JPH0242926B2 - - Google Patents
Info
- Publication number
- JPH0242926B2 JPH0242926B2 JP63219945A JP21994588A JPH0242926B2 JP H0242926 B2 JPH0242926 B2 JP H0242926B2 JP 63219945 A JP63219945 A JP 63219945A JP 21994588 A JP21994588 A JP 21994588A JP H0242926 B2 JPH0242926 B2 JP H0242926B2
- Authority
- JP
- Japan
- Prior art keywords
- flame
- acrylonitrile
- fiber bundle
- fibers
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Inorganic Fibers (AREA)
- Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
Description
本発明は、炭素繊維の製造時炭素化炉に蓄積す
るタール、繊維屑等を減少させて長時間の連続操
業を可能にする炭素繊維の製法である。
従来より、アクリロニトリル系繊維を耐炎化処
理して、アクリロニトリル系耐炎繊維となし、次
いでこのアクリロニトリル系耐炎繊維を炭素化し
て炭素繊維が製造される。この製造工程における
中間生成物の耐炎繊維は、そのま耐炎性を生かし
て関連分野で使用されている。
この耐炎繊維束を炭素化するに際して、炭素化
炉内に蓄積するタール、繊維屑、その他の堆積物
は、炭素化炉の長期にわたる連続操業を不可能に
し、定期的な内部の掃除を余儀なくさせる。ま
た、炭素化炉内に堆積物が多くたまると、炉を閉
塞しないまでも、炉内の糸道が堆積物によつて狭
窄され、これが被処理繊維束の毛羽立ちの原因と
なる。
本発明は、このような問題を解決し炉内におけ
る堆積物を減少させ繊維束の毛羽立ちをおさえ、
高品質の炭素繊維を得ることを目的とし、この目
的達成のために、特殊な処理を施したアクリロニ
トリル系耐炎繊維を用いて炭素繊維を製造するも
のである。
本発明は下記の通りである。
アクリロニトリル系繊維を酸化性雰囲気中で酸
化処理して得られたアクリロニトリル系耐炎繊維
束に、ポリビニルアルコール、ポリエチレンオキ
シド、ポリアクリルアミドの群から選ばれた水溶
性高分子物質の1種又は2種以上を含む液を付与
した後、250℃以下の温度で乾操して、該高分子
物質を0.1〜2.0重量%(対繊維束)付着させ、そ
の後400℃以上の炭素化炉に導入することを特徴
とする炭素繊維の製法。
本発明によると、炭素化炉内における堆積物を
減少させるとともに、得られた炭素繊維束の毛羽
を減少させ、また、炭素繊維束内に繊維相互の膠
着のない高品質の炭素繊維を得ることができる。
本発明において、アクリロニトリル系耐炎繊維
束とは、アクリロニトリル系繊維束の既知の方法
で耐炎化処理して得られた繊維束である。
ここにアクリロニトリル系繊維束とは、その重
合体成分中にアクリロニトリル成分を少くとも90
重量%以上含み、共重合成分としてアクリロニト
リルとの共重合用に常用されるビニル系化合物を
0〜10重量%含むところの重合体又は共重合体よ
りなる繊維束である。
繊維束としては、単繊維繊度0.5〜1.2デニール
のフイラメント500〜3000本構成のものが通常用
いられる。このアクリロニトリル系繊維束の耐炎
化処理には、例えば特公昭52−39100号公報記載
の既知の方法が採用され得る。
このようにして得られたアクリロニトリル系耐
炎繊維は製造工程中のローラーガイド等との接触
によつて非常に毛羽立ち易い状態にある。
本発明において、アクリロニトリル系耐炎繊維
束に付与される水溶性高分子物質は、ポリビニル
アルコート、ポリエチレンオキシド、ポリアクリ
ルアミドの群から選ばれた、1種又は2種以上で
ある。
ここにポリエチレンオキシドは、分子量10万〜
480万、好ましくは10万〜110万のものである。ア
クリロニトリル系耐炎繊維束へのこれら水溶性高
分子物質液の付与は、上記のような水溶性高分子
物質を1g/〜20g/の水溶液又は分散液と
なし、この液中に繊維束を通過させる方法による
か、あるいは、液を繊維束にスプレーし、又はロ
ーラー接触させる方法などによつて任意に行うこ
とができる。
このようにて付与した後に、250℃以下の温度
で乾燥する。乾燥をしないままで炭素化炉へ導入
すると、得られる炭素繊維は膠着を起きし強度も
低下する。
また、250℃を超える温度で乾燥すると同様な
膠着現象が起こり炭素化を円滑に実施することが
できない。
耐炎繊維束に対するこれら物質の付着量は0.1
〜2.0重量%とすることが必要で、これより少な
いと効果はなく、また、これより量が多いと得ら
れた炭素繊維の強度が低下する。とくに好ましい
付着量は0.3〜0.6重量%である。
本発明によりアクリロニトリル系耐炎繊維束を
炭素化炉にて炭素化すると、炭素化炉内における
タール等による堆積物の量が減少し、長期の安定
操作が可能になるとともに、得られた炭素繊維の
品質も向上する。
例えばアクリロニトリル系耐炎繊維束(0.9デ
ニール、6000フイラメント)を450本連続的に炭
素化炉に導入し窒素気流下に1400℃で炭素化した
場合における炭素化炉内の堆積物の量と製品炭素
繊維の強度は、下記第1表に示す通りである。
