JPH0241575B2 - - Google Patents
Info
- Publication number
- JPH0241575B2 JPH0241575B2 JP16250585A JP16250585A JPH0241575B2 JP H0241575 B2 JPH0241575 B2 JP H0241575B2 JP 16250585 A JP16250585 A JP 16250585A JP 16250585 A JP16250585 A JP 16250585A JP H0241575 B2 JPH0241575 B2 JP H0241575B2
- Authority
- JP
- Japan
- Prior art keywords
- roll
- amount
- graphite
- rolling
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B27/00—Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Description
(産業上の利用分野)
この発明は、たとえばシームレス鋼管製造プロ
セスにおけるマンドレルミルによる鋼管の圧延の
ような、圧延負荷が大きく、ロール1回転当りの
ロールと圧延材の接触時間が長い圧延に用いるロ
ールに関する。
(従来の従術)
条鋼、鋼板、鋼管等の熱間圧延において、圧延
負荷が大きく、ロール1回転当りのロールと圧延
材との圧延面での接触時間が長くなると、ロール
が受ける熱負荷が大きくなる。このような場合、
ロール表面の温度が上昇するのみならず、ロール
内部への入熱が大きくなり、表面下数ミリメート
ルにおける温度が非常に高くなる。このロール表
層の温度上昇は、ロールが圧延材との接触弧を離
れると直ちに水冷されることとなる処から、ロー
ルに昇温降温の熱サイクルが回転毎に与えられ、
ロール表面の熱亀裂を早期に発生せしめる主因と
なる。また、このロール表層の温度上昇は、亀裂
のロール内部への発達進行を早め、ロールの折損
を招くことが多い。
さらに、ロール表面における熱亀裂の発達は、
ロール焼付とロール表面層の熱疲労波壊による早
期肌荒れを招く。
上に述べたロール表層への入熱の増大は、圧延
における圧下率増によるロールと圧延材の接触弧
面の増大のほか、圧延速度が遅い場合や、孔型圧
延における孔型側面部或は大径ロールよる圧延の
場合のロールと圧延材との接触時間の増大に起因
する。
わけても、シームレス鋼管のマンドレルミルに
よる6〜7スタンド連続圧延においては、前段の
1〜3スタンドにおける圧下量が大きく、特にセ
ミフローテイングマンドレルミルによる圧延にお
いては、No.2スタンドでの孔型ロール負荷が大き
くロールの損耗が激しい。
上述のような、圧下率が大きく、ロール孔型の
底部直径が300mm程度のロールを用いる通常の圧
延では、ロール1回転当り、圧延材との接触時間
は、0.02秒以上になることが多い。
一般に、ロールが高温の圧延材と接する時間
が、ロール1回転当り0.02秒以上になると、通常
のロールでは、表面での熱亀裂の発達が大きくな
り、亀裂部が盛上る現象さえ現われ、この現象に
基づく早期に肌荒れを起す。
このような高熱負荷の圧延に、耐熱亀裂性にす
ぐれた低炭素低合金鋳鋼系ロールを使用すると、
ロールにおける熱亀裂と盛上りはなくなるけれど
も、孔型圧延の場合は、相対すべり摩擦が大きい
ので、焼付が生じ易く、この焼付けに基づく早期
の肌荒れを生じ使用不能となる。
そこで発明者等は、特公昭55−31177号公報に
開示されているような、球状黒鉛鋳鉄を試験して
みたが、かかる球状黒鉛鋳鉄では、焼付現象はな
くなり、ロール肌は、良好な状態を保つけれど
も、摩耗が非常に大きい。耐摩耗性を高めるには
ロール表面硬さが要求される。そこで、ロールの
耐摩耗性を向上せしめるさめに、さらに球状黒鉛
の量を減らして、共晶炭化物を多くした高合金鋳
鉄系のロールを適用して試験したみた結果、耐摩
耗性はある程度改善されたが、熱亀裂の発生と進
行が激しく、数百本の圧延、即ちロールの圧延転
動数が8000回程度で肌荒れのため、ロールを取替
えねばならなかつた。
(発明が解決しようとする問題点)
