JPH0243576B2 - - Google Patents
Info
- Publication number
- JPH0243576B2 JPH0243576B2 JP59159951A JP15995184A JPH0243576B2 JP H0243576 B2 JPH0243576 B2 JP H0243576B2 JP 59159951 A JP59159951 A JP 59159951A JP 15995184 A JP15995184 A JP 15995184A JP H0243576 B2 JPH0243576 B2 JP H0243576B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- casting
- speed
- intermediate container
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、中間容器を鋳型と一体型に連結し、
鋳型の一定レベル面で凝固を開始させる湯面下凝
固連続鋳造法に関するものである。
〔従来の技術〕
連続鋳造法における鋳片断面の最小寸法は浸漬
ノズルの外径に制限される。このため浸漬ノズル
の最小径以下の鋳片を鋳造する方法として、タン
デイシユ(以下タンデイシユを略称してTDとい
う)と鋳型とを連結して鋳造を行なういわゆる湯
面下凝固鋳造法が公知である。このような鋳造法
においても、通常の方法と同様に鋳型と鋳片との
間の潤滑が必要である。しかし、通常法で適用さ
れているパウダーキヤスト法の如くパウダーの潤
滑を利用して鋳型と鋳片の摩擦を軽減させること
は、湯面下凝固鋳造法では不可能である。他方鋳
型と鋳片間を潤滑なしで静止鋳造することは外殻
の破断すなわちブレークアウト事故が確実に発生
するため不可能である。また一定引抜―停止を繰
り返す間欠引抜鋳造法では引抜―停止を正確に制
御し、駆動させる引抜装置の機構が複雑になるだ
けでなく、引抜―停止のサイクルに対応して鋳片
の表面に割れが発生する欠点がある。
湯面下凝固鋳造法として例えば特公昭50−
27028号公報および特公昭53−37043号公報記載の
方法がある。
前者はTDと鋳型を一体的に上下振動させて鋳
造する方法があるが、該方法では、鋳型内への溶
鋼の不均一流入や鋳型と外殻の接触の程度により
凝固開始位置が変動しシエルの破断によるブレー
クアウトの危険が大きい。又後者は凝固開始位置
を一定とするために、TD内まで黒鉛鋳型を挿入
し、鋳型を振動しないで鋳造する方法であるが、
例えば、低炭素ステンレス鋼を鋳造する場合は、
黒鉛鋳型によつて鋳片に表面浸炭が発生し、表面
手入除去が必要となる。従つてTDと鋳型を連結
して鋳造する方法は現在に至るまで実用化されて
いないのが実状である。
〔発明が解決しようとする問題点〕
本発明は湯面下凝固鋳造法において凝固開始位
置を一定とシエルの破断、ブレークアウトなどの
発生を防止することを目的とする。
〔問題点を解決するための手段、作用〕
第1図は本発明を実施するための装置例を示
す。
水冷鋳型1の上部に鋳型断面積より広い面積を
有する中間容器2を配置して、水冷鋳型1と中間
容器2とを一体的に連絡し、また鋳型と中間容器
の境界に後述の断熱性リング3を設置する。
溶鋼はTD(図示せず)から浸漬ノズル4を介
して中間容器2に供給され、溶鋼の凝固は断熱性
リング3の下で開始する。水冷鋳型1内で凝固し
た外殻鋳片5は中間容器と一体型に組合せた鋳型
1の鋳造方向への振動によつて、該鋳型1との摩
擦を軽減されながらピンチロール(図示せず)に
よつて連続的に引抜かれながら鋳造される。
本装置の構成及び作用についてさらに詳細に説
明する。
鋳型は従来の連鋳機に使用する水冷式銅鋳型と
本質的に変わるところがないが、該水冷鋳型(以
下単に鋳型という)と鋳片との摩擦をさらに軽減
させるために、鋳型の長さを短くし、下部にカー
ボングラフアイト系の鋳型を接続することも可能
である。
断熱性リング3は凝固開始位置が周方向にすべ
て同一線上になる様に制御する目的で設置する。
該断熱性リング3の装着位置は鋳型1と中間容器
2の境界であり、鋳型1の上部(第4図)から中
間容器2の下部(第5図)であればよく、鋳型内
壁面よりも同位置かあるいは内側に突出する構造
とする。断熱性リング3の材質としては、低熱伝
導性であることが望ましく、断熱性リング位置で
の溶鋼の凝固の進行が極めて小さくなる様に制御
する必要がある。又溶鋼に対する高温耐熱強度が
大きく、、化学的、機械的溶損の少ない材料の選
択が必要である。これらの特性を有する材料とし
てBNやSi3N4等が適当である。
中間容器2は鋳型1に固定して一体型構造とし
鋳型断面積よりも大きな面積を有し、該容器内で
温度を補償する目的で加熱装置6を付加すること
が望ましい。
第6図、第7図は本発明を実施するための他の
装置例を示す。第6図は2ストランドによつて小
断面ブルームの鋳造を行うための装置例であり、
この場合、多ストランドによつてさらに小断面の
ブルームが鋳造可能である。第7図は鋳型1内に
鋼管7を連続的に供給して、中空丸ブルームの鋳
造を行うための装置例であり、この場合、浸漬ノ
ズル4の径および鋳型1の断面サイズの制約を受
けることなしに鋳造可能である。
次に鋳造法について説明する。
第1図において鋳型1と中間容器2とを一体型
に組合せて鋳型内で湯面下凝固を行なわせて鋳造
する場合、鋳型内の凝固は、鋳型内への溶鋼の不
均一流入や鋳型と外殻との接触の程度により周方
向に不均一となり、凝固開始位置が変動する。ま
た鋳型1と中間容器2間の接合部に溶鋼が浸入し
凝固した場合等にシエルの破断が生じ、ブレーク
アウトが発生する。従つて安定して鋳造を行うた
めには、鋳型1と中間容器2との接合部下方にお
いて周方向均一に凝固を開始させてやる必要があ
る。前記接合部部位に断熱性リング3を設置する
ことで、該リングより上方に凝固が進行するのを
停止させるとともに鋳型周方向均一に凝固させる
ことができる。しかしこのように凝固させても先
に述べた如く、静止鋳造ではブレークアウト事故
が発生するため鋳型を鋳造方向に振動することが
必要である。
なお、鋳型の振動を通常の方法で行うと鋳片表
面に微小割れが発生するため手入が必要となる。
この様な問題を解決した方法として本発明にお
ける第1の発明は、鋳片の表面割れの少ない連続
鋳造法である。
第2図は、鋳型をサインカーブで振動させ、鋳
型の最大下降速度が鋳造速度より大きくなる領域
が存在する鋳型振動法における鋳型振動速度と鋳
造速度との関係(第2図a)及び鋳片と鋳型との