The present invention is a method for producing carbon fibers that reduces tar, fiber waste, etc. that accumulate in a carbonization furnace during production of carbon fibers, and enables continuous operation for a long time. Conventionally, carbon fibers are manufactured by subjecting acrylonitrile fibers to flame-retardant treatment to produce acrylonitrile-based flame-resistant fibers, and then carbonizing the acrylonitrile-based flame-resistant fibers. Flame-resistant fibers, which are intermediate products in this manufacturing process, are used in related fields as they are, taking advantage of their flame resistance. When carbonizing this flame-resistant fiber bundle, tar, fiber waste, and other deposits that accumulate inside the carbonization furnace make long-term continuous operation of the carbonization furnace impossible and require periodic internal cleaning. . Further, if a large amount of deposits accumulates in the carbonization furnace, even if the furnace is not clogged, the yarn path in the furnace is narrowed by the deposits, which causes the fiber bundles to be treated to become fluffy. The present invention solves these problems by reducing deposits in the furnace, suppressing fluffing of fiber bundles, and
The purpose is to obtain high-quality carbon fibers, and to achieve this purpose, carbon fibers are manufactured using acrylonitrile-based flame-resistant fibers that have undergone special treatment. The present invention is as follows. One or more water-soluble polymeric substances selected from the group of polyvinyl alcohol, polyethylene oxide, and polyacrylamide are added to acrylonitrile flame-resistant fiber bundles obtained by oxidizing acrylonitrile fibers in an oxidizing atmosphere. After applying the containing liquid, drying is performed at a temperature of 250°C or lower to deposit 0.1 to 2.0% by weight (based on the fiber bundle) of the polymeric substance, and then introduced into a carbonization furnace at 400°C or higher. Carbon fiber manufacturing method. According to the present invention, it is possible to reduce deposits in a carbonization furnace, reduce fuzz in the obtained carbon fiber bundle, and obtain high quality carbon fibers in which fibers do not stick to each other in the carbon fiber bundle. Can be done. In the present invention, an acrylonitrile-based flame-resistant fiber bundle is a fiber bundle obtained by subjecting an acrylonitrile-based fiber bundle to flame-retardant treatment using a known method. Here, an acrylonitrile fiber bundle is defined as having at least 90% acrylonitrile component in its polymer component.
