 tq / sea −
cm”(実施例2)、及び9.84 / soa ・c
m” (実施例5)とし、その他の条件は実施例1と同
様にして多孔質膜f!:製造し、その構造性能等を測定
して第1表に示した。
Examples 2 and 3 The amount of water vapor supplied was 17 tq/sea −, respectively.
cm” (Example 2), and 9.84/soa・c
m'' (Example 5), and other conditions were the same as in Example 1 to produce a porous membrane f!: Its structural performance, etc. were measured and are shown in Table 1.

いずれの場合もストレート孔ノーとボイド層からなる非
対称膜であり、表面におけるボイドの孔径はおよそ10
〜100μmでちった。
In either case, it is an asymmetric membrane consisting of straight pores and a void layer, and the pore size of the voids on the surface is approximately 10
It fell at ~100 μm.

/ / 〔発明の効果〕 本発明のガスフィルターは圧力損失が小さいにも拘らず
粒子除去性能が潰れている。
/ / [Effects of the Invention] Although the gas filter of the present invention has a small pressure loss, its particle removal performance is poor.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一方の表面において膜面に対して実質的に垂
直に開孔した孔が、平均孔径を0.5〜10μm、長径
/短径の比を1.0〜2.0、孔径変動係数を0〜50
%として開孔率35〜75%の割合で存在し、多孔質膜
全体の空孔率が50〜90%であるフィルム成形可能な
重合体の多孔質膜からなるガスフィルター。
The pores are formed substantially perpendicularly to the membrane surface on at least one surface, and have an average pore diameter of 0.5 to 10 μm, a length/breadth ratio of 1.0 to 2.0, and a pore diameter variation coefficient of 0. ~50
A gas filter comprising a porous membrane of a film-formable polymer, which has a porosity of 35 to 75% as % and a porosity of the entire porous membrane of 50 to 90%.
JP19297588A 1988-08-02 1988-08-02 Gas filter Pending JPH0243911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19297588A JPH0243911A (en) 1988-08-02 1988-08-02 Gas filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19297588A JPH0243911A (en) 1988-08-02 1988-08-02 Gas filter

Publications (1)

Publication Number Publication Date
JPH0243911A true JPH0243911A (en) 1990-02-14

Family

ID=16300150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19297588A Pending JPH0243911A (en) 1988-08-02 1988-08-02 Gas filter

Country Status (1)

Country Link
JP (1) JPH0243911A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387334A (en) * 1991-02-15 1995-02-07 Toa Medical Electronics Co., Ltd. Apparatus for regulating liquid temperature
WO2004043666A1 (en) * 2002-11-12 2004-05-27 Daicel Chemical Industries, Ltd. Process for producing porous film and porous film
JP2004175104A (en) * 2002-11-12 2004-06-24 Daicel Chem Ind Ltd Method for producing porous film, and porous film
JP2004339403A (en) * 2003-05-16 2004-12-02 Toray Ind Inc Light-reflecting film
WO2005019320A1 (en) * 2003-08-25 2005-03-03 Daikin Industries, Ltd. Mixed polytetrafluoroethylene powder, polytetrafluoroethylene porous shaped body, methods for producing those, polytetrafluoroethylene porous foam shaped body, and product for high-frequency signal transmission
WO2011158717A1 (en) * 2010-06-17 2011-12-22 ダイキン工業株式会社 Filter medium equipped with porous film, process for producing same, filter pack, and filter unit
JP6142042B1 (en) * 2016-03-18 2017-06-07 株式会社村田製作所 Filtration filter for nucleated cells and filtration method using the same
US10858624B2 (en) 2017-04-26 2020-12-08 Murata Manufacturing Co., Ltd. Filter for filtering nucleated cells and filtering method using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5387334A (en) * 1991-02-15 1995-02-07 Toa Medical Electronics Co., Ltd. Apparatus for regulating liquid temperature
WO2004043666A1 (en) * 2002-11-12 2004-05-27 Daicel Chemical Industries, Ltd. Process for producing porous film and porous film
JP2004175104A (en) * 2002-11-12 2004-06-24 Daicel Chem Ind Ltd Method for producing porous film, and porous film
JP4530630B2 (en) * 2002-11-12 2010-08-25 ダイセル化学工業株式会社 Method for producing porous film and porous film
US7820281B2 (en) 2002-11-12 2010-10-26 Daicel Chemical Industries, Ltd. Process for producing porous film and porous film
JP2004339403A (en) * 2003-05-16 2004-12-02 Toray Ind Inc Light-reflecting film
WO2005019320A1 (en) * 2003-08-25 2005-03-03 Daikin Industries, Ltd. Mixed polytetrafluoroethylene powder, polytetrafluoroethylene porous shaped body, methods for producing those, polytetrafluoroethylene porous foam shaped body, and product for high-frequency signal transmission
JP2012020274A (en) * 2010-06-17 2012-02-02 Daikin Industries Ltd Filtering material having porous film, manufacturing method for the filtering material, filter pack, and filter unit
WO2011158717A1 (en) * 2010-06-17 2011-12-22 ダイキン工業株式会社 Filter medium equipped with porous film, process for producing same, filter pack, and filter unit
CN102946968A (en) * 2010-06-17 2013-02-27 大金工业株式会社 Filter medium equipped with porous film, process for producing same, filter pack, and filter unit
US9072993B2 (en) 2010-06-17 2015-07-07 Daikin Industries, Ltd. Filter medium equipped with porous film, method of manufacturing same, filter pack, and filter unit
JP6142042B1 (en) * 2016-03-18 2017-06-07 株式会社村田製作所 Filtration filter for nucleated cells and filtration method using the same
JP2017169551A (en) * 2016-03-18 2017-09-28 株式会社村田製作所 Filter for filtering nucleated cells and filtering method using the same
US10519416B2 (en) 2016-03-18 2019-12-31 Murata Manufacturing Co., Ltd. Filter for filtration of nucleated cells and filtration method using the same
US11485951B2 (en) 2016-03-18 2022-11-01 Murata Manufacturing Co., Ltd. Filter for filtration of nucleated cells and filtration method using the same
US10858624B2 (en) 2017-04-26 2020-12-08 Murata Manufacturing Co., Ltd. Filter for filtering nucleated cells and filtering method using the same
US12018277B2 (en) 2017-04-26 2024-06-25 Murata Manufacturing Co., Ltd. Filter for filtering nucleated cells and filtering method using the same

Similar Documents

Publication Publication Date Title
EP0594007B1 (en) Composite microporous membranes
US3567810A (en) Process for making high-flow anisotropic membranes
EP1842581B1 (en) Method for preparing highly asymmetric ultrafiltration membranes
US4919810A (en) Porous membrane
US20030038081A1 (en) High strength asymmetric cellulosic membrane
JP2001509431A5 (en)
JPH0515491B2 (en)
JPS5930169B2 (en) Methylpentene polymer film and manufacturing method
JP2000300921A (en) Air filter material and air filter unit using the same
CN104147940A (en) High throughput membrane with rough surface
JPH0243911A (en) Gas filter
JPS6154222A (en) Composite separation membrane
EP0042766B2 (en) Highly anisotropic membranes and process for making same
WO2017075598A1 (en) Methods for creating fluidic cavities by transmembrane etching through porous membranes and structures made thereby and uses of such structures
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
KR101810470B1 (en) Membrane for hemodialysis and method for producing the same
CN117482752B (en) Anisotropic micro-filtration membrane and preparation method and application thereof
JPS5950364B2 (en) Ultrafiltration membrane and its manufacturing method
JPS63141607A (en) Microporous membrane
JPH0372908A (en) Filter medium for air filter
JPH04118033A (en) Hydrophilic membrane and its production
JP4689790B2 (en) Internal hydrophilic membrane of anionic copolymer blend
JPS636033A (en) Microporous membrane composed of polysulfone
CN108273400A (en) A kind of preparation method of seperation film for ferro element separation
JP4284436B2 (en) Method for producing leukocyte removal filter material and filter material