変位状況(第2図b)を示す。本鋳造法の特徴は
第2図aのように鋳型の下降速度が鋳片の鋳造速
度より大きい領域(斜線で示すネガテイブストリ
ツプ域)を存在させることにより生成した外殻を
鋳片の鋳造方向に押し付けて割れを圧着させるこ
とにより表面割れの少ない鋳片が得られることで
ある。
単位時間当りの鋳造長さに対する押付長さの比
は次式で表わされるネガテイブブストリツプの速
度率に相当する。
0<2sf−V/V×100<5%
ここでV=鋳造速度(mm/min)
s=振動ストローク(mm)
f=振動サイクル(c/min)
鋳型振動のストロークsが3mm未満では、鋳型
と凝固シエル間の摩擦が急激に大きくなり、鋳片
の表面割れやブレークアウトが発生する。またス
トロークsが10mmを超えると、鋳型上昇中に凝固
シエルが引上げられて破断する。このためストロ
ークsは3mm以上、10mm以下の範囲にすることが
必要である。また2sf−V/V×100が5%を超える
と、断熱性リングが凝固シエルを押し下げて鋳片
に凹みが発生する。このため2sf−V/V×100を5
%以下にすることが必要である。
この場合、鋳片の表面に1サイクル中に1回鋳
型の下降速度が鋳造速度より大きくなる領域に対
応して周方向に浅い凹みが発生し、この凹み部に
浅い微小割れが発生する場合がある。
本発明における第2発明は鋳片の周方向にみが
全く発生しない方法である。
第3図は、鋳型をサインカーブに近似して往復
運動させ鋳造速度が鋳型の最大下降速度より常に
大きくなる鋳型振動法における鋳型振動速度と鋳
造速度との関係(第3図a)及び鋳片と鋳型との
変位状況(第3図b)を示す。
本方法では、鋳型の下降速度が鋳造速度より常
に速くなる領域(ネガテイブストリツプ域)が全
く存在しないため、前述した1サイクル鋳造中に
1回発生する凹みが全く認められない。
しかし本方法は前方法と比べ鋳片―鋳型間の摩
擦が大きくなりやすく、摩擦軽減として鋳造鋼種
の鋳型内収縮量に合つた鋳型テーパーあるいは鋳
型長さを選択することが望ましい。
〔実施例〕
本発明の実施例を第1表に示す。SUS304の50
×700mmの断面を有する30Tonの鋳片を1000mm/
minの鋳造速度で鋳造した。鋳型の上部にBN又
はSi3N4からなる断熱性リングを設置することに
より鋳片のブレークアウトを全く生じないで鋳造
が可能である。
さらに、第1表でNo.3〜5に示す様にストロー
ク3〜10mmの範囲で単位時間当りの鋳造長さに対
する押付長さを5%以下にする条件を満足する範
囲0<2sf−V/V×100<5%にfを選択した場合
表面割れ発生指数は、No.1〜2と比べて約半分に
減少した。
次に第1表でNo.6〜8に示す様にストロークが
同じく3〜10mmの範囲で鋳造速度が鋳型の下降速
度より常に大きくなる範囲V>πsfにfを選択し
た場合、表面割れ発生指数はさらに減少し、No.1
〜2と比べて1/4以下に減少した。
〔発明の効果〕
本発明を実施することにより、従来法である浸
漬ノズル―パウダーキヤスト法で鋳造が不可能で
あつた小断面、特に薄肉スラブの鋳造が可能とな
り、空気酸化による汚染が無く、しかも小断面が
ゆえに発生しやすかつたノロカミ等の表面疵が無
い良好な鋳片の製造が可能となつた。
さらに鋳造振動条件を選択することにより鋳片
表面に発生していた微小な割れも半減することで
グラインダー手入歩留も向上した。
【表】[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for integrally connecting an intermediate container with a mold,
This relates to a subsurface solidification continuous casting method that starts solidification at a certain level of the mold. [Prior Art] The minimum dimension of the cross section of a slab in a continuous casting method is limited to the outer diameter of the immersion nozzle. Therefore, as a method for casting slabs having a diameter smaller than the minimum diameter of the immersion nozzle, a so-called submerged solidification casting method is known, in which casting is performed by connecting a tundish (hereinafter referred to as TD) and a mold. In such a casting method as well, lubrication between the mold and the slab is required as in normal methods. However, it is not possible with the submerged solidification casting method to reduce the friction between the mold and the slab by utilizing powder lubrication, as in the commonly applied powder casting method. On the other hand, static casting without lubrication between the mold and the slab is impossible because breakage of the outer shell, that is, a breakout accident will definitely occur. In addition, in the intermittent pultrusion casting method, which repeats constant drawing and stopping, not only does the mechanism of the drawing device that controls and drives the drawing and stopping become complicated, but it also causes cracks on the surface of the slab in response to the drawing and stopping cycles. There is a drawback that this occurs. For example, as a submerged solidification casting method,