It is a fiber bundle made of a polymer or copolymer containing 0 to 10% by weight of a vinyl compound commonly used for copolymerization with acrylonitrile as a copolymerization component. As a fiber bundle, one composed of 500 to 3000 filaments with a single fiber fineness of 0.5 to 1.2 deniers is usually used. The known method described in Japanese Patent Publication No. 52-39100, for example, may be employed for flame-retardant treatment of this acrylonitrile fiber bundle. The acrylonitrile flame-resistant fiber thus obtained is extremely susceptible to fuzzing due to contact with roller guides and the like during the manufacturing process. In the present invention, the water-soluble polymeric substance added to the acrylonitrile flame-resistant fiber bundle is one or more selected from the group of polyvinylalcoat, polyethylene oxide, and polyacrylamide. Polyethylene oxide here has a molecular weight of 100,000~
4.8 million, preferably 100,000 to 1.1 million. To apply these water-soluble polymer substance liquids to the acrylonitrile-based flame-resistant fiber bundles, the above-mentioned water-soluble polymer substances are made into an aqueous solution or dispersion liquid of 1 g/~20 g/, and the fiber bundles are passed through this liquid. This can be carried out arbitrarily by any method, or by spraying a liquid on the fiber bundle or bringing it into contact with a roller. After application in this manner, it is dried at a temperature of 250°C or less. If the carbon fibers are introduced into the carbonization furnace without drying, the resulting carbon fibers will stick together and have reduced strength. Furthermore, when drying at a temperature exceeding 250°C, a similar sticking phenomenon occurs and carbonization cannot be carried out smoothly. The amount of these substances attached to the flame-resistant fiber bundle is 0.1
It is necessary to set the amount to ~2.0% by weight; if the amount is less than this, there will be no effect, and if the amount is more than this, the strength of the obtained carbon fiber will decrease. A particularly preferable coating amount is 0.3 to 0.6% by weight. When acrylonitrile flame-resistant fiber bundles are carbonized in a carbonization furnace according to the present invention, the amount of deposits due to tar etc. in the carbonization furnace is reduced, long-term stable operation is possible, and the obtained carbon fibers are Quality will also improve. For example, when 450 acrylonitrile flame-resistant fiber bundles (0.9 denier, 6000 filaments) are continuously introduced into a carbonization furnace and carbonized at 1400℃ under a nitrogen stream, the amount of deposits in the carbonization furnace and the product carbon fiber The strength is shown in Table 1 below.
【表】
第1表の結果によれば、本発明では、炭素化工
程において炭素化炉内の堆積物の量が少なく、炭
素繊維の強度が高いことがわかる。この堆積物
は、主としてタール状物質と炭素繊維等の短繊維
化物である。乾燥しなかつた耐炎繊維を炭素化し
た比較例の場合、炭素化工程中で繊維束が膠着を
起こし単繊維の切断、片割れによる短繊維の脱落
が多く、このため堆積物が多くなり、更にこの堆
積物が糸道を閉塞し、繊維の切断を助長し、得ら
れた炭素繊維の強度も低下した。
次に、耐炎繊維に対するポリアクリルアミドの
付着量による影響を第2表に示す。[Table] According to the results in Table 1, it can be seen that in the present invention, the amount of deposits in the carbonization furnace during the carbonization process is small, and the strength of the carbon fibers is high. This deposit is mainly tar-like substances and short fibers such as carbon fibers. In the case of a comparative example in which flame-resistant fibers that had not been dried were carbonized, the fiber bundles stuck together during the carbonization process, resulting in many single fibers being cut and short fibers falling off due to one-sided splitting, resulting in a large amount of deposits. The deposits clogged the yarn path, promoted fiber breakage, and also reduced the strength of the resulting carbon fibers. Next, Table 2 shows the influence of the amount of polyacrylamide attached to the flame-resistant fibers.
【表】
〓注〓 *:比較例
第2表の結果から、0.1重量%未満の付着量で
は堆積物の量を減少させる効果がなく、2.重量%
を超える付着量では得られた炭素繊維の強度が低
下するが、本発明の0.1〜2.0重量%の範囲に属す
る付着量の場合にのみ、堆積物の量が際立つて少
く、製品炭素繊維の強度が高水準を維持している
ことがわかる。
アクリロニトリル系耐炎繊維に水溶性高分子物
質を付与し、次いで不活性雰囲気中で炭素化する
方法は、例えば特開昭55−122021号公報によつて
知られている。ここに記載された方法は、耐炎繊
維に水溶性高分子物質としてポリエチレングリコ
ール、ポリプロピレングリコール又はこれらのア
ルキル誘導体を付与し、次いで炭素化工程に供す
るものである。具体例としては、ポリエチレング
リコール(分子量400〜10000)、ポリプロピレン
グリコール(分子量600〜20000)等が挙げられて
いる。
本発明でアクリロニトリル系耐炎繊維束に付与
される水溶性高分子物質の1種であるポリエチレ
ンオキシドは、基本骨格的には上記公報に記載さ
れているポリエチレングリコールと同一の繰り返
し化学構造を有するが、特に分子量が高く、通常
70000以上の分子量のものであつた、このものは、
分子量の低いポリエチレングリコールとは物質
(化合物)として区別され、性質も異なる。
例えば分子量の低いポリエチレングリコールは
液状又はワツクス状であるのに対し、本発明で使
用される高分子量のポリエチレンオキシドは、結
晶で(固体で)、しかも、平滑作用に優れている
(Encyclopedia of Polymer Science and
Technology.No.6 p117〜145、Makromol
chem.,Vol73、No.109(1964)、「水溶性高分子」
(117、119及び125頁)化学工業社発行、及び「水
溶性熱可塑性樹脂」(11頁)製鉄化学工業(株)ポリ
マー事業部発行の各文献参照)。
アクリロニトリル系耐炎繊維束は、次工程で不
活性雰囲気の高温炉にて炭素化される。したがつ
て、アクリロニトリル系耐炎繊維束に付与された
水溶性高分子物質の水溶液又は分散液はこのまま
でも、高温炉で乾燥し、水溶性高分子物質は炭化
する。しかしながら、アクリロニトリル系耐炎繊
維束にポリビニルアルコール、ポリエチレンオキ
シド、ポリアクリルアミドの水溶性高分子物質を
付与した場合、この炭素化工程に先立ち、250℃
以下の温度で乾燥することが、繊維強度向上、炉
内堆積物減少の観点から必要である。
本発明は、アクリロニトリル系耐炎繊維束のポ
リビニルアルコール、ポリエチレンオキシド、ポ
リアクリルアミドの水溶性高分子物質を付与し、
不活性雰囲気中で炭素化する前に乾燥することに
よつて、炭素化工程に供される繊維束を構成する
単繊維の相互間に固体の被膜が形成され、単繊維
相互の滑性が増す結果、前記したとおり、炭素化
工程での長時間の連続運転と、高い炭素繊維の機
械的特性を得るものであり、このような方法は従
来知られていない。
本発明によれば、炭素化炉内の閉塞がなく、長
期にわたる連続運転が可能となり、操業性が向上
する。
本発明によれば、炭素化炉内の閉塞がなく、長
期にわたる連続運転が可能となり、操業性が向上
する。
以下、本発明を実施例により説明する。
実施例 1
0.9デニールの6000フイラメントよりなるアク
リロニトリル繊維束(比重1.4)450本を酸化性雰
囲気中250℃の温度、140m/時間の速度で耐炎化
処理し、得られた耐炎繊維束を2g/のポリビ
ニルアルコール水溶液に浸漬した後、約100℃の
温度で乾燥し(付着量0.4重量%)炭素化炉へ導
入した。炭素化炉では窒素気流中1400℃で炭素化
した。300時間運転た後、調べたところ、毛羽を
含む堆積物の量は2.4Kgであり、操業継続に何ら
の支障がなかつた。得られた炭素繊維は強度420
Kg/mm2、弾性率24.6Tmm2、伸度1.7%であつた。
比較例1(付着を行わなかつた例)
実施例1と同様の操作条件で水溶性高分子物質
を付着しないで300時間運転したところ、運転後
の堆積物の量は5.1Kgにも達した。得られた炭素
繊維は毛羽が多く、この炭素繊維は強度405Kg/
mm2、弾性率24.5T/mm2、伸度1.7%であつた。
実施例 2
耐炎繊維束を2g/のポリエチレンオキシド
(分子量70万)の水溶液に浸漬(付着量0.4重量
%)しかほかは、実施例1と同様の操作条件で
300時間運転したところ、運転後の炭素化炉内の
堆積物の量は2.5Kgであつた。
得られた炭素繊維は、強度410Kg/mm2、弾性率
24.2T/mm2、伸度1.69%であつた。
実施例 3
耐炎繊維束を2g/のポリアクリルアミド水
溶液に浸漬(付着量0.4重量%)したほかは、実
施例1と同様の操作条件で300時間運転したとこ
ろ、運転後の炭素化炉内の堆積物の量は2.0Kgで
あつた。
得られた炭素繊維は、強度406Kg/mm2、弾性率
24.1T/mm2伸度1.68%であつた。
比較例2(乾燥を行わなかつた例)
耐炎繊維束を2g/のポリビニルアルコール
水溶液に浸漬した(付着量0.4重量%)後、乾燥
を行わなかつた以外は、実施例1と同様の操作条
件で実施した結果、300時間に到達する前に炉内
は堆積物により閉塞し運転不能となつた。得られ
た炭素繊維の強度は250Kg/mm2、弾性率24.0T/
mm2、伸度は1.1であつた。
比較例3(乾燥温度が本発明範囲外の例)
耐炎繊維束を2g/のポリビニルアルコール
水溶液に浸漬した(付着量0.2重量%)後、300℃
の乾燥を行つた以外は、実施例1と同様の操作条
件で実施した結果、300時間に到達する前に炉内
は堆積物により閉塞し運転不能となつた。得られ
た炭素繊維の強度は240Kg/mm2、弾性率24.0T/
mm2、伸度は1.0%であつた。
比較例4(耐炎繊維束に対し付着を行わなかつた
例)
分子量100万のポリエチレンオキシドを0.4重量
%を付着した0.9デニール、6000フイラメントの
アクリロニトリル繊維束450本を、耐炎化後では
ポリエチレンオキシドを付着させることなく、実
施例1と同様の操作条件で300時間運転したとこ
ろ、運転後の体積物の量は6.1Kgであつた。得ら
れた炭素繊維は膠着しており、毛羽が多かつた。
また、強度は240Kg/mm2、弾性率23T/mm2、伸
度1.0%であつた。[Table] 〓Note〓 *: Comparative example From the results in Table 2, it can be seen that a deposition amount of less than 0.1% by weight has no effect on reducing the amount of deposits, and 2.% by weight
