JPH0241670A - drive device - Google Patents
drive deviceInfo
- Publication number
- JPH0241670A JPH0241670A JP63188192A JP18819288A JPH0241670A JP H0241670 A JPH0241670 A JP H0241670A JP 63188192 A JP63188192 A JP 63188192A JP 18819288 A JP18819288 A JP 18819288A JP H0241670 A JPH0241670 A JP H0241670A
- Authority
- JP
- Japan
- Prior art keywords
- thermal expansion
- driving body
- drive device
- thermally
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は駆動装置、詳しくは熱的伸縮素子を利用した
高精度で耐久性にも富む駆動装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a drive device, and more particularly to a drive device that uses a thermal expansion and contraction element and is highly accurate and durable.
[従来の技術]
超音波振動を利用して駆動体を駆動させる駆動装置は超
音波モーターとも称され、低騒音、高い位置決め精度等
の利点を有する為、近年自動制御用などとして広く使用
されている。[Prior Art] A drive device that drives a drive body using ultrasonic vibrations is also called an ultrasonic motor, and has been widely used in recent years for automatic control etc. because it has advantages such as low noise and high positioning accuracy. There is.
第2図は従来の超音波を利用した駆動装置の一例の基本
構成図、第3図はその原理説明図てあり、一般のモータ
ーの回転子に相当する駆動体11の表裏を一対の弾性体
12ではさみ込み、この弾性体12の表面に電歪素子1
3を取付けたものである。なお、図示は省略したか、駆
動力に比例した圧力が加わる様、調圧機構も付加されて
いる。そして、この超音波を利用した駆動装置において
は、第3図に図示する様に弾性体12の表面上の接続方
向をX軸、この法線方向を2軸とした場合、電歪素子1
3により弾性体12の表面に振動を与えると、弾性波が
発生し、この弾性波は弾性体12の表面上を伝搬して行
く。Fig. 2 is a basic configuration diagram of an example of a conventional drive device using ultrasonic waves, and Fig. 3 is an explanatory diagram of its principle. 12, and the electrostrictive element 1 is placed on the surface of this elastic body 12.
3 is attached. Note that, although not shown, a pressure regulating mechanism is also added so that a pressure proportional to the driving force is applied. In this drive device using ultrasonic waves, as shown in FIG.
3 gives vibration to the surface of the elastic body 12, an elastic wave is generated, and this elastic wave propagates on the surface of the elastic body 12.
この弾性波は縦波と横波とを伴った表面波てあり、その
質点は第3図に示す通り、楕円軌道を描く様に運動する
。つまり、表面波の進行方向を十X方向とすると、質点
Aは反時計方向に回転することになる。従って、この弾
性体12の表面に駆動体11を加圧接触させると、この
駆動体11の表面は質点A、A′のみと接触することに
なる為、この駆動体11は弾性体12との摩擦により矢
印Nの方向に駆動されることになる。This elastic wave is a surface wave accompanied by longitudinal waves and transverse waves, and its mass point moves in an elliptical orbit as shown in Figure 3. In other words, if the traveling direction of the surface wave is the 10X direction, the mass point A will rotate counterclockwise. Therefore, when the driving body 11 is brought into pressure contact with the surface of this elastic body 12, the surface of this driving body 11 comes into contact with only the mass points A and A', so this driving body 11 is brought into contact with the elastic body 12. It is driven in the direction of arrow N by friction.
[発明が解決しようとする課題]
従来の超音波を利用した駆動装置は上記の通りの原理に
より駆動されるものてあり、摩擦力を利用している為、
接触部材の摩耗は避けられず、位置決めの精度か低下す
る為、長時間の使用や使用頻度の高い用途への使用は好
ましくないという重大な欠点があった。[Problem to be solved by the invention] Conventional driving devices using ultrasonic waves are driven by the principle described above, and because they use frictional force,
This has a serious drawback in that it is undesirable to use it for long periods of time or for applications where it is frequently used, since wear of the contact member is unavoidable and the positioning accuracy decreases.
この発明は駆動装置のこの欠点を除去することを目的と
するものであり、熱的伸縮素子を用いた耐久性に富み、
高い位置決め精度を有する新規な駆動装置を提供せんと
するものである。The present invention aims to eliminate this drawback of the drive device, and provides a highly durable drive device using a thermal expansion and contraction element.
The present invention aims to provide a novel drive device with high positioning accuracy.