There are methods described in Japanese Patent Publication No. 27028 and Japanese Patent Publication No. 53-37043. The former method involves casting by vertically vibrating the TD and the mold together, but in this method, the solidification start position varies depending on the uneven flow of molten steel into the mold and the degree of contact between the mold and the shell. There is a high risk of breakout due to rupture. The latter method involves inserting a graphite mold into the TD and casting without vibrating the mold in order to maintain a constant solidification start position.
For example, when casting low carbon stainless steel,
Graphite molds cause surface carburization of slabs, which requires surface removal. Therefore, the actual situation is that a method of casting by connecting a TD and a mold has not been put to practical use to date. [Problems to be Solved by the Invention] An object of the present invention is to keep the solidification start position constant and to prevent the occurrence of shell rupture, breakout, etc. in the submerged solidification casting method. [Means and effects for solving the problems] FIG. 1 shows an example of an apparatus for carrying out the present invention. An intermediate container 2 having an area larger than the cross-sectional area of the mold is placed above the water-cooled mold 1 to integrally communicate the water-cooled mold 1 and the intermediate container 2, and a heat insulating ring (described later) is placed at the boundary between the mold and the intermediate container. Install 3. The molten steel is fed from a TD (not shown) through a submerged nozzle 4 into the intermediate vessel 2, and solidification of the molten steel begins under the insulating ring 3. The outer shell slab 5 solidified in the water-cooled mold 1 is moved to pinch rolls (not shown) while the friction with the mold 1 is reduced by vibration in the casting direction of the mold 1 integrated with the intermediate container. It is continuously drawn and cast by The configuration and operation of this device will be explained in more detail. The mold is essentially the same as the water-cooled copper mold used in conventional continuous casting machines, but in order to further reduce the friction between the water-cooled mold (hereinafter simply referred to as the mold) and the slab, the length of the mold has been increased. It is also possible to shorten the length and connect a carbon graphite mold to the lower part. The heat insulating ring 3 is installed for the purpose of controlling the solidification start positions so that they are all on the same line in the circumferential direction.