If the amount of deposits exceeds 0.1 to 2.0% by weight, the strength of the obtained carbon fiber will decrease, but only in the case of the amount of deposits falling within the range of 0.1 to 2.0% by weight, the amount of deposits will be noticeably small and the strength of the product carbon fiber will decrease. It can be seen that the level is maintained at a high level. A method of applying a water-soluble polymeric substance to an acrylonitrile flame-resistant fiber and then carbonizing the fiber in an inert atmosphere is known, for example, from JP-A-55-122021. In the method described herein, polyethylene glycol, polypropylene glycol, or an alkyl derivative thereof is applied as a water-soluble polymer substance to flame-resistant fibers, and then the fibers are subjected to a carbonization step. Specific examples include polyethylene glycol (molecular weight 400 to 10,000), polypropylene glycol (molecular weight 600 to 20,000), and the like. Polyethylene oxide, which is a type of water-soluble polymer substance added to the acrylonitrile flame-resistant fiber bundle in the present invention, has the same repeating chemical structure as the polyethylene glycol described in the above-mentioned publication in terms of its basic skeleton. Particularly high molecular weight, usually
This substance had a molecular weight of over 70,000.
It is distinguished as a substance (compound) from polyethylene glycol, which has a low molecular weight, and has different properties. For example, polyethylene glycol with a low molecular weight is liquid or waxy, whereas polyethylene oxide with a high molecular weight used in the present invention is crystalline (solid) and has excellent smoothing properties (Encyclopedia of Polymer Science and
Technology.No.6 p117-145, Makromol
chem., Vol. 73, No. 109 (1964), “Water-soluble polymers”
(pages 117, 119, and 125) published by Kagaku Kogyo Co., Ltd., and "Water-soluble thermoplastic resin" (page 11) published by Polymer Division of Seitetsu Kagaku Kogyo Co., Ltd.). In the next step, the acrylonitrile-based flame-resistant fiber bundle is carbonized in a high-temperature furnace in an inert atmosphere. Therefore, even if the aqueous solution or dispersion of the water-soluble polymeric substance applied to the acrylonitrile-based flame-resistant fiber bundle is dried in a high-temperature oven, the water-soluble polymeric substance is carbonized. However, when water-soluble polymer substances such as polyvinyl alcohol, polyethylene oxide, and polyacrylamide are applied to acrylonitrile-based flame-resistant fiber bundles, the temperature at 250°C prior to this carbonization process is
It is necessary to dry at the following temperature from the viewpoint of improving fiber strength and reducing deposits in the furnace. The present invention provides acrylonitrile-based flame-resistant fiber bundles with water-soluble polymeric substances such as polyvinyl alcohol, polyethylene oxide, and polyacrylamide;
By drying before carbonization in an inert atmosphere, a solid film is formed between the single fibers that make up the fiber bundle subjected to the carbonization process, increasing the slipperiness between the single fibers. As a result, as described above, long-term continuous operation in the carbonization process and high mechanical properties of carbon fibers are obtained, and such a method has not been known in the past. According to the present invention, there is no clogging in the carbonization furnace, allowing continuous operation over a long period of time, and improving operability. According to the present invention, there is no clogging in the carbonization furnace, allowing continuous operation over a long period of time, and improving operability. The present invention will be explained below using examples. Example 1 450 acrylonitrile fiber bundles (specific gravity 1.4) consisting of 0.9 denier 6000 filaments were flame-retardant treated in an oxidizing atmosphere at a temperature of 250°C at a speed of 140 