[課題を解決するための手段コ
この発明は、柱状をした3木の熱的伸縮素子をH形に組
合せて駆動体とし、該駆動体の端面な平行に設置せしめ
た二条のガイドレールの内側面に位置させ、該駆動体に
制御された信号電流を流すことにより前記ガイドレール
にそって移動させる様にすることにより上記課題を解決
せんとするものである。[Means for Solving the Problems] This invention consists of three pillar-shaped thermal expansion and contraction elements combined in an H shape to form a driving body, and two guide rails installed parallel to the end surfaces of the driving body. The above-mentioned problem is solved by positioning the drive body on the side surface and causing the drive body to move along the guide rail by passing a controlled signal current through the drive body.
[作 用]
駆動体を構成している3本の熱的伸縮素子のうち、進む
べき方向に対し一番後に位置した熱的伸縮素子に信号発
生器により正の信号電流を流すと、この熱的伸縮素子は
縦方向に熱膨張し、カイトレールを内側から押圧し、こ
れに固定される。[Function] When a positive signal current is applied by a signal generator to the thermally elastic element located at the rearmost position in the direction of movement among the three thermally elastic elements that make up the driving body, this heat is released. The telescopic element thermally expands in the longitudinal direction, presses against the kitrail from the inside, and is secured to it.
次に、中央の横向きに位置した熱的伸縮素子に正の信号
電流を流すと、この熱的伸縮素子は横方向に熱膨張し一
番前に位置した熱的伸縮素子を進行方向に押し出す。次
にこの押し出された熱的伸縮素子に信号電流を流して縦
方向に熱膨張させ、カイトレールを押圧させ固定せしめ
る。Next, when a positive signal current is applied to the central thermally expandable element located laterally, this thermally expandable element thermally expands in the lateral direction and pushes out the thermally expandable element located at the front in the traveling direction. Next, a signal current is applied to the extruded thermally extensible element to cause it to thermally expand in the longitudinal direction, thereby pressing and fixing the kite rail.
その後、後方及び中央の熱的伸縮素子への信号電流の供
給を止めると、これらはもとの長さに収縮し、進行方向
側に移動することになる。Thereafter, when the supply of signal current to the rear and central thermal expansion elements is stopped, they will contract to their original length and move in the direction of travel.
この様に、3本の熱的伸縮素子に一定の順序て制御電流
を供給することにより、駆動体はガイドレールにそって
移動することになる。In this way, by supplying control current to the three thermal expansion and contraction elements in a fixed order, the driving body moves along the guide rail.
[実施例]
第1図はこの発明に係る超音波駆動装置の一実施例を模
式的に描いた側面図である。[Embodiment] FIG. 1 is a side view schematically depicting an embodiment of an ultrasonic driving device according to the present invention.
図中1は駆動体てあり、3本の熱的伸縮素子2a、2b
、2cをH形に組合せて構成されている。In the figure, 1 is a driving body, and there are three thermal expansion and contraction elements 2a and 2b.
, 2c are combined into an H shape.
熱的伸縮素子2a、2b、2cは信号電流を供給するこ
とにより伸縮を行う素子てあり、電気的に制御される加
熱素子あるいはベルチェ効果を利用した電子冷却素子等
を用いることがてきる。The thermal expansion and contraction elements 2a, 2b, and 2c are elements that expand and contract by supplying a signal current, and may be electrically controlled heating elements or electronic cooling elements that utilize the Beltier effect.
そして、これら熱的伸縮素子2a、2b、2cはH形に
組み合されて駆動体1を構成しており、平行に位置せし
められた一対のカイトレール8a、8bの間に熱的伸縮
素子2a、2b、2cのそれぞれ両端部か伸長時に接す
る様に位置せしめられている。These thermally expandable elements 2a, 2b, 2c are combined in an H shape to constitute a driving body 1, and the thermally expandable element 2a is placed between a pair of kite rails 8a, 8b positioned in parallel. , 2b, and 2c are positioned such that both ends thereof touch each other when extended.
なお、ガイドレール8a、8b間の間隔文は熱的伸縮素
子2a、2b、2cの伸長時の長さより若干せまく作ら
れており、収縮時にはすきまかあく様になっている。Note that the spacing between the guide rails 8a, 8b is made to be slightly narrower than the length of the thermally expandable elements 2a, 2b, 2c when they are extended, so that a gap is widened when they are contracted.
この実施例においてはカイトレール8a、8bを直線状
に設置したが、円環状としても良く、その場合には駆動
体lは回転運動を行うこととなる。In this embodiment, the kite rails 8a and 8b are installed in a straight line, but they may also be installed in an annular shape, in which case the driving body 1 will perform rotational movement.