この発明は、上に述べた、従来技術における問
題点を解決し、耐熱負荷、耐摩耗性耐焼付性にす
ぐれた熱間圧延用ロールを提供することを目的と
してなされた。
(問題点を解決するための手段)
本発明の要旨は、ロール1回転当り圧延材との
接触時間が0.05秒以上である、鋼の熱間圧延用ロ
ールであつて、重量で、C:3.2〜3.8%、Si≦2.8
%、Mn≦1.0%、Cr≦1.0%、Ni≦4.0%、Mo:
0.5〜3.0%、さらに黒鉛を球状化せしめるための
Mg或はCaを含み、さらにV、Ti、NbおよびW
の1種または2種以上を合計量で1.0%以下、残
部:Feおよび不可避的不純物からなり、黒沿の
面積率が10〜35%かつMC型共晶炭化物の面積率
が2〜10%であることを特徴とする高熱負荷耐摩
耗耐焼付性ロールである。
以下に、この発明に到達するまでの過程、実験
について詳細に説明する。
先づ、発明者等は、種々のロール材の肌荒れ現
象を詳細に調査し、ロールの圧縁材との接触時間
がロール表層への入熱量に大きく影響しており、
第2図A線で示すように接触時間が0.1秒以上に
なるとロール表面の熱亀裂が著しく進行すること
を突止めた。尚、第2図のA線はロールを、接触
時間(高温保持時間)を0.05〜0.3秒として550゜
100℃に昇温、降温を2000回繰返し後の熱亀裂の
深さを示す。
而して、発明者等は、研究の結果、ロールの耐
熱亀裂特性を高めてしかもすべり摩擦に対して耐
焼付性を損なわないロールを得るには、黒鉛の量
調整が非常に有用であることを見出した。
そこで、発明者等は、先ずロールの耐熱亀裂特
性を改善するために、基本の球状黒鉛鋳鉄の中に
Moを添加し、表−1に示す10種類のロールを製
作し、熱亀裂試験をした。
(Industrial Application Field) This invention is applicable to rolls used in rolling where the rolling load is large and the contact time between the roll and the rolled material per roll rotation is long, such as rolling steel pipes with a mandrel mill in a seamless steel pipe manufacturing process. Regarding. (Conventional technique) In hot rolling of long steel, steel plates, steel pipes, etc., when the rolling load is large and the contact time on the rolling surface between the roll and the rolled material per roll rotation becomes long, the thermal load that the roll receives increases. growing. In such a case,
Not only does the temperature of the roll surface rise, but the heat input into the roll also increases, and the temperature several millimeters below the surface becomes very high. This rise in the temperature of the surface layer of the roll is caused by the fact that the roll is water-cooled as soon as it leaves the arc of contact with the rolled material, so the roll is given a thermal cycle of increasing and decreasing temperature each time it rotates.