The heat insulating ring 3 can be installed at the boundary between the mold 1 and the intermediate container 2, from the upper part of the mold 1 (Fig. 4) to the lower part of the intermediate container 2 (Fig. 5), and from the inner wall surface of the mold. Either the same position or a structure that protrudes inward. It is desirable that the material of the heat insulating ring 3 has low thermal conductivity, and it is necessary to control the material so that the progress of solidification of the molten steel at the position of the heat insulating ring is extremely small. In addition, it is necessary to select a material that has high high-temperature heat resistance against molten steel and has low chemical and mechanical erosion loss. BN, Si 3 N 4 and the like are suitable as materials having these characteristics. It is desirable that the intermediate container 2 is fixed to the mold 1 to have an integral structure and has an area larger than the cross-sectional area of the mold, and that a heating device 6 is added for the purpose of compensating the temperature within the container. FIGS. 6 and 7 show other examples of devices for implementing the present invention. FIG. 6 shows an example of an apparatus for casting small cross-section blooms using two strands.
In this case, blooms with even smaller cross-sections can be cast with multiple strands. FIG. 7 shows an example of an apparatus for casting a hollow round bloom by continuously feeding a steel pipe 7 into a mold 1. In this case, there are restrictions on the diameter of the immersion nozzle 4 and the cross-sectional size of the mold 1. It can be cast without any problems. Next, the casting method will be explained. In Fig. 1, when the mold 1 and the intermediate vessel 2 are combined into an integral mold and solidified under the surface of the metal in the mold for casting, the solidification within the mold may occur due to uneven inflow of molten steel into the mold or Depending on the degree of contact with the outer shell, it becomes non-uniform in the circumferential direction and the solidification start position varies. Further, when molten steel enters the joint between the mold 1 and the intermediate vessel 2 and solidifies, the shell ruptures and a breakout occurs. Therefore, in order to perform stable casting, it is necessary to start solidification uniformly in the circumferential direction below the joint between the mold 1 and the intermediate container 2. By installing the heat insulating ring 3 at the joint portion, it is possible to stop solidification from progressing above the ring and to solidify uniformly in the circumferential direction of the mold. However, even if solidified in this manner, as mentioned above, breakout accidents occur in stationary casting, so it is necessary to vibrate the mold in the casting direction. Note that if the mold is vibrated in the usual way, microcracks will occur on the surface of the slab, which will require maintenance. The first aspect of the present invention as a method for solving such problems is a continuous casting method that causes fewer surface cracks in slabs. Figure 2 shows the relationship between mold vibration speed and casting speed (Figure 2a) and slab in the mold vibration method in which the mold is vibrated in a sine curve and there is a region where the maximum descending speed of the mold is greater than the casting speed. The displacement situation between the mold and the mold (Fig. 2b) is shown. The feature of this casting method is that, as shown in Fig. 2a, there is a region (negative strip region shown with diagonal lines) in which the descending speed of the mold is higher than the casting speed of the slab. By compressing the cracks by pressing in the same direction, slabs with fewer surface cracks can be obtained. The ratio of the pressing length to the casting length per unit time corresponds to the negative strip speed rate expressed by the following equation. 