[go: up one dir, main page]

JPH024269A - Photoresist removing method - Google Patents

Photoresist removing method

Info

Publication number
JPH024269A
JPH024269A JP15229188A JP15229188A JPH024269A JP H024269 A JPH024269 A JP H024269A JP 15229188 A JP15229188 A JP 15229188A JP 15229188 A JP15229188 A JP 15229188A JP H024269 A JPH024269 A JP H024269A
Authority
JP
Japan
Prior art keywords
photoresist
wafer
sulfuric acid
concentrated sulfuric
base plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15229188A
Other languages
Japanese (ja)
Inventor
Masaaki Harazono
正昭 原園
Toshihiko Sakurai
櫻井 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15229188A priority Critical patent/JPH024269A/en
Publication of JPH024269A publication Critical patent/JPH024269A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To perfectly decompose and remove a photoresist film on a semiconductor base plate by coating said base plate with the photoresist film, and coating the surface of a photoresist pattern obtained by exposure and development with sulfuric acid, and heating the base plate to a prescribed temperature to accelerate decomposition of the photoresist. CONSTITUTION:The rotated silicon wafer 1 is coated with a prescribed amount of hot concentrated sulfuric acid 9 always kept at high concentration by storing it in an airtightly closed vessel immediately before dehydrating and decomposing the photoresist 3 with the hot concentrated sulfuric acid, and heated with an infrared lamp 7 and a heater 12 to accelerate the dehydration and decomposition reaction of the photoresist 3, and thus it is perfectly decomposed. Then, the sulfuric acid 9 containing decomposed photoresist 3 is washed off by spraying pure water 15 over the whole surface of the wafer 1 while it is rotated, and the water 15 remaining can be removed by rotating the wafer 1 at high speed, thus permitting the residual photoresist 3 on the wafer 1 to be removed to a high cleanliness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子の製造工程の一つであるホトリソグ
ラフィにおいて使用されるホトレジストの除去方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for removing photoresist used in photolithography, which is one of the manufacturing processes of semiconductor devices.

〔従来の技術〕[Conventional technology]

従来、残存するホトレジストの除去方法としては、特公
昭53−35436号公報に記載のように加熱した濃硫
酸中に酸化剤の過酸化水素を添力aした溶液中にSiウ
ェハを浸漬させて行なっていた。この従来の除去方法で
は、濃硫酸中に過酸化水素を添加しなからSiウェハに
残存するホトレジストを除去するために濃硫酸は確実に
低下する。
Conventionally, the remaining photoresist was removed by immersing a Si wafer in a solution of heated concentrated sulfuric acid with the addition of hydrogen peroxide as an oxidizing agent, as described in Japanese Patent Publication No. 53-35436. was. In this conventional removal method, hydrogen peroxide is not added to concentrated sulfuric acid to remove the photoresist remaining on the Si wafer, so that the amount of concentrated sulfuric acid is reliably reduced.

また、濃硫酸は吸湿性が強力であるために加熱しながら
放置しておくだけでも水和物(H2So4nH20)を
形成するために硫酸濃度が低下する。
In addition, since concentrated sulfuric acid has strong hygroscopicity, even if it is left to stand while being heated, it forms a hydrate (H2So4nH20) and the sulfuric acid concentration decreases.

このような硫酸濃度の低下に伴ない、Siウェハ上に残
存するホトレジストの除去能力が急速に劣化する。図2
に硫酸濃度とポジタイプホトレジストの分解時間および
硫酸中の異物数の変化を示す。
As the sulfuric acid concentration decreases, the ability to remove photoresist remaining on the Si wafer rapidly deteriorates. Figure 2
Figure 2 shows changes in sulfuric acid concentration, decomposition time of positive type photoresist, and number of foreign substances in sulfuric acid.

硫酸の濃度が低下するにつれ、Siウェハ上に残存する
ホトレジストを分解除去するのに長時開票するようにな
ったり、分解が不充分となるために硫酸中に炭素残留物
が急激に増加するようになる。
As the concentration of sulfuric acid decreases, it may take longer to decompose and remove the photoresist remaining on the Si wafer, or carbon residue in the sulfuric acid may rapidly increase due to insufficient decomposition. become.