This is the main cause of early thermal cracking on the roll surface. Moreover, this temperature rise on the surface layer of the roll accelerates the development of cracks inside the roll, often leading to breakage of the roll. Furthermore, the development of thermal cracks on the roll surface
This results in early surface roughening due to roll seizure and thermal fatigue wave breakage of the roll surface layer. The above-mentioned increase in heat input to the roll surface layer is caused by an increase in the contact arc surface between the roll and the rolled material due to an increase in the reduction ratio during rolling, as well as when the rolling speed is slow, or when the groove side surface or the groove side surface in groove rolling increases. This is caused by an increase in the contact time between the roll and the rolled material when rolling with large diameter rolls. In particular, in continuous rolling of seamless steel pipes using a mandrel mill with 6 to 7 stands, the amount of reduction in stands 1 to 3 in the previous stage is large, and especially in rolling with a semi-floating mandrel mill, the hole roll load on the No. 2 stand is large. There is a lot of wear and tear on the rolls. In normal rolling using rolls with a large rolling reduction and a bottom diameter of about 300 mm as described above, the contact time with the rolled material is often 0.02 seconds or more per rotation of the roll. In general, when the roll is in contact with the hot rolled material for more than 0.02 seconds per roll rotation, the development of thermal cracks on the surface of normal rolls increases, and the cracks even bulge. Causes early skin irritation. When low carbon, low alloy cast steel rolls with excellent heat cracking resistance are used for rolling under such high heat loads,
Although thermal cracks and bulges in the rolls are eliminated, in the case of groove rolling, the relative sliding friction is large, so seizing is likely to occur, and this seizing causes early surface roughness, making it unusable. Therefore, the inventors tested spheroidal graphite cast iron as disclosed in Japanese Patent Publication No. 55-31177, but with such spheroidal graphite cast iron, the seizure phenomenon disappeared and the roll skin remained in good condition. Although it is kept, the wear and tear is very high. Roll surface hardness is required to improve wear resistance. Therefore, in order to improve the wear resistance of the rolls, we conducted tests using high-alloy cast iron rolls with a reduced amount of spheroidal graphite and increased eutectic carbides, and as a result, we found that the wear resistance was improved to some extent. However, thermal cracks occurred and progressed rapidly, and the rolls had to be replaced due to rough skin after several hundred rolling operations, that is, approximately 8,000 rolls. (Problems to be Solved by the Invention) The present invention aims to solve the above-mentioned problems in the prior art and provide a hot rolling roll with excellent heat load resistance, wear resistance, and seizure resistance. It was done for a purpose. (Means for Solving the Problems) The gist of the present invention is to provide a roll for hot rolling of steel, which has a contact time with the rolled material for 0.05 seconds or more per rotation of the roll, and has a C: 3.2 by weight. ~3.8%, Si≦2.8
%, Mn≦1.0%, Cr≦1.0%, Ni≦4.0%, Mo:
0.5-3.0%, to further make graphite spheroidal
Contains Mg or Ca, and further contains V, Ti, Nb and W
The total amount of one or more of the following is 1.0% or less, the balance is Fe and unavoidable impurities, and the area ratio of black grain is 10 to 35% and the area ratio of MC type eutectic carbide is 2 to 10%. This is a high heat load resistant, abrasion resistant, and seizure resistant roll. Below, the process and experiments to arrive at this invention will be explained in detail. First, the inventors investigated in detail the roughening phenomenon of various roll materials, and found that the contact time of the roll with the pressure edge material greatly affects the amount of heat input to the roll surface layer.
As shown by line A in Figure 2, it was found that thermal cracks on the roll surface significantly progressed when the contact time was 0.1 seconds or more. Note that line A in Figure 2 shows the roll at 550° with a contact time (high temperature holding time) of 0.05 to 0.3 seconds.
It shows the depth of thermal cracks after heating up to 100℃ and cooling down 2000 times. As a result of research, the inventors have found that adjusting the amount of graphite is extremely useful in order to improve the heat cracking resistance of the roll and to obtain a roll that does not impair seizure resistance against sliding friction. I found out. Therefore, in order to improve the heat cracking resistance of the roll, the inventors first added it to the basic spheroidal graphite cast iron.
Ten types of rolls shown in Table 1 were manufactured by adding Mo and subjected to thermal cracking tests.
【表】【table】
【表】
その結果、耐熱亀裂特性は著しく向上し、熱亀
裂試験650℃60℃の水冷熱サイクルにおける亀
裂指数η(η=従来のダクタイル鋳鉄の亀裂発生
深さ/Moを加えたダクタイル鋳鉄の亀裂深さ)
即ちMoを含まない合金鋳鉄の熱亀裂深さに対す
る、この発明の、Moを含む球状黒鉛鋳鉄の亀裂
深さの比は、第1図に示すようになり、2%の
Moを含有せしめたロール材の場合で、ほぼη=
4になつた。
第1図から判るように、耐熱亀裂特性は、Mo
の0.5%添加より効果がみられ、2%Moでほぼ最
高となり、ほぼ飽和し、Moを3%程度まで加え
ても安定した状態が得られる。しかしそれ以上加
えると、成分バランスがくずれ、黒鉛が出難くな
り、また、Mo系複合炭化物が多くなるので3%
が限度である。
次に、発明者等は、熱間での耐摩耗性を向上せ
しめるには、炭化物量を増すと効果があるが、し
かし、Fe3CやM7C3,M23C6などの大型晶出炭化
物を増やすとこの大型晶出炭化物を縫つて亀裂が
入り易くなり耐熱亀裂性が低下すること、及びこ
れを避けるには、MC型の微小な炭化物を均一に
分散、晶出せしめ、この炭化物が面積率で2〜10
%の範囲にあるようにすれば良いことを見出し
た。そこで、発明者等は、この点に着目し、鋳鉄
基地に炭化物を分散して晶出せしめるべく、表−
2の試No.11〜16のようにV,W,Nd,Tiのうち
の1種類の添加を行なつた。[Table] As a result, the heat crack resistance properties were significantly improved, and the crack index η (η = crack initiation depth of conventional ductile cast iron/crack of ductile cast iron with Mo added depth)
That is, the ratio of the crack depth of the spheroidal graphite cast iron containing Mo according to the present invention to the thermal crack depth of the alloy cast iron that does not contain Mo is as shown in Fig. 1, which is 2%.
In the case of roll material containing Mo, approximately η=
It became 4. As can be seen from Figure 1, the heat cracking resistance characteristics of Mo
The effect is seen from the addition of 0.5% of Mo, reaching the maximum at 2% Mo, almost saturated, and a stable state can be obtained even when Mo is added up to about 3%. However, if more than that is added, the component balance will be disrupted, it will be difficult to produce graphite, and the amount of Mo-based composite carbide will increase, so 3%
is the limit. Next, the inventors found that increasing the amount of carbides is effective in improving hot wear resistance, but that large crystals such as Fe 3 C, M 7 C 3 and M 23 C 6 If the amount of carbide is increased, the large crystallized carbides are likely to become cracked and the heat cracking resistance will be reduced. is an area ratio of 2 to 10
I found that it is good to keep it within the range of %. Therefore, the inventors focused on this point, and in order to disperse and crystallize carbides in the cast iron base, the inventors
As in Test Nos. 11 to 16 of 2, one of V, W, Nd, and Ti was added.
【表】
これらMC型炭化物生成元素添加による耐亀裂
性向上の数例を第2図に示す。B線、C線、D線
はそれぞれ1%MoにW添加、0.5%V添付、Ti+
Nb添加例、E線、F線はそれぞれ2%Mo添付例
であり、何れも従来のA線に比べて、接触時間の
0.05秒〜0.3秒において、特に0.1秒以上において
亀裂深さは顕著に減少している。
而してこれらMC型炭化物生成元素を、多く加
えると、基地の靭性を低下せしめることからこの
量は1%前後が限度であり、しかもMC生成元素
を2成分以上加える場合であつても全量で1%以
下にした方がよいこと及び、これはまた、含有し
ているCを消耗するので、黒鉛化するC量を少な
くすることにもなり、従つて1%が上限となるこ
とがわかつた。
従つて、これらMC型炭化物を生成せしめる元
素は合計で1.0%以下に止めて、黒鉛の晶出量と
晶出炭化物の量を後述する適正値の範囲内に保持
するようにした。
MC型炭化物の晶出は、基地の硬さを高め、耐
摩耗性を向上せしめることは、前述の通りであ
る。
(作用)
次に、本発明の高熱負荷耐摩耗耐焼付性ロール
における添加元素である。Si,NiおよびCr等の
役割について述べる。尚Moについては既に述べ
たので、こゝでは省略する。
先ずSiは、この発明のMo入り黒鉛鋳鉄におけ
る黒鉛の晶出量を調整する元素であつて、多量に
加えると黒鉛の晶出量が多くなり、Crなど炭化
物生成元素がない場合は、2.8%を超えて添加す
ると、通常の砂型による鋳造における凝固速度で
は殆んど炭化物の晶出はなく、黒鉛が晶出し、フ
エライトが多量に存在する材質となる。かかる材
質では、ロール材として硬さ、耐摩耗性の点で不
適であり、従つてSi含有量は、2.8%以下とし、
CrやMC生成元素の添加量に合せて、Si添加量を
調整することが必要である。さらに、黒鉛球状化
の目的で接種するMgやCaと併せてSiの接種添加
も考えると調整し易い。
Niは、基地の靭性を高める元素であつて、し
かもSiと同様、Cの黒鉛化晶出助成元素である。
Niを3%から4%加えると、本発明になるMo鋳
鉄の基地の焼入れ性が非常に高まりマルテンサイ
ト系にすることができるとともに、凝固冷却と、
その後の熱処理によつて、ベーナイトや微細ラメ
ラーパーライトにすることができる。Niは、基
地の強度や硬さ調整のために加えられ、その上限
は4%程度であり、これ以上加えると、Niの特
性が出過ぎて全体の組織調整が困難になるので4
%を上限とした。
Crは、炭化物生成元素であり、V,Ti,Nb,
WなどのMC型炭化物生成元素と相俟つて、1%
以下に調整しないと、炭化物生成量が多くなり、
MC型炭化物の面積率を2〜10%に調整すること
がむづかしくなる。
Mnの含有量を1%以下に規制したのは、Mn
含有量がこれ以上多くなると、Cの黒鉛化、球状
化を阻害し、オーステナイト域を拡大せしめるか
ら、熱処理で焼入れ状態になり、割れ発生が起こ
ることがあるためである。
Mnは、通常0.3〜0.5%に調整するが、基地を
微細ラメラーパーライトにするのに有利な元素で
あり、特にNiが少ない場合に効果があるけれど
も上に述べた理由から1%を上限した。
次に、本発明になる合金系球状黒鉛鋳鉄材の耐
熱亀裂性におよぼす黒鉛の量については、第3図
に示すように、晶出量を10%以上にすると、耐熱
亀裂性が非常に改善されるが、10%未満では、共
晶炭化物が多くなつて亀裂が入り易くなる。尚第
3図G線は、接触時間が0.2〜0.3秒でMo2%にお
ける黒鉛の面積率と熱亀裂深さとの関係を示し、
H線はMoを含まない例を示す。これから判るよ
うに、黒鉛量を、断面にみられる面積率で凡そ10
〜35%になるように、鋳造段階での冷却速度を制
御して調整すると、熱亀裂の進行は、大きく阻止
できる。
一方、黒鉛の晶出率を、35%以上にすると、晶
出炭化物は殆んどなくなるので、その状態では、
耐摩耗が低下する。しかし、耐焼付性は、著しく
改善される。
好ましくは、黒鉛の晶出率を20〜25%とし、
MC型炭化物を5%前後出させると、耐焼付性の
良好な状態を維持して基地を強め、耐摩耗性も改
善され、耐熱亀裂性も極めて良好な範囲にある。
従つて、この組成の範囲内に入るよう鋳鉄の凝固
を制御するのが良い。
また、この範囲に入るようにするため、C量を
3.2%から3.8%の範囲内とする。
なお、このようにして作成した前述の組織を有
する材料でも、圧延過程でのロールの圧延材との
接触時間が、ロール1回転当り0.05秒以下の場合
には、従来材と殆んど変らなく、その特性を顕在
化するに至らない。そして、本発明になるロール
材は、圧延におけるロールの圧延材との接触時間
が、ロール1回転当り0.05秒以上の圧延形態の場
合に有効であることから、本発明においては、接
触時間を0.05以上に限定した。特にすべり率の大
きい孔型に本発明の特性が顕著に現れることを強
調しておく。
(実施例)
次に、この発明になるMo球状黒鉛鋳鉄の実施
例における結果を示す。
実施例におけるロールの化学成分を表−3に示
す。
実施例では、このロールをシームレス鋼管製造
プロセスにおける、セミフローテイングマンドレ
ルミルのNo.2スタンドに組込んだ。
このロールは、従来のアダマイトロールに比
べ、3〜4倍の寿命であつた。
尚、この実施例においては、ロールが、その1
回転当り圧延材に接する時間は、凡そ0.2秒であ
つた。[Table] Figure 2 shows several examples of improvements in crack resistance due to the addition of these MC-type carbide-forming elements. B line, C line, and D line are each 1% Mo with W added, 0.5% V added, Ti+
The Nb addition example, E line, and F line are each examples with 2% Mo added, and all have shorter contact times than the conventional A line.
The crack depth decreases significantly between 0.05 seconds and 0.3 seconds, especially over 0.1 seconds. However, if too many of these MC-type carbide-forming elements are added, the toughness of the base will be reduced, so the amount should be limited to around 1%, and even when two or more MC-forming elements are added, the total amount is It was found that it is better to keep it below 1%, and since this also consumes the C contained, it also reduces the amount of C that graphitizes, so 1% is the upper limit. . Therefore, the total content of these elements that cause the formation of MC type carbides was limited to 1.0% or less, and the amount of crystallized graphite and the amount of crystallized carbides were kept within the range of appropriate values described below. As mentioned above, the crystallization of MC type carbides increases the hardness of the base and improves the wear resistance. (Function) Next, there are added elements in the high heat load resistant and wear resistant roll of the present invention. The roles of Si, Ni, Cr, etc. will be explained. Since Mo has already been mentioned, it will be omitted here. First, Si is an element that adjusts the amount of graphite crystallization in the Mo-containing graphite cast iron of this invention, and when added in a large amount, the amount of graphite crystallization increases, and in the absence of carbide-forming elements such as Cr, Si is an element that adjusts the amount of graphite crystallization. When added in excess of 100%, the solidification rate in normal sand mold casting results in almost no carbide crystallization, graphite crystallization, and a material containing a large amount of ferrite. Such a material is unsuitable for use as a roll material in terms of hardness and wear resistance, so the Si content should be 2.8% or less.
It is necessary to adjust the amount of Si added in accordance with the amount of Cr and MC-generating elements added. Furthermore, it is easy to make adjustments by considering the addition of Si inoculation along with Mg and Ca inoculated for the purpose of graphite spheroidization. Ni is an element that increases the toughness of the matrix, and like Si, it is an element that promotes graphitization and crystallization of C.
When Ni is added from 3% to 4%, the hardenability of the base of Mo cast iron according to the present invention is greatly increased, making it possible to make it martensitic, and it also improves solidification cooling.
By subsequent heat treatment, it can be turned into bainite or fine lamellar pearlite. Ni is added to adjust the strength and hardness of the base, and the upper limit is about 4%; if more than this is added, the characteristics of Ni will be too pronounced, making it difficult to adjust the overall structure.
The upper limit was %. Cr is a carbide-forming element, and V, Ti, Nb,
Together with MC-type carbide forming elements such as W, 1%
If the adjustment is not made below, the amount of carbide produced will increase,
It becomes difficult to adjust the area ratio of MC type carbide to 2 to 10%. The Mn content was regulated to 1% or less.
If the content is higher than this, it inhibits the graphitization and spheroidization of C and expands the austenite region, resulting in a hardened state during heat treatment, which may cause cracks to occur. Mn is normally adjusted to 0.3 to 0.5%, but it is an element that is advantageous in forming the base into fine lamellar pearlite, and is particularly effective when Ni is small, but for the reasons stated above, the upper limit was set at 1%. Next, regarding the amount of graphite that affects the heat cracking resistance of the alloy-based spheroidal graphite cast iron material of the present invention, as shown in Figure 3, when the amount of crystallization is 10% or more, the heat cracking resistance is greatly improved. However, if it is less than 10%, the amount of eutectic carbides increases and cracks are likely to occur. Line G in Figure 3 shows the relationship between the area ratio of graphite and the thermal crack depth at a contact time of 0.2 to 0.3 seconds and Mo2%.
Line H shows an example that does not contain Mo. As you can see, the amount of graphite is approximately 10% in terms of the area ratio seen in the cross section.
If the cooling rate at the casting stage is controlled and adjusted to ~35%, the progression of thermal cracks can be largely inhibited. On the other hand, when the crystallization rate of graphite is increased to 35% or more, there are almost no crystallized carbides, so in that state,
Wear resistance decreases. However, the seizure resistance is significantly improved. Preferably, the crystallization rate of graphite is 20 to 25%,
When about 5% of MC type carbides are present, good seizure resistance is maintained, the base is strengthened, wear resistance is improved, and heat cracking resistance is also within an extremely good range.
Therefore, it is better to control the solidification of cast iron so that it falls within this composition range. In addition, in order to fall within this range, the amount of C should be
It should be within the range of 3.2% to 3.8%. In addition, even with the material created in this way and having the above-mentioned structure, if the contact time of the roll with the rolled material during the rolling process is 0.05 seconds or less per roll rotation, there is almost no difference from the conventional material. , its characteristics have not yet been realized. The roll material of the present invention is effective when the contact time of the roll with the rolled material during rolling is 0.05 seconds or more per roll rotation, so in the present invention, the contact time is 0.05 seconds or more. limited to the above. It should be emphasized that the characteristics of the present invention are particularly evident in hole shapes with a high slip ratio. (Example) Next, results of an example of Mo spheroidal graphite cast iron according to the present invention will be shown. Table 3 shows the chemical components of the rolls in Examples. In the example, this roll was installed in the No. 2 stand of a semi-floating mandrel mill in a seamless steel pipe manufacturing process. This roll had a lifespan 3 to 4 times longer than the conventional Adamite roll. In addition, in this example, the roll is
The contact time with the rolled material per rotation was approximately 0.2 seconds.
【表】
(発明の効果)
この発明は、以上述べたように構成したから、
ロールの摩耗、焼付に起因するトラブルさらには
ロール交換頻度を低下せしめ得、従つて、設備稼
働率の低下をよく抑え生産性を高い水準とするこ
とができるほか、ロール原単位を低くせしめ得る
効果を奏する。[Table] (Effects of the invention) Since this invention is constructed as described above,
Problems caused by roll wear and seizure, as well as the frequency of roll replacement, can be reduced.Therefore, the decline in equipment operating rate can be suppressed, productivity can be maintained at a high level, and the roll consumption rate can be lowered. play.
第1図は、この発明になるロールの、熱疲労、
亀裂改善指数とMo含有量との関係を示す図、第
2図は、熱亀裂の深さと、ロールおよび圧延材の
接触時間との関係を示す図、第3図は、熱亀裂の
深さと、黒鉛の占積率との関係を示す図である。
Figure 1 shows the thermal fatigue of the roll according to this invention.
Figure 2 is a diagram showing the relationship between the crack improvement index and Mo content, Figure 2 is a diagram showing the relationship between the depth of thermal cracks and the contact time between the roll and the rolled material, and Figure 3 is the relationship between the depth of thermal cracks and It is a figure showing the relationship with the space factor of graphite.
Claims (1)
秒以上である、鋼の熱間圧延用ロールであつて、
重量で、C:3.2〜3.8%、 Si≦2.8%、 Mn≦1.0%、 Cr≦1.0%、 Ni≦4.0%、 Mo:0.5〜3.0%、 さらに黒鉛を球状化せしめるためのMg或はCa
を含み、さらにV、Ti、NbおよびWの1種また
は2種以上を合計量で1.0%以下、残部:Feおよ
び不可避的不純物からなり、黒鉛の面積率が10〜
35%かつMC型共晶炭化物の面積率が2〜10%で
あることを特徴とする高熱負荷耐摩耗耐焼付性ロ
ール。[Claims] 1. Contact time with rolled material per roll rotation is 0.05
A roll for hot rolling of steel, which
By weight, C: 3.2-3.8%, Si≦2.8%, Mn≦1.0%, Cr≦1.0%, Ni≦4.0%, Mo: 0.5-3.0%, and Mg or Ca to make graphite spheroidal.
and one or more of V, Ti, Nb, and W in a total amount of 1.0% or less, the balance being Fe and unavoidable impurities, and the area ratio of graphite is 10 to 1.0%.
35%, and the area ratio of MC type eutectic carbide is 2 to 10%. A roll with high heat load resistance and wear resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16250585A JPS6223957A (en) | 1985-07-23 | 1985-07-23 | Roll having resistance to thermal load, wear and seizure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16250585A JPS6223957A (en) | 1985-07-23 | 1985-07-23 | Roll having resistance to thermal load, wear and seizure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6223957A JPS6223957A (en) | 1987-01-31 |
JPH0241575B2 true JPH0241575B2 (en) | 1990-09-18 |
Family
ID=15755893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16250585A Granted JPS6223957A (en) | 1985-07-23 | 1985-07-23 | Roll having resistance to thermal load, wear and seizure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6223957A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0785805B2 (en) * | 1987-05-25 | 1995-09-20 | 新日本製鐵株式会社 | Roll for hot rolling of thin steel sheet |
-
1985
- 1985-07-23 JP JP16250585A patent/JPS6223957A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6223957A (en) | 1987-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020032144A1 (en) | Centrifugal cast composite roll for rolling and manufacturing method therefor | |
JP2715223B2 (en) | Roll outer layer material and composite roll | |
JPH06335712A (en) | Wear-resistant and seizing-resistant roll for hot rolling | |
JP2020022989A (en) | Outer layer material of centrifugal casting compound roll for rolling and centrifugal casting compound roll for rolling | |
EP2660344A1 (en) | Centrifugally cast roll for last finishing stands in hot strip mills | |
EP0871784B2 (en) | Cast iron indefinite chill roll produced by the addition of niobium | |
JPH03254304A (en) | Wear resistance conjugated roll | |
JP4341357B2 (en) | Roll outer layer material for hot rolling and composite roll for hot rolling | |
JPH0241575B2 (en) | ||
JPH0692625B2 (en) | Roll for hot rolling | |
JP2004162104A (en) | Roll external layer material for hot rolling and composite roll for hot rolling | |
JP3919092B2 (en) | Composite roll for hot rolling | |
JPS60261610A (en) | Centrifugally cast compound roll and its production | |
EP4126417A1 (en) | Multi-layered roller with high corrosion resistance | |
JPH0768304A (en) | Rolling roll for bar steel | |
JP2005169424A (en) | Composite rolling roll | |
JP2005169421A (en) | Composite rolling roll | |
JP7158312B2 (en) | Hot rolling roll outer layer material, hot rolling composite roll, and method for manufacturing hot rolling roll outer layer material | |
JP2005169426A (en) | Composite rolling roll | |
RU2095459C1 (en) | High-chromium cast iron for rollers | |
JPS6161916B2 (en) | ||
JP2001234289A (en) | Roll for hot rolling | |
JP2001011564A (en) | Wear resistant and seizure resistant roll for hot rolling | |
RU1775196C (en) | Three-layer roll | |
JP2005169425A (en) | Composite rolling roll |