0<2sf-V/V×100<5% where V=casting speed (mm/min) s=vibration stroke (mm) f=vibration cycle (c/min) If the mold vibration stroke s is less than 3mm, the mold The friction between the solidified shell and the solidified shell increases rapidly, causing surface cracks and breakouts in the slab. Moreover, if the stroke s exceeds 10 mm, the solidified shell will be pulled up and broken while the mold is rising. For this reason, the stroke s needs to be in the range of 3 mm or more and 10 mm or less. Moreover, when 2sf-V/V×100 exceeds 5%, the heat insulating ring pushes down the solidified shell and dents occur in the slab. Therefore, it is necessary to keep 2sf-V/V×100 below 5%. In this case, a shallow dent is formed on the surface of the slab in the circumferential direction corresponding to the area where the descending speed of the mold is greater than the casting speed once during one cycle, and shallow micro-cracks may occur in this dent. be. The second aspect of the present invention is a method in which no blemishes occur in the circumferential direction of the slab. Figure 3 shows the relationship between the mold vibration speed and the casting speed (Figure 3a) and the slab in the mold vibration method, in which the mold is reciprocated approximating a sine curve and the casting speed is always greater than the maximum descending speed of the mold. The displacement situation between the mold and the mold (Fig. 3b) is shown. In this method, since there is no region (negative strip region) in which the descending speed of the mold is always faster than the casting speed, the dent that occurs once during one cycle of casting as described above is not observed at all. However, this method tends to cause greater friction between the slab and the mold than the previous method, and to reduce friction it is desirable to select a mold taper or mold length that matches the amount of shrinkage in the mold of the cast steel type. [Examples] Examples of the present invention are shown in Table 1. 50 of SUS304
A 30T slab with a cross section of ×700mm is 1000mm/
It was cast at a casting speed of min. By installing an insulating ring made of BN or Si 3 N 4 on the top of the mold, casting can be performed without any breakout of the slab. Furthermore, as shown in Nos. 3 to 5 in Table 1, the range 0<2sf-V/ satisfies the condition that the pressing length to the casting length per unit time is 5% or less in the stroke range of 3 to 10 mm. When f was selected to be V×100<5%, the surface crack occurrence index was reduced to about half compared to Nos. 1 and 2. Next, as shown in Nos. 6 to 8 in Table 1, if f is selected in the range V > πsf in which the casting speed is always greater than the descending speed of the mold in the same stroke range of 3 to 10 mm, the surface crack occurrence index further decreased, becoming No.1
It decreased to less than 1/4 compared to ~2. [Effects of the Invention] By carrying out the present invention, it becomes possible to cast small sections, especially thin slabs, which were impossible to cast using the conventional immersion nozzle powder casting method, and there is no contamination due to air oxidation. In addition, it has become possible to produce a good slab without surface defects such as slag, which tend to occur due to the small cross section. Furthermore, by selecting the casting vibration conditions, the number of minute cracks that had occurred on the slab surface was reduced by half, and the grinder maintenance yield was also improved. 【table】
第1図、第4図、第5図、第6図、第7図は本
発明で実施するための装置例を示す説明図、第2
図は鋳型の最大下降速度が鋳造速度より大きくな
る領域での鋳型振動速度と鋳造速度との関係a
と、鋳片と鋳片に対する鋳型の変位状況bを示す
図、第3図は鋳造速度が鋳型の下降速度より常に
大きくなる鋳型振動法において鋳型振動速度と鋳
造速度との関係aと、鋳片と鋳片に対する鋳型の
変位状況bを示す図である。
1:水冷鋳型、2:中間容器、3:断熱性リン
グ、4:浸漬ノズル、5:外殻、6:加熱装置、
7:鋼管。
1, 4, 5, 6, and 7 are explanatory diagrams showing examples of apparatus for carrying out the present invention, and
The figure shows the relationship a between mold vibration speed and casting speed in the region where the maximum descending speed of the mold is greater than the casting speed.
Figure 3 shows the relationship a between the mold vibration speed and the casting speed in the mold vibration method in which the casting speed is always greater than the descending speed of the mold, and the displacement situation b of the mold relative to the slab and the slab. FIG. 3 is a diagram showing the displacement situation b of the mold with respect to the slab. 1: Water cooling mold, 2: Intermediate container, 3: Heat insulating ring, 4: Immersion nozzle, 5: Outer shell, 6: Heating device,
7: Steel pipe.