つまり、硫酸が吸湿してH2SO4・H2Oの水和物を
完全に形成する硫酸濃度84.5wt%以上の濃度のと
きにホトレジスト中に含まれる感光剤やベースポリマー
を脱水分解することができ、硫酸濃度が84.5wt%
以下になると脱水分解しにくくなることを表わしている
。このように、従来の除去方法では、硫酸濃度が低下す
ることによるホトレジストの除去能力の劣化については
考慮されていなかった。
In other words, the photosensitizer and base polymer contained in the photoresist can be dehydrated and decomposed when the sulfuric acid concentration is 84.5 wt% or more, at which the sulfuric acid absorbs moisture and completely forms a hydrate of H2SO4.H2O. Concentration is 84.5wt%
This indicates that dehydration and decomposition become difficult when the amount is below. As described above, conventional removal methods do not take into account the deterioration of the photoresist removal ability due to a decrease in the sulfuric acid concentration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、濃硫酸の脱水分解反応と酸化剤である
過酸化水素の酸化分解反応により、Siウェハ上に残存
するホトレジストを分解除去する方法であるが、濃硫酸
中に過酸化水素を添加しなければならないために硫酸が
低下して脱水分解反応が急激に遅くなることに考慮され
ておらず、高清浄なレジスト除去が困難となるという問
題があった・ 本発明の目的は、濃硫酸によるホトレジストの脱水分解
反応を効率良く行ない、Asなどのイオン打ち込みされ
て変質したホトレジストも高清浄に除去することになる
The above conventional technology is a method of decomposing and removing the photoresist remaining on the Si wafer through the dehydration and decomposition reaction of concentrated sulfuric acid and the oxidation and decomposition reaction of hydrogen peroxide, which is an oxidizing agent.However, hydrogen peroxide is added to concentrated sulfuric acid. However, the problem was that it was difficult to remove the resist with a high level of cleanliness. The dehydration and decomposition reaction of the photoresist is carried out efficiently, and the photoresist deteriorated by implantation of ions such as As can be removed with high purity.

[i1題を解決するための手段] 上記目的は、大気中の水分を吸湿しないように密閉した
容器に加熱した濃硫酸を入れ、必要量だけを回軸させた
Siウェハ上に塗布して赤外線ランプやヒータなどで加
熱した状態で残存するホトレジストを脱水分解させた後
、分解したホトレジストを含む硫酸を純水でSiウェハ
上から洗い流すことにより達成される。
[Means for solving problem i1] The above purpose is to pour heated concentrated sulfuric acid into a sealed container to prevent it from absorbing moisture in the atmosphere, apply only the necessary amount onto a spun Si wafer, and apply infrared rays. This is achieved by dehydrating and decomposing the remaining photoresist by heating it with a lamp or heater, and then washing off the sulfuric acid containing the decomposed photoresist from the Si wafer with pure water.

〔作 用〕[For production]

Siウェハに残存するポジタイプのホトレジストに熱濃
硫酸を作用させると、感光剤を酸化することによってカ
ルボン酸が生成し、このカルボン酸がベースポリマーを
溶解しやすくすることを利用してホトレジストを分解除
去する。発明者等は。
When hot concentrated sulfuric acid is applied to the positive type photoresist remaining on the Si wafer, carboxylic acid is generated by oxidizing the photosensitizer, and this carboxylic acid makes it easier to dissolve the base polymer, which is used to decompose and remove the photoresist. do. Who are the inventors?

図2に示したように熱硫酸の濃度の低下に伴なったホト
レジストの分解速度が遅くなることを明らかにした。ま
た、熱濃硫酸を放置していると大気中の水分を吸湿して
硫酸濃度が低下する。この熱硫酸の吸湿割合は、硫酸が
大気と接する面積(容器の開口部面積)比例して増加す
る。このため、容器に満たした熱濃硫酸中にSiウェハ
を浸漬させる方法では、硫酸の濃度低下を防ぐことが困
難である。
As shown in FIG. 2, it was revealed that the decomposition rate of photoresist slowed down as the concentration of hot sulfuric acid decreased. Additionally, if hot concentrated sulfuric acid is left unused, it absorbs moisture from the atmosphere and the sulfuric acid concentration decreases. The moisture absorption rate of this hot sulfuric acid increases in proportion to the area of contact between the sulfuric acid and the atmosphere (opening area of the container). Therefore, with the method of immersing the Si wafer in hot concentrated sulfuric acid filled in a container, it is difficult to prevent the concentration of sulfuric acid from decreasing.

本発明は、熱濃硫酸を密閉容器に保管することによって
硫酸を常に高濃度に保てることから、熱濃硫酸でホトレ
ジストを脱水分解する直前に回転するSiウェハ上に一
定量塗布し、赤外線ランプやヒータなどで加熱して濃硫
酸濃度を上昇させてホトレジストの脱水分解反応を促進
させてSiウェハ上のホトレジストを完全に分解させる
0分解後、Siウェハを回転しながら純水をSiウェハ
全面にスプレーして分解したホトレジストを含む熱濃硫
酸と共に洗い流す。なお、Siウェハ上に残った純水は
、Siウェハを高速に回転させることによりSiウェハ
上から取り除くことができ・る。
In the present invention, by storing hot concentrated sulfuric acid in a closed container, sulfuric acid can always be kept at a high concentration. The photoresist on the Si wafer is completely decomposed by heating with a heater to increase the concentration of concentrated sulfuric acid to promote the dehydration and decomposition reaction of the photoresist.After the zero decomposition, pure water is sprayed over the entire surface of the Si wafer while rotating the Si wafer. and wash it away with hot concentrated sulfuric acid containing the decomposed photoresist. Note that the pure water remaining on the Si wafer can be removed from the Si wafer by rotating the Si wafer at high speed.

以上の操作によりSiウェハ上の残存ホトレジストを高
清浄に除去することができる。
By the above operations, the remaining photoresist on the Si wafer can be removed with high purity.

〔実施例〕〔Example〕

本発明を実施例によりさらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples.

第1図は1本発明の方法を適用した実施例であるホトレ
ジスト除去装置の断面を示す説明図である。
FIG. 1 is an explanatory view showing a cross section of a photoresist removing apparatus which is an embodiment to which the method of the present invention is applied.

支持台4の内部に設けられた真空吸引管5によっ、。・
、′ (Siウェハ1を水平に保持し、支持台4の上部に設け
られたヒータ6でSiウェハ1を110℃まで加熱した
状態で支持台4を回転する。同時に密閉されたタンク8
の中に貯蔵された濃硫酸9をタンク8の下部に設けられ
たヒータ10で50℃程度に加熱した状態でバルブ11
を開き、ヒータ12で50℃に加熱されたノズル13を
通してSiウェハ1に濃硫酸9を数mQ程度塗布した後
By means of a vacuum suction tube 5 provided inside the support base 4.・
,' (Hold the Si wafer 1 horizontally and rotate the support stand 4 while heating the Si wafer 1 to 110° C. with the heater 6 provided on the upper part of the support stand 4. At the same time, open the sealed tank 8.
The concentrated sulfuric acid 9 stored in the tank 8 is heated to about 50°C by the heater 10 installed at the bottom of the tank 8, and then the valve 11 is heated.
was opened, and several mQ of concentrated sulfuric acid 9 was applied to the Si wafer 1 through a nozzle 13 heated to 50° C. by a heater 12.

バルブ11を閉じる。塗布後、赤外線ランプ7を点燈さ
せてSiウェハ1の表面温度を150℃に保ちながらS
iウェハ1上のホトレジスト3を1硫酸9で脱水分解処
理させる。処理後、タンク14の下部に設けられたヒー
タ16で加熱された純水15をバルブ17を開くことに
よってSiウェハ1上の脱水分解したレジストを含む濃
硫酸9を洗い流した後、支持台を高速に回転することで
純水洗浄後水切り乾燥を行なう。Siウェハ1上のホト
レジスト3の膜厚やホトレジストの状態(イオン打ち込
みによる変質など)によっては。
Close valve 11. After coating, the infrared lamp 7 is turned on to maintain the surface temperature of the Si wafer 1 at 150°C.
The photoresist 3 on the i-wafer 1 is dehydrated and decomposed with 1 sulfuric acid 9. After the treatment, the concentrated sulfuric acid 9 containing the dehydrated and decomposed resist on the Si wafer 1 is washed away by opening the valve 17 with pure water 15 heated by the heater 16 provided at the bottom of the tank 14, and then the support is moved at high speed. After washing with pure water, drain and dry. It depends on the film thickness of the photoresist 3 on the Si wafer 1 and the condition of the photoresist (change in quality due to ion implantation, etc.).

再びSiウェハ1表面に濃硫酸を塗布、純水洗浄。Apply concentrated sulfuric acid to the surface of Si wafer 1 again and wash with pure water.

水切り乾燥の操作をくり返えす。Repeat the draining and drying process.

なお、実施例で適用したヒータ温度の設定は、ホトレジ
スト3の膜厚などの違いによって最適な温度を用いる。
Note that the heater temperature used in the embodiment is set at an optimum temperature depending on the film thickness of the photoresist 3, etc.

Siウェハ1上の濃硫酸9を洗い流すための純水15は
、温水を用いなくてもよく、純水に超音波エネルギーや
高圧力を加えて洗浄効率を向上させる手段を付加させて
もよい。
The pure water 15 for washing away the concentrated sulfuric acid 9 on the Si wafer 1 does not need to be hot water, and a means for improving the cleaning efficiency by applying ultrasonic energy or high pressure to the pure water may be added.

また、Siウェハ1の表面濃度を高温に保つため赤外線
ランプ7以外の高周波を用いてもよい。
Further, in order to maintain the surface concentration of the Si wafer 1 at a high temperature, a high frequency wave other than the infrared lamp 7 may be used.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を適用したホトレジスト除去装置を用いて
、次のような硫酸−過酸化水素混合溶液中に浸漬する方
法との比較評価を行なった。
Using a photoresist removal apparatus to which the method of the present invention is applied, a comparative evaluation was conducted with the following method of immersion in a sulfuric acid-hydrogen peroxide mixed solution.

硫酸−過酸化水素混合溶液にSiウェハを浸漬させてホ
トレジストを除去する従来の方法(A法)として、硫酸
1(lに過酸化水素水100wQ加えて120℃に加熱
された混合液中にSiウェハを浸漬させて洗浄した。な
お、同一混合液でSiウェハを10ツト(10ツトは6
インチウェハが50数)洗浄するたびに過酸化水素水を
10mQずつ加えてから洗浄した。図3は、ポジタイプ
のホトレジストを1〜2μmSiウェハに塗布、ベーク
した後、ホトレジストを除去したときのSiウェハ上に
再付着する異物数を測定した結果である。
The conventional method (method A) of removing photoresist by immersing a Si wafer in a mixed solution of sulfuric acid and hydrogen peroxide involves adding 100 wQ of hydrogen peroxide to 1 liter of sulfuric acid and heating the Si wafer to 120°C. The wafers were immersed and cleaned.In addition, 10 Si wafers were soaked in the same mixture (10 is 6
Each time 50-inch wafers were cleaned, 10 mQ of hydrogen peroxide solution was added and then cleaned. FIG. 3 shows the results of measuring the number of foreign particles reattached to the Si wafer when the photoresist was removed after coating and baking a 1 to 2 μm positive type photoresist on the Si wafer.

A法(曲線a)においては、Siウェハの着工ロット数
が増すにつれてSiウェハへ再付着する異物数も増加す
る。これは、ホトレジストの分解が完全でない疎水性の
異物がSiウェハに付着しやすいことから起こるもので
ある。Siウェハ表面を親水性にすることにより異物の
再付着を低減することができるが、大巾な効果は期待で
きない。
In method A (curve a), as the number of Si wafers started increases, the number of foreign particles reattached to the Si wafer also increases. This occurs because the photoresist is not completely decomposed and hydrophobic foreign matter tends to adhere to the Si wafer. By making the Si wafer surface hydrophilic, it is possible to reduce the re-adhesion of foreign matter, but a large-scale effect cannot be expected.

それに対し、本発明(曲線b)ではSiウェハの表面状
態や着工ロット数に関係されることなくSiウェハ表面
に付着する異物数を低減させることができる。上記のデ
ータは、この発明の方法がSiウェハ表面に異物数を低
減させるために効果があることを示している。
In contrast, in the present invention (curve b), the number of foreign substances adhering to the Si wafer surface can be reduced regardless of the surface condition of the Si wafer or the number of starting lots. The above data shows that the method of the present invention is effective in reducing the number of foreign particles on the Si wafer surface.

Siウェハに2μm塗布、プリベーク(90℃)したホ
トレジストをA法と本発明の方法で連続的にホトレジス
ト除去したときのSiウェハ表面に残存(または吸着)
している炭素をオージェ電子分析装置を用いて評価した
。評価結果は、第4図の通りである。A法で洗浄した場
合には、30ロツト以降に着工したSiウェハからは炭
素が顕著に検出されるようになる。これは、硫酸濃度が
着工ロット数の増加に比例して低下することによる分解
能力の経時劣化よるものと考えられる。一方、本発明に
よる方法は、Siウェハを100ロット着工してもSi
ウェハからは炭素が検出されなかった。上記のデータは
、この発明の方法がSiウェハ表面を高洗浄に洗浄でき
るのに有効であることを示している。
Residual (or adsorbed) photoresist on the Si wafer surface when 2 μm of photoresist was coated on the Si wafer and prebaked (90°C) was successively removed using method A and the method of the present invention.
The carbon content was evaluated using an Auger electron analyzer. The evaluation results are shown in Figure 4. When cleaning is performed using Method A, carbon is significantly detected in Si wafers manufactured after the 30th lot. This is considered to be due to deterioration of the decomposition ability over time due to the sulfuric acid concentration decreasing in proportion to the increase in the number of starting lots. On the other hand, in the method according to the present invention, even if 100 lots of Si wafers are started, Si
No carbon was detected in the wafer. The above data shows that the method of the present invention is effective in cleaning the surface of a Si wafer with a high degree of cleaning.

A法では除去が不充分であったAsイオンが打ち込まれ
たホトレジストの除去に本発明の方法を適用した一実施
例について述べる。Siウェハ上にポジタイプのホトレ
ジストを2μm塗布、プリベーク処理(90℃)した後
、Asイオンを注入(注入エネルギー80KeV、注入
量10”、/a#) してから、本発明の方法で赤外線
ランプの光量を調整してSiウェハ加熱温度を変えたと
きのホトレジストの分解速度(k)を求めた。測定結果
は、第5図の通りである。Siウェハの加熱温度を上昇
させると分解速度を速くすることができ、Siウェハ加
熱温度167℃の条件下では、2分間で2μmのホトレ
ジストを分解することが可能である。
An example will be described in which the method of the present invention is applied to the removal of photoresist into which As ions have been implanted, which was insufficiently removed by Method A. After applying a positive type photoresist to a thickness of 2 μm on a Si wafer and pre-baking it (90°C), As ions were implanted (implantation energy 80KeV, implantation amount 10”, /a#), and then an infrared lamp was injected using the method of the present invention. The decomposition rate (k) of the photoresist was determined when the Si wafer heating temperature was changed by adjusting the light intensity.The measurement results are shown in Figure 5.Increasing the Si wafer heating temperature increases the decomposition rate. Under the conditions of a Si wafer heating temperature of 167° C., it is possible to decompose a 2 μm photoresist in 2 minutes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の一実施例によるホトレジスト除
去装置の断面を示す説明図、第2図は硫酸濃度とポジタ
イプホトレジストの分解時間および硫酸中の異物数の変
化を示す線図、第3図はSiウェハ上のポジタイプレジ
ストを除去後にSiウェハ上へ再付着する異物数の測定
結果を示す線図、第4図は、S1ウエハ上のポジタイプ
ホトレジストを除去後のSiウェハ表面をオージェ電子
分析装置で分析した結果を示す線図、第5図は本発明の
方法でSiウェハ加熱温度を変えたときのポジタイプレ
トレジトの分解速度の結果を示す線図である。 1・・・Siウェハ、2・・・酸化膜、3・・・ホトレ
ジスト、4・・・支持台、5・・・真空吸引管、6,1
0゜12.16・・・ヒータ、7・・・赤外線ランプ、
8゜14・・・タンク。 9・・・濃硫酸。 11゜ 17・・・バルブ。 13゜ 18・・・ノズル、 15・・・純水。 躬 固 筋 固 5εウニ八にローI)数 (口・・7ト) 躬 圀 石た弧濃崖 (鑓給) イ (XIO3に−1)
FIG. 1 is an explanatory diagram showing a cross section of a photoresist removal apparatus according to an embodiment of the method of the present invention, FIG. Figure 3 is a diagram showing the measurement results of the number of foreign particles reattached to the Si wafer after removing the positive type resist on the Si wafer, and Figure 4 shows the surface of the Si wafer after removing the positive type photoresist on the S1 wafer. FIG. 5 is a diagram showing the results of analysis using an Auger electron analyzer, and FIG. 5 is a diagram showing the results of the decomposition rate of positive type photoresist when the Si wafer heating temperature is changed using the method of the present invention. DESCRIPTION OF SYMBOLS 1... Si wafer, 2... Oxide film, 3... Photoresist, 4... Support stand, 5... Vacuum suction tube, 6, 1
0゜12.16...Heater, 7...Infrared lamp,
8゜14...Tank. 9... Concentrated sulfuric acid. 11°17...Valve. 13°18...Nozzle, 15...Pure water.躬联力 5ε Sea urchin 8 to low I) number (口・・7t) 躬圀石田 連 連 (鑓supply) I (-1 to XIO3)

