[go: up one dir, main page]

JPH0240318B2 - - Google Patents

Info

Publication number
JPH0240318B2
JPH0240318B2 JP61309081A JP30908186A JPH0240318B2 JP H0240318 B2 JPH0240318 B2 JP H0240318B2 JP 61309081 A JP61309081 A JP 61309081A JP 30908186 A JP30908186 A JP 30908186A JP H0240318 B2 JPH0240318 B2 JP H0240318B2
Authority
JP
Japan
Prior art keywords
culture
medium
tank
cells
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61309081A
Other languages
Japanese (ja)
Other versions
JPS63164879A (en
Inventor
Norio Fujoshi
Seiji Sato
Kazuo Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61309081A priority Critical patent/JPS63164879A/en
Publication of JPS63164879A publication Critical patent/JPS63164879A/en
Publication of JPH0240318B2 publication Critical patent/JPH0240318B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/24Draft tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/20Baffles; Ribs; Ribbons; Auger vanes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/10Perfusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To enable the (mass) culture of cells having higher specific gravity than the culture medium, e.g. animal cells sensitive to shearing force, etc., by precipitating at least a part of cells in a culture liquid in a culture tank of a bubble-tower perfusion culture apparatus and adding fresh culture medium to the tank while discharging the supernatant liquid of the culture liquid. CONSTITUTION:(A) A serum-free medium is produced e.g. by adding transferrin, insulin, sodium pyruvate, selenous acid, galactose, glutamine, HEPES, penicillin, streptomycin and sodium bicarbonate to RPMI-1640 medium and (B) namarva cell which is a human lymphoblast cell is cultured in the medium A. The medium A is charged into a culture tank 13 of a bubble-tower perfusion culture apparatus through a medium inlet port 3, the cell B is inoculated in the medium via an inoculation port 2, the medium is aerated with air and air containing 5% CO2 at a specific flow rate through an aeration line 9 and the cell B having higher specific gravity than the medium A in the culture liquid is precipitated. The produced supernatant liquid is separated in a supernatnat liquid-separation tank and discharged through an effluent line 11. At the same time, the medium A is successively added to the medium through a medium inlet port 3 to continue the culture of the cell.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は動物、植物の細胞、組織、器官など、
及び微生物の培養、特に使用する培地より比重の
重い細胞を培養するに適した気泡塔型潅流培養方
法及びそのための装置に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention is applicable to animal and plant cells, tissues, organs, etc.
The present invention also relates to a bubble column perfusion culture method suitable for culturing microorganisms, particularly cells having a higher specific gravity than the medium used, and an apparatus therefor.

従来の技術 従来、動物、植物の細胞や器官の培養、微生物
の培養において用いられる装置のほとんどは、回
分式のものである。かかる回分式の装置を用いる
場合には培養槽に投入した培地中の栄養源が細胞
増殖等に利用され枯渇すると培養は終了する。従
つて、多くの細胞を入手するためには、大型の装
置が必要となる。
BACKGROUND ART Conventionally, most of the apparatuses used for culturing animal and plant cells and organs and culturing microorganisms are of batch type. When such a batch-type device is used, the culture is terminated when the nutrient source in the medium introduced into the culture tank is used for cell proliferation, etc. and is depleted. Therefore, in order to obtain a large number of cells, a large-sized device is required.

回分培養の場合、通気撹拌培養が一般的でイン
ペラーとスパージヤーにより撹拌と通気を行う方
法と、気泡によつて回転運動を起し撹拌する気泡
方式が知られており、それぞれに適した培養装置
が知られている。このうち気泡塔培養装置とは培
養装置の下部より空気等を通気することにより通
気ならびに撹拌を行う方式の培養装置である〔遺
38 (8)、72−79(1984)〕。
In the case of batch culture, the most common method is aeration and agitation culture, in which stirring and aeration are carried out using an impeller and spargeer, and the bubble method, in which rotational movement is caused by air bubbles for agitation.There are culture devices suitable for each. Are known. Among these, the bubble column culture device is a culture device that performs aeration and stirring by aerating air etc. from the bottom of the culture device [Iden 38 (8), 72-79 (1984)] .

しかしながら回分式培養法では培養系内でのPH
の低下、代謝産物による生育阻害、栄養源の枯渇
などの要因からある程度以上の生育細胞密度とす
ることは困難である。最近、回分培養より高い細
胞密度の得られる潅流培養装置が開発されてい
る。潅流培養装置とは培地の供給と培養上清の抜
出しとを連続的に行う培養装置をいう。この型式
の培養装置には回転するフイルターによつて細胞
と上清とを分離し、上清を排出し、新鮮培地を加
える回転濾過塔型、インペラー型回分培養槽に細
胞沈殿管を設けることによつて細胞と上清とを分
離する細胞沈殿管型、及び中空繊維(ホロフアイ
バー)中に通気するか培地を通すホロフアイバー
型とがある〔遺伝38 (8)、72−79(1984)〕。
However, in the batch culture method, the pH within the culture system
It is difficult to achieve a viable cell density above a certain level due to factors such as a decrease in cell density, inhibition of growth by metabolites, and depletion of nutrient sources. Recently, perfusion culture devices have been developed that can provide higher cell densities than batch culture. A perfusion culture device is a culture device that continuously supplies a culture medium and withdraws a culture supernatant. In this type of culture device, cells and supernatant are separated by a rotating filter, the supernatant is discharged, and fresh culture medium is added. A rotating filter tower type or an impeller type batch culture tank is equipped with a cell sedimentation tube. Therefore, there is a cell sedimentation tube type that separates cells and supernatant, and a holofiber type that allows air to pass through a hollow fiber (hollow fiber) or a medium that passes through it [Gene 38 (8), 72-79 (1984)]. .

又、特公昭61−36915には少なくとも一部の培
養液中の細胞を沈降させて得られる培養上清を培
養装置外に排出しながら新鮮培地を加えて培養す
る浮遊細胞の高濃度培養法が記載されており、そ
のための装置の一例として上記細胞沈殿管型の培
養装置が記載されている。
In addition, Japanese Patent Publication No. 36915/1986 describes a high concentration culture method for floating cells in which at least some of the cells in the culture solution are sedimented and the culture supernatant obtained is drained out of the culture device while adding fresh medium and culturing. The above-mentioned cell sedimentation tube type culture device is described as an example of a device for this purpose.

発明が解決しようとする問題点 上記潅流培養装置中、回転濾過塔型及び細胞沈
殿管型はインペラーにより撹拌を行う型式のもの
である。ところが動物細胞のような剪断力に感受
性の細胞に対しては、インペラーによる撹拌は好
ましくなく気泡塔方式の撹拌が優れていると考え
られている。又、ホロフアイバー型は大型化が困
難と考えられる。一方、気泡塔方式では大型化は
容易にできる。
Problems to be Solved by the Invention Among the above-mentioned perfusion culture apparatuses, the rotating filter tower type and the cell sedimentation tube type are types in which stirring is performed using an impeller. However, for cells sensitive to shear forces such as animal cells, stirring using an impeller is not preferable, and stirring using a bubble column method is considered to be superior. Furthermore, it is considered difficult to increase the size of the holofiber type. On the other hand, the bubble column method can easily be made larger.

本発明の気泡塔型潅流培養方法及び装置では従
来の潅流培養装置におけるかかる問題点を回避で
きる。
The bubble column type perfusion culture method and apparatus of the present invention can avoid such problems in conventional perfusion culture apparatuses.

問題点を解決するための手段 本発明は気泡塔による細胞の浮遊培養において
少なくとも一部の培養液中の細胞を沈降させて得
られる培養上清を培養装置外に排出しながら新鮮
培地を加えて培養することを特徴とする浮遊細胞
の潅流培養方法及び気泡塔型培養装置において、
気泡により培養液を撹拌循環させる培養空間(以
下、該空間を培養槽という)と隔壁により隔てら
れ、隔壁上部は培養槽とは連通せず、隔壁下部は
培養槽と連通した空間(以下、該空間を上清分離
槽という)を設け、かつ培養槽への培地の供給及
び上清分離槽からの培養上清の抜出しを可能にし
た気泡塔型潅流培養装置に関する。
Means for Solving the Problems The present invention involves adding a fresh medium while draining the culture supernatant obtained by sedimenting at least a portion of the cells in the culture medium during cell suspension culture using a bubble column to the outside of the culture apparatus. In a method for perfusion culture of floating cells and a bubble column culture device, which are characterized by culturing,
It is separated by a partition from the culture space in which the culture solution is stirred and circulated by air bubbles (hereinafter referred to as the culture tank), the upper part of the partition does not communicate with the culture tank, and the lower part of the partition does not communicate with the culture tank (hereinafter referred to as the culture tank). The present invention relates to a bubble column type perfusion culture device that is provided with a space called a supernatant separation tank, and that enables supply of a culture medium to the culture tank and extraction of the culture supernatant from the supernatant separation tank.

気泡塔培養装置には種々の型式があるが、いず
れの型式においても気体の上昇に伴つて上部に流
動する部分と、上端から下に向つて流動する隔壁
によつて隔てられた下降部分との2つの部分から
なつている。上昇流は、気泡の発生に伴つて生
じ、隔壁の上端に達し、あふれ出し下降流となる
ことで槽内での回転運動を生じ撹拌される。細胞
等はこの対流によつて分散し、均一な溶存酸素及
び栄養分の補給を受ける。この2つの槽に上端を
閉鎖し、下端を開放したもう一つの部屋、すなわ
ち上清分離槽をつくると、この槽内は撹拌の影響
をほとんど受けることがなく静置されたと同様の
状態になる。この撹拌の影響の乏しい槽の上端
は、比重の重い細胞粒子が下部へ沈降し気泡槽内
の撹拌部分へもどつて行くため清澄な液となる。
従つて、この清澄な上清をゆつくりとした速度で
系外に排出してもその清澄度は、ほとんど変らな
い。系外に排出する速度と培養槽部分に添加する
速度とを同じにすると一定量の連続培養が進行す
ることになる。
There are various types of bubble column culture equipment, but all types have a part where the gas flows upwards as the gas rises, and a descending part separated by a partition wall where the gas flows downwards from the top. It consists of two parts. The upward flow occurs as bubbles are generated, reaches the upper end of the partition wall, overflows, and becomes a downward flow, causing rotational movement within the tank and stirring. Cells are dispersed by this convection and uniformly supplied with dissolved oxygen and nutrients. If you create another room between these two tanks with the upper end closed and the lower end open, that is, a supernatant separation tank, the inside of this tank will be almost unaffected by agitation and will be in the same state as if it were left still. . At the upper end of the tank, where the influence of stirring is weak, cell particles with heavy specific gravity settle to the bottom and return to the stirring part of the bubble tank, resulting in a clear liquid.
Therefore, even if this clear supernatant is discharged out of the system at a slow rate, its clarity will hardly change. If the rate of discharge to the outside of the system and the rate of addition to the culture tank are the same, a constant amount of continuous culture will proceed.

上清分離槽下端に沈降する比重の重い細胞粒子
が効率よく培養槽中へもどるようにするために培
養槽と上清分離槽との間の隔壁の下端を培養槽下
端の上昇流と下降流の分岐点より上に設けること
が好ましい。
In order to ensure that cell particles with heavy specific gravity that settle at the bottom end of the supernatant separation tank can efficiently return to the culture tank, the bottom end of the partition between the culture tank and the supernatant separation tank is connected to the upward and downward flow of the bottom end of the culture tank. It is preferable to provide it above the branch point.

気泡培養槽でこのような上清分離槽を付加でき
る形状としては、その機能を満足するものであれ
ば、いかなる形状でもよく、第1図及び第2−1
及び2−2に示した型が好ましいものとして例示
される。
The shape of a bubble culture tank to which such a supernatant separation tank can be added may be any shape as long as it satisfies its function, and as shown in Figures 1 and 2-1.
The types shown in and 2-2 are exemplified as preferred.

第1図は、気泡塔の形状を二重円筒管とし、中
心の内円筒下部より気体を発し、上昇流を引き起
す。その外側の部分は内円筒上端よりあふれた培
養液が下降流となる部分である。さらにその外側
に、ジヤケツト様の上清分離槽をもうけた。
In Figure 1, the shape of the bubble column is a double cylindrical tube, and gas is emitted from the lower part of the inner cylinder at the center, causing an upward flow. The outer part is a part where the culture solution overflowing from the upper end of the inner cylinder flows downward. Furthermore, a jacket-like supernatant separation tank was installed on the outside.

第2−2図は、第1図と異なり、上清分離槽を
中心に設けた場合である。第3図に培養液の流れ
の方向を矢印で示した。第3−3図に示したよう
に培養槽の底を中心を高く盛り上げその2番目の
槽の下より気体を発生させると太い矢印のように
流動する。一部細胞は、中心へも押し出される
が、下部突起の下へともどり再び上昇流にまき込
まれることになる。
Unlike FIG. 1, FIG. 2-2 shows a case in which the supernatant separation tank is provided at the center. In FIG. 3, the direction of flow of the culture solution is indicated by arrows. As shown in Figure 3-3, when the bottom of the culture tank is raised high at the center and gas is generated from below the second tank, it flows as shown by the thick arrow. Some cells are also pushed toward the center, but return to the bottom of the lower protrusion and are once again drawn into the upward flow.

第2−1図は、円筒である必要はなく、箱形で
もよく、分離板で3つの部屋を造ればよい。第3
−2図に示すように下端中央の穴より気体を発生
させると太い矢印のように流動する。上清は、細
い矢印で示したように外部へ排出されている。
In Fig. 2-1, it does not have to be cylindrical, it may be box-shaped, and three chambers can be created using separating plates. Third
-2 As shown in Figure 2, when gas is generated from the hole in the center of the lower end, it flows as shown by the thick arrow. The supernatant is discharged to the outside as indicated by the thin arrow.

以上のように、隔壁に隔てられ下部を開放した
上清分離槽を通常の培養槽につけることによつて
細胞を含まない上清を分離することができる。
As described above, a supernatant containing no cells can be separated by attaching a supernatant separation tank separated by a partition wall and having an open bottom to a normal culture tank.

第1図に記載した装置を例に示すと、培養量2
の装置の場合、上清分離槽は1の容量が適当
である。上清分離槽の内径110mm、培養槽13の
内径80mm、内円筒5の内径57mmとした。装置の高
さは、培養槽13が560mm、内円筒5が370mm、上
清分離槽10が500mmとしたものを示した。
Taking the apparatus shown in Figure 1 as an example, the culture volume is 2
In the case of the above apparatus, the capacity of the supernatant separation tank is approximately 1. The inner diameter of the supernatant separation tank was 110 mm, the inner diameter of the culture tank 13 was 80 mm, and the inner diameter of the inner cylinder 5 was 57 mm. The height of the apparatus is 560 mm for the culture tank 13, 370 mm for the inner cylinder 5, and 500 mm for the supernatant separation tank 10.

これらの培養装置は第1図、第2図に示したよ
うに、コンデンサー1、接種口2、培地添加口
3、サンプリングライン4、内円筒5又は分離板
16、接続金具6、パツキング7、通気口8、通
気ライン9、排液ライン11、固定部品12など
の他、温度制御のための温度センサー、ヒータ
ー、PH測定や溶存酸素測定用のセンサー類、気体
流量制御のための流量計などを取付けることがで
きる。
As shown in FIGS. 1 and 2, these culture devices are equipped with a condenser 1, an inoculation port 2, a medium addition port 3, a sampling line 4, an inner cylinder 5 or a separation plate 16, a connecting fitting 6, a packing 7, and a vent. In addition to the port 8, ventilation line 9, drain line 11, fixed parts 12, etc., there are also temperature sensors for temperature control, heaters, sensors for PH measurement and dissolved oxygen measurement, flowmeters for gas flow control, etc. Can be installed.

一般的には、清澄な上清液を得るために培養槽
容量2に対し、上清分離槽容量を0.5〜2とする
ことが好ましい。
Generally, in order to obtain a clear supernatant liquid, it is preferable that the capacity of the supernatant separation tank is set to 0.5 to 2 for each culture tank capacity of 2.

実施例 実施例 1 第1図に示した気泡塔型潅流培養装置を用い、
ヒトリンパ芽球細胞であるナマルバ細胞を用いて
培養を行つた。
Examples Example 1 Using the bubble column type perfusion culture apparatus shown in Fig. 1,
Culture was performed using Namalva cells, which are human lymphoblastoid cells.

ナマルバ細胞は、RPMI−1640培地に3μg/ml
のトランスフマリン、5μg/mlのインスリン、
5mMピルビン酸ソーダ、1.25×10-8M亜セレン
酸、1mg/mlガラクトース、4mMグルタミン、
10mMヘペス、25u/mlペニシリンG、25μg/
mlストレプトマイシン、0.1g/dl重曹を加えた
無血清培地で培養した。
Namalva cells were added at 3 μg/ml in RPMI-1640 medium.
of transfumarin, 5 μg/ml insulin,
5mM sodium pyruvate, 1.25×10 -8 M selenite, 1mg/ml galactose, 4mM glutamine,
10mM Hepes, 25u/ml Penicillin G, 25μg/
The cells were cultured in a serum-free medium supplemented with ml streptomycin and 0.1 g/dl sodium bicarbonate.

2培養槽に上記培地1.9を仕込み、1.3×
106cells/mlのナマルバ細胞を接種し、空気及び
5%CO2を含む空気を流量比を適宜調節しながら
1.2〜2.4/hrの流量で通気した。1日目500
ml/day、2日目から8日目まで1/day8日目
より後2/dayの流速で培地添加口より添加
し、上清分離槽上端の排液口より上清を排出させ
た。
2 Prepare the above medium 1.9 in a culture tank, and add 1.3×
10 6 cells/ml of Namalva cells were inoculated, and air and air containing 5% CO 2 were added while adjusting the flow rate ratio appropriately.
Aeration was performed at a flow rate of 1.2-2.4/hr. 1st day 500
The medium was added from the medium addition port at a flow rate of 1/day from the 2nd day to the 8th day, and 2/day after the 8th day, and the supernatant was discharged from the drain port at the upper end of the supernatant separation tank.

細胞密度は5日目で4.1×106cells/ml、8日目
で7×106cells/ml、14日目で1×107cells/ml、
以後徐々に細胞数が増加し18日後には1.2×
107cells/mlに達した。
Cell density was 4.1×10 6 cells/ml on the 5th day, 7×10 6 cells/ml on the 8th day, 1×10 7 cells/ml on the 14th day,
After that, the number of cells gradually increased to 1.2× after 18 days.
It reached 10 7 cells/ml.

実施例 2 ナマルバ細胞を第1図に示した装置を用い培養
した。培地として実施例1に示した培地に0.1
g/dlとなるようにpluronic F68を加えた培地を
用いた。2培養槽に上記培地2を仕込み、ナ
マルバ細胞を1.3×106cells/mlとなるように接種
した。通気は空気及び5%CO2を含む空気を流量
比を適宜調節しながら1.2〜2.4/hrの流量で行
つた。
Example 2 Namalva cells were cultured using the apparatus shown in FIG. 0.1 to the medium shown in Example 1 as a medium.
A medium was used in which pluronic F68 was added so that the concentration was adjusted to 1 g/dl. The above medium 2 was placed in a culture tank 2, and Namalva cells were inoculated at 1.3×10 6 cells/ml. Aeration was performed using air and air containing 5% CO 2 at a flow rate of 1.2 to 2.4/hr while adjusting the flow rate ratio as appropriate.

潅流する培地量は、24時間後より1000ml/day
で3日目まで通気し、3日後より10日目まで200
mlずつ増やし、10日後までに2/dayとした。
その後、2日ごとに200mlずつ流量を増加させ20
日目に4/dayとした。細胞数は8日目で8×
106cells/ml、15日目で1.1×107cells/ml、20日
目で1.5×107cells/mlとなつた。
The amount of medium to be perfused is 1000ml/day after 24 hours.
Aerate until the 3rd day, then 200 liters from the 3rd day until the 10th day.
The amount was increased in ml increments to 2/day by 10 days later.
After that, increase the flow rate by 200ml every 2 days.
The day was set to 4/day. Cell count is 8x on day 8
10 6 cells/ml, 1.1×10 7 cells/ml on the 15th day, and 1.5×10 7 cells/ml on the 20th day.

発明の効果 本発明方法及び装置により剪断力に感受性の細
胞の培養及び大量培養が可能となる。
Effects of the Invention The method and device of the present invention enable the culture and mass culture of cells sensitive to shear forces.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の気泡塔型灌流培養
装置の好ましい具体例を示す。第3図は本装置中
の培養液及び培養上清の動きを示す。
FIGS. 1 and 2 show a preferred embodiment of the bubble column type perfusion culture apparatus of the present invention. FIG. 3 shows the movement of the culture solution and culture supernatant in this device.

Claims (1)

【特許請求の範囲】 1 気泡塔による細胞の浮遊培養において少なく
とも一部の培養液中の細胞を沈降させて得られる
培養上清を培養装置外に排出しながら新鮮培地を
加えて培養することを特徴とする浮遊細胞の潅流
培養方法。 2 気泡塔型培養装置において、気泡により培養
液を撹拌循環させる培養空間(以下、該空間を培
養槽という)と隔壁により隔てられ、隔壁上部は
培養槽とは連通せず、隔壁下部は培養槽と連通し
た空間(以下、該空間を上清分離槽という)を設
け、かつ培養槽への培地の供給及び上清分離槽か
らの培養上清の抜出しを可能にした気泡塔型潅流
培養装置。 3 該隔壁の下端を培養槽下端の上昇流と下降流
の分岐点より上に設けた特許請求の範囲第1項記
載の気泡塔型潅流培養装置。
[Scope of Claims] 1. In cell suspension culture using a bubble column, at least a portion of the cells in the culture solution are sedimented, and the culture supernatant obtained is discharged from the culture device while a fresh medium is added and culture is carried out. Characteristic perfusion culture method for floating cells. 2 In a bubble column culture device, a culture space in which the culture solution is stirred and circulated by air bubbles (hereinafter referred to as a culture tank) is separated by a partition wall, the upper part of the partition wall does not communicate with the culture tank, and the lower part of the partition wall is connected to the culture tank. A bubble column type perfusion culture device that is provided with a space (hereinafter referred to as a supernatant separation tank) that communicates with the culture tank, and that enables supply of a culture medium to the culture tank and extraction of the culture supernatant from the supernatant separation tank. 3. The bubble column type perfusion culture apparatus according to claim 1, wherein the lower end of the partition wall is provided above the branch point of the upward flow and downward flow at the lower end of the culture tank.
JP61309081A 1986-12-27 1986-12-27 Bubble-tower perfusion culture and apparatus therefor Granted JPS63164879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61309081A JPS63164879A (en) 1986-12-27 1986-12-27 Bubble-tower perfusion culture and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61309081A JPS63164879A (en) 1986-12-27 1986-12-27 Bubble-tower perfusion culture and apparatus therefor

Publications (2)

Publication Number Publication Date
JPS63164879A JPS63164879A (en) 1988-07-08
JPH0240318B2 true JPH0240318B2 (en) 1990-09-11

Family

ID=17988656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61309081A Granted JPS63164879A (en) 1986-12-27 1986-12-27 Bubble-tower perfusion culture and apparatus therefor

Country Status (1)

Country Link
JP (1) JPS63164879A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0567738A3 (en) * 1992-05-01 1995-09-06 American Cyanamid Co Controlling perfusion rates in continuous bioreactor culture of animal cells
US5443985A (en) * 1993-07-22 1995-08-22 Alberta Research Council Cell culture bioreactor
KR100420784B1 (en) * 2001-02-09 2004-03-02 (주)에스티알바이오텍 Improved Immobilized-cell Separating Apparatus
WO2020189417A1 (en) * 2019-03-15 2020-09-24 エイブル株式会社 Culture system and culture method

Also Published As

Publication number Publication date
JPS63164879A (en) 1988-07-08

Similar Documents

Publication Publication Date Title
CN1066771C (en) Method and apparatus for culturing attached cells
US4974816A (en) Method and apparatus for biological processing of metal-containing ores
JP3244701B2 (en) Method and apparatus for growing biomass particles
EP0353893A2 (en) Cell culture bioreactor
US5007620A (en) Apparatus for biological processing of metal-containing ores
US3969190A (en) Apparatus and method for microbial fermentation in a zero gravity environment
US20210054328A1 (en) Cell Expansion Vessel Systems and Methods
JPH0240318B2 (en)
WO1986000636A1 (en) Cell growth
JP2690144B2 (en) Membrane cell culture device
EP0229289B1 (en) Method of culturing animal cells
JPH0416153B2 (en)
JPH10150974A (en) Photosynthetic microorganism culture apparatus and culture method
EP0402449B1 (en) Apparatus and process for culturing animal cells
US5151362A (en) Apparatus containing a septum which impedes cell permeation for cell culture and method of use
JPH03160983A (en) Culturing device
JP3250042B2 (en) Wastewater treatment equipment
JPH0255119B2 (en)
JPH0367578A (en) Culture device
RU2803177C1 (en) Apparatus for growing microorganisms
CN213738789U (en) Biological high-efficient denitrogenation treatment facility of integration
CN212151996U (en) Aquaculture water purification equipment
US20220033752A1 (en) Bioreactor for cell culture
JPH0428352B2 (en)
JPH03160982A (en) Culturing device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term