次に、この実施例の動作を説明すると、駆動体lを構成
している3本の熱的伸縮素子2a。Next, the operation of this embodiment will be explained. Three thermal expansion and contraction elements 2a constitute the driving body l.
2b、2cのうち、進むべき方向に対し一番後に位置し
た熱的伸縮素子2Cに信号発生器(図示省略)により正
の信号電流を流すと、第1図(b)に示す如くこの熱的
伸縮素子2Cはy軸方向(縦方向)に熱膨張し、ガイド
レール8a、8bを内側から押圧し、これに固定される
。次に、中央の横向きに位置した熱的伸縮素子2bに正
の信号電流を流すと、この熱的伸縮素子2bはX軸方向
(横方向)に熱膨張し、第1図(b)に示す如く一番前
に位置した熱的伸縮素子2aを66分たけ進行方向に押
し出す。次にこの押し出された熱的伸縮素子2aに信号
電流を流してy軸方向(縦方向)に熱膨張させ、ガイド
レール8a、8bを押圧させ固定せしめる。When a positive signal current is applied by a signal generator (not shown) to the thermal expansion/contraction element 2C, which is located at the rearmost position in the direction of movement, among 2b and 2c, this thermal expansion and contraction element 2C as shown in FIG. The expandable element 2C thermally expands in the y-axis direction (vertical direction), presses the guide rails 8a and 8b from the inside, and is fixed thereto. Next, when a positive signal current is applied to the thermally expandable element 2b located laterally in the center, this thermally expandable element 2b thermally expands in the X-axis direction (lateral direction), as shown in FIG. 1(b). The thermal expansion and contraction element 2a located at the front is pushed out 66 minutes in the direction of travel. Next, a signal current is applied to the extruded thermally expandable element 2a to cause it to thermally expand in the y-axis direction (vertical direction), thereby pressing and fixing the guide rails 8a and 8b.
その後、後方及び中央の熱的伸縮素子2b。Then the rear and central thermal expansion elements 2b.
2Cへの信号電流の供給を止めると、これらはもとの長
さに収縮し、第1図(C)に示す如くΔα分たけ進行方
向側に移動することになる。When the supply of signal current to 2C is stopped, they contract to their original length and move by Δα in the direction of travel, as shown in FIG. 1(C).
この様に、3木の熱的伸縮素子2a、2b。In this way, there are three thermally expandable elements 2a, 2b.
2Cに一定の順序で制御電流を供給することにより、駆
動体lはカイトレール8a、8bにそって移動すること
となる。By supplying control currents to 2C in a fixed order, the driver l will move along the kite rails 8a, 8b.
なお中央の熱的伸縮素子2bに電子冷却素子を用いた場
合は、これに供給する信号電流の極性を逆にして負の電
流を流せばこの熱的伸縮素子2bは冷却され元の長さよ
りも更に短くなり、その変位量は第1図(d)に示す通
り、Δd′と大きくなる。If a thermoelectric cooling element is used for the central thermally elastic element 2b, by reversing the polarity of the signal current supplied to it and passing a negative current, the thermally elastic element 2b will be cooled and its length will be shorter than its original length. It further becomes shorter, and the amount of displacement increases to Δd', as shown in FIG. 1(d).
一方、この駆動体1を後進させたいときは上述の場合と
逆の順序て各熱的伸縮素子2a、2b。On the other hand, when it is desired to move the driving body 1 backward, the thermal expansion and contraction elements 2a and 2b are moved in the reverse order to the above-mentioned case.
2Cに信号電流を供給すれば良い。It is sufficient to supply a signal current to 2C.
[発明の効果コ
以上述へた如く、この発明に係る駆動装置は駆動体に信
号電流を供給するたけて左右任意の方向にこの駆動体を
移動させることかてきるものてあり、熱的伸縮素子の伸
縮作用を利用している為、騒音か極めて低く、又駆動に
は摩擦力を利用していない為、摩耗することもなく、電
気的信号により0N−OFFを行う為、高速、高精度て
位置決めを行うことかてきるすぐれた効果を有するもの
である。[Effects of the Invention] As described above, the drive device according to the present invention is capable of moving the drive body in any left or right direction while supplying a signal current to the drive body, and is capable of moving the drive body in any direction left or right. Since it uses the expansion and contraction action of the element, the noise level is extremely low. Also, since it does not use frictional force for driving, it does not wear out. Since it turns ON and OFF using electrical signals, it is fast and highly accurate. This method has an excellent effect in that positioning can be performed using the same method.
第1図(a) 、 (b) 、 (c) 、 (d)は
この発明に係る駆動装置の一実施例を模式的に描いた側
面図。
又、第2図は従来例の斜視図、第3図はその原理説明図
である。FIGS. 1(a), (b), (c), and (d) are side views schematically depicting an embodiment of a drive device according to the present invention. Further, FIG. 2 is a perspective view of a conventional example, and FIG. 3 is a diagram illustrating its principle.
Claims (1)
とし、該駆動体の端面を平行に設置せしめた二条のガイ
ドレールの内側面に位置させ、該駆動体に制御された信
号電流を流すことにより前記ガイドレールにそって移動
させることを特徴とする超音波駆動装置。Three column-shaped thermal expansion and contraction elements are combined in an H shape to form a driving body, and the end faces of the driving body are positioned on the inner surfaces of two guide rails installed in parallel, and the driving body receives a controlled signal. An ultrasonic driving device characterized in that the device is moved along the guide rail by passing an electric current through the device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63188192A JPH0241670A (en) | 1988-07-29 | 1988-07-29 | drive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63188192A JPH0241670A (en) | 1988-07-29 | 1988-07-29 | drive device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0241670A true JPH0241670A (en) | 1990-02-09 |
Family
ID=16219382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63188192A Pending JPH0241670A (en) | 1988-07-29 | 1988-07-29 | drive device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0241670A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04285481A (en) * | 1991-03-13 | 1992-10-09 | Toshiba Corp | Linear stepping motor |
JP2006325335A (en) * | 2005-05-19 | 2006-11-30 | Hitachi Ltd | Actuators and their materials |
DE102010042021A1 (en) | 2010-10-06 | 2012-04-12 | Maximilian Blomeier | Ball valve has discharge opening and is composed of two ball segments, where two ball segments lie on each other with their plane surfaces, and latter ball segment has channel in its plane surface |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6055868A (en) * | 1983-09-07 | 1985-04-01 | Masahiko Kanai | Thermal drive step motor |
JPS6219089B2 (en) * | 1980-03-31 | 1987-04-27 | Nippon Denpa Kogyo Kk |
-
1988
- 1988-07-29 JP JP63188192A patent/JPH0241670A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6219089B2 (en) * | 1980-03-31 | 1987-04-27 | Nippon Denpa Kogyo Kk | |
JPS6055868A (en) * | 1983-09-07 | 1985-04-01 | Masahiko Kanai | Thermal drive step motor |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04285481A (en) * | 1991-03-13 | 1992-10-09 | Toshiba Corp | Linear stepping motor |
JP2006325335A (en) * | 2005-05-19 | 2006-11-30 | Hitachi Ltd | Actuators and their materials |
DE102010042021A1 (en) | 2010-10-06 | 2012-04-12 | Maximilian Blomeier | Ball valve has discharge opening and is composed of two ball segments, where two ball segments lie on each other with their plane surfaces, and latter ball segment has channel in its plane surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109217723B (en) | Structure-integrated in-situ driving full-displacement amplification type piezoelectric inchworm linear platform | |
JPH0241670A (en) | drive device | |
JPH07274545A (en) | Driving method of driving gear using electromechanical transducer | |
JP3002890B2 (en) | Linear ultrasonic motor | |
US5596242A (en) | Guide device for vibration driven motor | |
JP2581974Y2 (en) | Drive mechanism of linear guide device | |
JPH04147107A (en) | Equipment with driving mechanism | |
JPH0417584A (en) | ultrasonic actuator | |
US6075311A (en) | Micro-positioned flatbed | |
JP2903615B2 (en) | Linear ultrasonic motor | |
JPS6139871A (en) | Piezoelectric linear motor | |
JPH0691753B2 (en) | Micro-moving device and micro-moving method by impact force using piezoelectric element | |
SU723668A1 (en) | Device for driving information carrier tape | |
JP3425162B2 (en) | Micro-moving device using impact force caused by thermal deformation of thermal deformation element | |
KR100264080B1 (en) | Nonlinear Linear Actuator for Head Drive of Hard Disk Drive | |
JPH0866066A (en) | Piezoelectric actuator | |
SU711626A1 (en) | Device for advancing information carrier tape | |
SU1205187A1 (en) | Device for moving tape information medium | |
JPH06255779A (en) | Direct-acting guiding device | |
JPS6439667A (en) | Magnetic disk device | |
JPH01138415A (en) | Self running recorder | |
JPH0667223B2 (en) | Piezoelectric actuator | |
JPH11146672A (en) | Driver | |
JPH04147092A (en) | Drive mechanism | |
JPH0479235B2 (en) |