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に塗布したホトレジスト膜を露光、現
像して形成されたホトレジストパターン上に濃硫酸を塗
布し、半導体基板をヒータで設定温度に加熱してホトレ
ジストの分解を促進させることにより、半導体基板上の
ホトレジスト膜を完全に分解除去することを特徴とする
ホトレジストの除去方法。
1. Apply concentrated sulfuric acid on the photoresist pattern formed by exposing and developing the photoresist film applied on the semiconductor substrate, and heat the semiconductor substrate to a set temperature with a heater to accelerate the decomposition of the photoresist. A photoresist removal method characterized by completely decomposing and removing a photoresist film on a substrate.
JP15229188A 1988-06-22 1988-06-22 Photoresist removing method Pending JPH024269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15229188A JPH024269A (en) 1988-06-22 1988-06-22 Photoresist removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15229188A JPH024269A (en) 1988-06-22 1988-06-22 Photoresist removing method

Publications (1)

Publication Number Publication Date
JPH024269A true JPH024269A (en) 1990-01-09

Family

ID=15537318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15229188A Pending JPH024269A (en) 1988-06-22 1988-06-22 Photoresist removing method

Country Status (1)

Country Link
JP (1) JPH024269A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183937A (en) * 2003-11-25 2005-07-07 Nec Electronics Corp Manufacturing method of semiconductor device and cleaning device for removing resist
JP2005236083A (en) * 2004-02-20 2005-09-02 Toshiba Corp Manufacturing method of semiconductor device
WO2011074521A1 (en) * 2009-12-18 2011-06-23 株式会社ジェイ・イー・ティ Substrate treatment device
JP2013197115A (en) * 2012-03-15 2013-09-30 Dainippon Screen Mfg Co Ltd Substrate processing device
US10032654B2 (en) 2012-02-29 2018-07-24 SCREEN Holdings Co., Ltd. Substrate treatment apparatus
CN111880385A (en) * 2020-08-19 2020-11-03 泉芯集成电路制造(济南)有限公司 Photoresist removing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183937A (en) * 2003-11-25 2005-07-07 Nec Electronics Corp Manufacturing method of semiconductor device and cleaning device for removing resist
JP2005236083A (en) * 2004-02-20 2005-09-02 Toshiba Corp Manufacturing method of semiconductor device
WO2011074521A1 (en) * 2009-12-18 2011-06-23 株式会社ジェイ・イー・ティ Substrate treatment device
JP5079145B2 (en) * 2009-12-18 2012-11-21 株式会社ジェイ・イー・ティ Substrate processing equipment
US10032654B2 (en) 2012-02-29 2018-07-24 SCREEN Holdings Co., Ltd. Substrate treatment apparatus
JP2013197115A (en) * 2012-03-15 2013-09-30 Dainippon Screen Mfg Co Ltd Substrate processing device
CN111880385A (en) * 2020-08-19 2020-11-03 泉芯集成电路制造(济南)有限公司 Photoresist removing device

Similar Documents

Publication Publication Date Title
US6983756B2 (en) Substrate treatment process and apparatus
JP3914842B2 (en) Method and apparatus for removing organic coating
JPH08187475A (en) Method of removing metal in scrubber
JP4484980B2 (en) Photomask cleaning method, cleaning apparatus, and photomask cleaning liquid
JP2003526936A (en) Method and apparatus for processing electronic components
TW591691B (en) Cleaning apparatus for semiconductor wafer
WO2020075448A1 (en) Semiconductor silicon wafer cleaning treatment apparatus and cleaning method
JPH10189527A (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JPH0878372A (en) Organic matter removing method and its apparatus
JP3535820B2 (en) Substrate processing method and substrate processing apparatus
JPH024269A (en) Photoresist removing method
JP2001340817A (en) Removal method and removal apparatus of pollutant adhering to surface
JPH0656833B2 (en) Substrate resist removal cleaning method and apparatus
JP2002018379A (en) Thin film peeling method, thin film peeling apparatus, and method of manufacturing electronic device
JP2891578B2 (en) Substrate processing method
JP3196963B2 (en) How to remove organic matter
JPH0719764B2 (en) Surface cleaning method
JPH09171989A (en) Wet etching of semiconductor substrate
JPH01140728A (en) Cleaning and drying of object
JP3979691B2 (en) Substrate processing method and substrate processing apparatus
JPH056884A (en) Cleaning method for silicon wafer
JPH10289895A (en) Substrate treating method and device
KR102700404B1 (en) Spin cleaning method of semiconductor lithography photo mask using ozone water
JPH0645305A (en) Semiconductor substrate surface processing apparatus
JPH05304126A (en) Method and system for removing organic compound from surface of substrate in vapor phase