m/hour, and the resulting flame-resistant fiber bundle was After being immersed in a polyvinyl alcohol aqueous solution, it was dried at a temperature of approximately 100°C (adhesion amount: 0.4% by weight) and introduced into a carbonization furnace. Carbonization was carried out in a carbonization furnace at 1400℃ in a nitrogen stream. After 300 hours of operation, an investigation revealed that the amount of sediment, including fluff, was 2.4 kg, and there was no problem in continuing the operation. The resulting carbon fiber has a strength of 420
Kg/mm 2 , elastic modulus 24.6 Tmm 2 , and elongation 1.7%. Comparative Example 1 (Example in which no deposition was performed) When operation was performed for 300 hours under the same operating conditions as in Example 1 without depositing a water-soluble polymer substance, the amount of deposits after operation reached as much as 5.1 kg. The obtained carbon fiber has a lot of fuzz, and this carbon fiber has a strength of 405 kg/
mm 2 , elastic modulus 24.5T/mm 2 , and elongation 1.7%. Example 2 A flame-resistant fiber bundle was immersed in an aqueous solution of 2 g of polyethylene oxide (molecular weight: 700,000) (adhesion amount: 0.4% by weight) under the same operating conditions as in Example 1.
After 300 hours of operation, the amount of deposits in the carbonization furnace after operation was 2.5 kg. The obtained carbon fiber has a strength of 410 Kg/mm 2 and an elastic modulus of
The elongation was 24.2T/mm 2 and 1.69%. Example 3 Operation was performed for 300 hours under the same operating conditions as in Example 1, except that the flame-resistant fiber bundle was immersed in a 2 g polyacrylamide aqueous solution (coating amount: 0.4% by weight). The amount of material was 2.0Kg. The obtained carbon fiber has a strength of 406 Kg/mm 2 and an elastic modulus of
The elongation was 24.1T/ mm2 and 1.68%. Comparative Example 2 (example without drying) A flame-resistant fiber bundle was immersed in a 2 g/aqueous polyvinyl alcohol solution (adhesion amount: 0.4% by weight) and then dried under the same operating conditions as in Example 1, except that it was not dried. As a result, the inside of the furnace became clogged with deposits and became inoperable before reaching 300 hours. The obtained carbon fiber has a strength of 250Kg/mm 2 and an elastic modulus of 24.0T/
mm 2 and elongation was 1.1. Comparative Example 3 (Example where the drying temperature is outside the range of the present invention) A flame-resistant fiber bundle was immersed in a 2 g/aqueous polyvinyl alcohol solution (adhesion amount: 0.2% by weight), and then heated at 300°C.
As a result of carrying out the operation under the same operating conditions as in Example 1 except that drying was carried out, the inside of the furnace was clogged with deposits and operation became impossible before reaching 300 hours. The obtained carbon fiber has a strength of 240Kg/mm 2 and an elastic modulus of 24.0T/
mm 2 and elongation was 1.0%. Comparative Example 4 (example in which no adhesion was applied to flame-resistant fiber bundles) 450 0.9-denier, 6000-filament acrylonitrile fiber bundles were attached with 0.4% by weight of polyethylene oxide with a molecular weight of 1 million, and after flame-retardation, polyethylene oxide was attached. When the system was operated for 300 hours under the same operating conditions as in Example 1, the amount of bulk material after operation was 6.1 kg. The obtained carbon fibers were sticky and had a lot of fuzz. Further, the strength was 240 Kg/mm 2 , the elastic modulus was 23 T/mm 2 , and the elongation was 1.0%.
Claims (1)
酸化処理して得られたアクリロニトリル系耐炎繊
維束に、ポリビニルアルコール、ポリエチレンオ
キシド、ポリアクリルアミドの群から選ばれた水
溶性高分子物質の1種又は2種以上を含む液を付
与した後、250℃以下の温度で乾燥して、該高分
子物質を0.1〜2.0重量%(対繊維束)付着させ、
その後400℃以上の炭素化炉に導入することを特
徴とする炭素繊維の製法。1 One or more water-soluble polymeric substances selected from the group of polyvinyl alcohol, polyethylene oxide, and polyacrylamide are added to the acrylonitrile flame-resistant fiber bundle obtained by oxidizing acrylonitrile fibers in an oxidizing atmosphere. After applying a liquid containing the above, drying at a temperature of 250°C or lower to deposit 0.1 to 2.0% by weight (based on the fiber bundle) of the polymeric substance,
A method for manufacturing carbon fiber, which is characterized by introducing the carbon fiber into a carbonization furnace at a temperature of 400℃ or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21994588A JPH026626A (en) | 1988-09-02 | 1988-09-02 | Production of carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21994588A JPH026626A (en) | 1988-09-02 | 1988-09-02 | Production of carbon fiber |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9694281A Division JPS584825A (en) | 1981-06-23 | 1981-06-23 | Production of carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH026626A JPH026626A (en) | 1990-01-10 |
JPH0242926B2 true JPH0242926B2 (en) | 1990-09-26 |
Family
ID=16743495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21994588A Granted JPH026626A (en) | 1988-09-02 | 1988-09-02 | Production of carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH026626A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2504704B2 (en) * | 1991-03-12 | 1996-06-05 | ヒロセ電機株式会社 | Coaxial cable connector and connection method |
JP4582905B2 (en) * | 2000-12-19 | 2010-11-17 | 東邦テナックス株式会社 | Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet |
JP4715386B2 (en) * | 2005-08-23 | 2011-07-06 | 東レ株式会社 | Carbon fiber bundle manufacturing method |
KR100950310B1 (en) * | 2007-10-12 | 2010-03-31 | 건국대학교 산학협력단 | How to integrate aircraft sizing program and performance analysis program |
JP6116503B2 (en) * | 2014-03-03 | 2017-04-19 | 松本油脂製薬株式会社 | Sizing agent for carbon fiber and its use |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5112740A (en) * | 1974-07-22 | 1976-01-31 | Fujitsu Ltd | MAIKUROPUROGURAMUNYORUKAUNTASEIGYOHOSHIKI |
JPS55122021A (en) * | 1979-03-08 | 1980-09-19 | Sumitomo Chem Co Ltd | Improved method of producing carbon fiber |
-
1988
- 1988-09-02 JP JP21994588A patent/JPH026626A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5112740A (en) * | 1974-07-22 | 1976-01-31 | Fujitsu Ltd | MAIKUROPUROGURAMUNYORUKAUNTASEIGYOHOSHIKI |
JPS55122021A (en) * | 1979-03-08 | 1980-09-19 | Sumitomo Chem Co Ltd | Improved method of producing carbon fiber |
Also Published As
Publication number | Publication date |
---|---|
JPH026626A (en) | 1990-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3639953A (en) | Method of producing carbon fibers | |
US4671950A (en) | High-strength carbonaceous fiber | |
US4284615A (en) | Process for the production of carbon fibers | |
JPS6052208B2 (en) | Carbon fiber tow manufacturing method | |
US4536448A (en) | Preoxidized fiber and process for producing the same | |
US5004511A (en) | Process for producing non-woven fabrics of carbon fibers | |
JPS6215329A (en) | Carbon fiber | |
JPH0242926B2 (en) | ||
US3607672A (en) | Method for producing febrous carbon structures | |
US4522801A (en) | Process for producing carbon fiber or graphite fiber | |
JP4141035B2 (en) | Method for producing acrylonitrile fiber for carbon fiber production | |
CA1109616A (en) | Carbon fiber having improved thermal oxidation resistance and process for producing same | |
JPH02242920A (en) | Carbon fiber containing composite metal | |
EP0125905A2 (en) | Process for the stabilisation of acrylic fibres | |
JPH0583642B2 (en) | ||
JPS646288B2 (en) | ||
US3821013A (en) | Surface modification of graphite fibers | |
JPS62199819A (en) | Production of partially carbonized polymer fiber material having highly stable electric resistivity | |
JPS59223315A (en) | Manufacturing method of pitch carbon fiber | |
JPS62110923A (en) | Infusibilization of pitch fiber | |
KR101885018B1 (en) | Precursor fiber for carbon fiber manufacturing method and precursor fiber for carbon fiber using the same | |
JPH01282325A (en) | Pitch-based carbon fibersheet and production thereof | |
JP2001355120A (en) | Large tow precursor, method for producing the same and method for producing carbon fiber | |
US3813219A (en) | Process for the thermal stabilization of polyacrylonitrile fibers and films | |
JPH01156509A (en) | Production of inorganic fiber |