Claims (1)
組合せ鋳型を用い、該水冷鋳型と該中間容器の境
界に断熱性リングを装着して鋳造する鋼の連続鋳
造法において、前記一体型組合せ鋳型をサインカ
ーブに近似させて鋳造方向に振動させるととも
に、該鋳型の振動における最大下降速度を鋳造速
度よりも速くし、かつ次の条件を満足させること
を特徴とする湯面下凝固連続鋳造法。 3≦s≦10 0<2sf−V/V×100≦5% ただし V=鋳造速度(mm/min) s=振動ストローク(mm) f=審動サイクル(c/min) 2 水冷鋳造の上部に中間容器を配置した一体型
組合せ鋳型を用い、該水冷鋳型と該中間容器の境
界に断熱性リングを装着して鋳造する鋼の連続鋳
造法において、、前記一体型組合せ鋳型をサイン
カーブに近似させて鋳造方向に振動させるととも
に、鋳造速度を該鋳型の振動速度よりも常に速く
し、かつ鋳型の振動ストロークを3mm以上、10mm
以下にすることを特徴とする湯面下凝固連続鋳造
法。[Scope of Claims] 1. A continuous steel casting method in which an integral combination mold is used in which an intermediate container is placed above a water-cooled mold, and a heat insulating ring is attached to the boundary between the water-cooled mold and the intermediate container. The above-mentioned integrated combination mold is vibrated in the casting direction approximating a sine curve, and the maximum descending speed of the mold during vibration is faster than the casting speed, and the following conditions are satisfied: Solidification continuous casting method. 3≦s≦10 0<2sf-V/V×100≦5% where V=casting speed (mm/min) s=vibration stroke (mm) f=motion cycle (c/min) 2 At the top of water-cooled casting In a continuous steel casting method in which an integral combination mold in which an intermediate container is arranged is used, and a heat insulating ring is attached to the boundary between the water-cooled mold and the intermediate container for casting, the integral combination mold is approximated to a sine curve. At the same time, the casting speed is always faster than the vibration speed of the mold, and the vibration stroke of the mold is set to 3 mm or more and 10 mm.
A subsurface solidification continuous casting method characterized by the following:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15995184A JPS6137357A (en) | 1984-07-30 | 1984-07-30 | Continuous casting method by solidification under molten metal surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15995184A JPS6137357A (en) | 1984-07-30 | 1984-07-30 | Continuous casting method by solidification under molten metal surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6137357A JPS6137357A (en) | 1986-02-22 |
JPH0243576B2 true JPH0243576B2 (en) | 1990-09-28 |
Family
ID=15704724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15995184A Granted JPS6137357A (en) | 1984-07-30 | 1984-07-30 | Continuous casting method by solidification under molten metal surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6137357A (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53135829A (en) * | 1977-05-02 | 1978-11-27 | Ishikawajima Harima Heavy Ind | Continuous casting method |
JPS5647244A (en) * | 1979-09-25 | 1981-04-28 | Nippon Kokan Kk <Nkk> | Continuous casting method |
JPS59110451A (en) * | 1982-12-17 | 1984-06-26 | Hitachi Ltd | Continuous casting device of steel |
-
1984
- 1984-07-30 JP JP15995184A patent/JPS6137357A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6137357A (en) | 1986-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3746077A (en) | Apparatus for upward casting | |
US5176197A (en) | Continuous caster mold and continuous casting process | |
US4515204A (en) | Continuous metal casting | |
US4605056A (en) | Process and apparatus for the horizontal continuous casting of a metal molding | |
US4211270A (en) | Method for continuous casting of metallic strands at exceptionally high speeds | |
US4736789A (en) | Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using an oscillating mold assembly | |
US4911226A (en) | Method and apparatus for continuously casting strip steel | |
EP0448773B1 (en) | Continuous caster mold and continuous casting process | |
EP0174765B1 (en) | Method and apparatus for continuous casting of crystalline strip | |
JPH0635030B2 (en) | Horizontal continuous casting method and apparatus for metal | |
JP3022211B2 (en) | Mold for continuous casting of round billet slab and continuous casting method using the mold | |
US4307770A (en) | Mold assembly and method for continuous casting of metallic strands at exceptionally high speeds | |
JPH0243576B2 (en) | ||
EP0249158B1 (en) | A method for continuous casting of metal and an apparatus therefor | |
EP0174767B1 (en) | Method and apparatus for direct casting of crystalline strip by radiantly cooling | |
JP3727354B2 (en) | Mold for vertical hot top continuous casting of metal | |
EP0174766B1 (en) | Method and apparatus for direct casting of crystalline strip in non-oxidizing atmosphere | |
EP0042995B1 (en) | Apparatus and method for continuous casting of metallic strands at exceptionally high speeds using oscillating mold assembly | |
EP0040070B1 (en) | Apparatus for strip casting | |
US5232046A (en) | Strand casting apparatus and method | |
KR102312118B1 (en) | Apparatus for continuous casting process of steel material by controlling width-directional soft reduction and method of continuous casting using the same | |
JPH09192786A (en) | Mold for continuous casting of steel and continuous casting method | |
RU2009005C1 (en) | Method of producing sheet slab from aluminium and its alloys | |
JPS60137562A (en) | Continuous casting method for thin sheet | |
JPS60191642A (en) | Horizontal and continuous casting method of metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |