JPH0240220A - Pure water producing device - Google Patents
Pure water producing deviceInfo
- Publication number
- JPH0240220A JPH0240220A JP63187641A JP18764188A JPH0240220A JP H0240220 A JPH0240220 A JP H0240220A JP 63187641 A JP63187641 A JP 63187641A JP 18764188 A JP18764188 A JP 18764188A JP H0240220 A JPH0240220 A JP H0240220A
- Authority
- JP
- Japan
- Prior art keywords
- water
- reverse osmosis
- osmosis membrane
- cdi
- pure water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 112
- 229910001868 water Inorganic materials 0.000 title claims description 111
- 239000012528 membrane Substances 0.000 claims description 33
- 238000001223 reverse osmosis Methods 0.000 claims description 18
- 238000010790 dilution Methods 0.000 claims description 16
- 239000012895 dilution Substances 0.000 claims description 16
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 11
- 239000003011 anion exchange membrane Substances 0.000 claims description 9
- 238000005341 cation exchange Methods 0.000 claims description 9
- 239000003957 anion exchange resin Substances 0.000 claims description 5
- 239000003729 cation exchange resin Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000012498 ultrapure water Substances 0.000 description 9
- 239000003456 ion exchange resin Substances 0.000 description 8
- 229920003303 ion-exchange polymer Polymers 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 229910052681 coesite Inorganic materials 0.000 description 5
- 229910052906 cristobalite Inorganic materials 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 239000003014 ion exchange membrane Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 229910052682 stishovite Inorganic materials 0.000 description 5
- 229910052905 tridymite Inorganic materials 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000006114 decarboxylation reaction Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 238000009933 burial Methods 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000002242 deionisation method Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000005591 charge neutralization Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[a業上の利用分野]
本発明は、半導体製造工場や原子力発電所等で広く使用
されている純水やいわゆる超純水を連続的に製造する純
水製造装置に関する。[Detailed Description of the Invention] [Field of Application in Industry A] The present invention relates to a pure water production device that continuously produces pure water or so-called ultrapure water, which is widely used in semiconductor manufacturing factories, nuclear power plants, etc. Regarding.
[従来の技術]
LSIや超LSIの製造においては、多量の純水や超純
水が用いられている。超純水は理論純水(H2Oのみか
らなる水)の比抵抗1.8.24MΩ・Cmに極めて近
く、17〜18MΩ・cmの比抵抗を有する純水である
。[Prior Art] In the manufacture of LSIs and VLSIs, large amounts of pure water and ultrapure water are used. Ultrapure water is pure water having a specific resistance of 17 to 18 MΩ·cm, which is extremely close to the specific resistance of theoretically pure water (water consisting only of H2O), which is 1.8.24 MΩ·Cm.
従来、純水の製造装置として、イオン交換膜及びイオン
交換樹脂を装填した電気透析器(以下rCDIJと略称
する。)が知られている(特開昭61−107906号
)、CDIは塩の大量除去から逆浸透による製造水の純
化に至るまでの幅広い原水の効果的な脱イオンが可能で
ある。Conventionally, an electrodialyzer (hereinafter referred to as rCDIJ) loaded with an ion exchange membrane and an ion exchange resin has been known as a pure water production device (Japanese Patent Application Laid-open No. 107906/1983). Effective deionization of a wide range of raw water is possible, from removal to purification of manufactured water by reverse osmosis.
CDIによる水の脱イオン作用について、第4図を参照
して説明する。The deionization effect of water by CDI will be explained with reference to FIG. 4.
第4図では、印加直流電位は(+)と(−)で表わされ
ている。第4図においては、アニオン交換@21とカチ
オン交換膜22との間で濃縮室25aが形成され、カチ
オン交換膜22とアニオン交換膜23との間で希釈室2
6が形成されている。また、アニオン交換膜23とカチ
オン交換膜24との間で濃縮室25bが形成されている
。そして、希釈室26内には、カチオン交換樹脂27と
アニオン交換樹脂28との混床樹脂が充填されている。In FIG. 4, the applied DC potentials are represented by (+) and (-). In FIG. 4, a concentration chamber 25a is formed between the anion exchange membrane 21 and the cation exchange membrane 22, and a dilution chamber 25a is formed between the cation exchange membrane 22 and the anion exchange membrane 23.
6 is formed. Further, a concentration chamber 25b is formed between the anion exchange membrane 23 and the cation exchange membrane 24. The dilution chamber 26 is filled with a mixed bed resin of a cation exchange resin 27 and an anion exchange resin 28 .
原水中のイオン″はNa十及びCJ2−により代表して
示す、希釈室26に入ったイオンは親和力、濃度及び移
動度に基いてイオン交換樹脂2フ、28と反応する。イ
オンは電位の傾きの方向に樹脂中を移動し、更に膜22
又は23を横切りて移動し、すべての室において電荷の
中和が保たれる。そして、膜の半浸透特性のため、並び
に電位の傾きの方向性のために、溶液中のイオンは希釈
室26では減少し、隣りの濃縮室25a、25bでは濃
縮されることになる。このため、希釈室26から脱イオ
ン水が回収される。The ions in the raw water are represented by Na and CJ, and the ions that enter the dilution chamber 26 react with the ion exchange resins 2 and 28 based on their affinity, concentration, and mobility. It moves in the resin in the direction of
or 23 to maintain charge neutralization in all chambers. Due to the semi-permeable property of the membrane and the directionality of the potential gradient, ions in the solution decrease in the dilution chamber 26 and are concentrated in the adjacent concentration chambers 25a and 25b. For this reason, deionized water is recovered from the dilution chamber 26.
CDIはイオン交換樹脂のように再生を必要とせず、完
全な連続採水が可能で、極めて高純度の水が得られると
いう優れた効果を奏する。Unlike ion-exchange resins, CDI does not require regeneration, allows completely continuous water sampling, and has the excellent effect of producing extremely high-purity water.
しかしながら、CDIは充填されているイオン交換膜や
イオン交換樹脂の劣化や処理来貢の悪化を防ぐために、
給水する原水水質をある一定レベル以上の水質に管理す
る必要があり、原水水質の管理が容易でないという欠点
を有する。例えば、原水中のC1−濃度はO,ippm
以下、硫化鉄、硫化マンガン濃度はO,O1ppm以下
であることが要求されている。However, in order to prevent the deterioration of the ion exchange membrane and ion exchange resin packed in CDI and the deterioration of processing efficiency,
It is necessary to control the quality of the raw water to be supplied to a certain level or higher, and it has the disadvantage that it is not easy to manage the quality of the raw water. For example, the C1- concentration in raw water is O,ippm
Hereinafter, the concentration of iron sulfide and manganese sulfide is required to be 1 ppm or less of O and O.
従来、CDIの前処理装置としては、通常、逆侵透膜分
離器(以下、rROJと略称する。)が用いられている
。Conventionally, a reverse osmosis membrane separator (hereinafter abbreviated as rROJ) has generally been used as a pretreatment device for CDI.
[発明が解決しようとする課題]
CDIに給水する原水をROにより処理することにより
、水質をある程度向上させることができるが、従来の1
段ROfi理では、原水中のSiO2の除去が十分でな
く、CDIのイオン交換膜、イオン交換樹脂の劣化や処
理水の悪化を効果的に防ぐことができなかった。[Problem to be solved by the invention] Water quality can be improved to some extent by treating the raw water supplied to the CDI with RO, but the conventional method
In the stage ROfi process, the removal of SiO2 from the raw water was not sufficient, and it was not possible to effectively prevent the deterioration of the CDI ion exchange membrane and ion exchange resin and the deterioration of the treated water.
本発明は上記従来の問題点を解決し、CDIのイオン交
換膜、イオン交換樹脂の劣化を防止して、極めて高純度
の処理水を得ることができる純水製造装置を提供するこ
とを目的とする。It is an object of the present invention to solve the above-mentioned conventional problems and to provide a pure water production apparatus that can prevent deterioration of CDI's ion exchange membrane and ion exchange resin and obtain treated water of extremely high purity. do.
[課題を解決するための手段]
本発明の純水製造装置は、原水を逆浸透膜処理するMl
の逆浸透膜分1m器と、該第1の逆侵透膜分離器の透過
水を逆浸透膜処理する第2の逆侵透膜分離器と、第2の
逆浸透膜分S器の透過水を電気透析する電気透析器とを
備え、該電気透析器は、複数のアニオン交換膜及びカチ
オン交換膜を交互に配列して濃縮室と希釈室とを交互に
形成してなり、前記希釈室にはアニオン交換樹脂とカチ
オン交換樹脂とが混合されて充填されていることを特徴
とする。[Means for Solving the Problems] The pure water production apparatus of the present invention uses Ml for treating raw water with a reverse osmosis membrane.
a 1 m reverse osmosis membrane device, a second reverse osmosis membrane separator that performs reverse osmosis membrane treatment on the permeated water of the first reverse osmosis membrane separator, and a second reverse osmosis membrane an electrodialyzer for electrodialyzing water; the electrodialyzer is configured by alternately arranging a plurality of anion exchange membranes and cation exchange membranes to form concentration chambers and dilution chambers alternately; is characterized in that it is filled with a mixture of an anion exchange resin and a cation exchange resin.
[作用]
CDIで純水を製造するにあたり、CDIの前処理とし
て、ROを2基直列で用いる2段ROIA埋を行なうこ
とにより、CDIへの給水は極めて高水質なものとなり
、特にSiO2濃度は通常20ppb以下と非常に低い
値となる。[Function] When producing pure water with CDI, by performing two-stage ROIA burial using two RO units in series as a pretreatment of CDI, the water supplied to CDI is of extremely high quality, and the SiO2 concentration is particularly low. It is usually a very low value of 20 ppb or less.
このため、CDIのイオン交換膜やイオン交換樹脂が劣
化することがなく、例えば、比抵抗10MΩ−cm以上
、5i020ppb以下の高純度の処理水を連続的に採
水することが可能とされる。Therefore, the ion exchange membrane and ion exchange resin of the CDI do not deteriorate, and it is possible to continuously collect highly purified treated water with a specific resistance of 10 MΩ-cm or more and 5i020 ppb or less, for example.
また、一般に第1段目のRO(以下、「第1RO」と略
称する。)の給水(原水)のSiO2濃度よりも、第2
段目のRO(以下、r第2RO」と略称する。)の濃縮
水の5LO2濃度の方が低い値であることから、第2R
Oの濃縮水を第1ROの給水に返送することができ、こ
れにより、第1RO処理水の5LO2をより低い値にす
ることができる。In general, the SiO2 concentration of the feed water (raw water) of the first stage RO (hereinafter abbreviated as "first RO") is higher than that of the second stage RO (hereinafter referred to as "first RO").
Since the 5LO2 concentration of the concentrated water in the RO of the second stage (hereinafter abbreviated as 2nd RO) is lower, the 5LO2 concentration of the 2nd R
The O enriched water can be returned to the first RO water supply, which allows the first RO treated water to have a lower 5LO2 value.
また、CDIの濃縮水中の5102を含む溶解塩類(T
D S )濃度は、第2ROの給水のTDS濃度より
も低い値であるため、CDI濃縮水は第1RO又は第2
ROの給水に返送することができ、これにより、より高
純度の処理水を得ることができる。In addition, dissolved salts (T) containing 5102 in concentrated water of CDI
D S ) concentration is lower than the TDS concentration in the feed water of the second RO, so the CDI concentrated water is
It can be returned to the RO water supply, resulting in higher purity treated water.
また、このように濃縮水の循環ができるため、節水が図
れる。Also, since concentrated water can be circulated in this way, water can be saved.
更に、CDIのイオン交換樹脂の再生が不要であること
から、IA埋を必要とする廃液が生じることがなく、処
理コストが低く抑えられる。Furthermore, since it is not necessary to regenerate the ion exchange resin of CDI, waste liquid that requires IA burial is not generated, and processing costs can be kept low.
[実施例]
以下、図面を参照して本発明の実施例について説明する
。[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は本発明の純水製造装置の一実施例を示す系統図
、第2図はCDIの一実施例を示す系統図、第3図は本
発明の純水製造装置の他の実施例を示す系統図である。Fig. 1 is a system diagram showing one embodiment of the pure water production apparatus of the present invention, Fig. 2 is a system diagram showing one embodiment of the CDI, and Fig. 3 is another embodiment of the pure water production apparatus of the present invention. FIG.
第1図に示す純水製造装置は、第1の逆侵透膜分離器(
第1RO)1、第2の逆侵透膜分離器(第2RO)2及
び電気透析器(CDI)3か6主として構成されており
、原水を第1ROIに送給する配管11、第1R01の
透過水を第2RO2に送給する配管12、第1ROIの
濃縮水を系外へ排出する配管13、第2R02の透過水
をCD13に送給する配管14(なお、この配管14は
、後述するCDIの濃縮室への給水配管14a及び希釈
室への給水配管14bに分岐している。)、第2RO2
の濃縮水を第1R01の上流側に戻す配管15、CDl
3の処理水を取り出す配管16、CDl3の濃縮水を第
1ROI又は第2R02の上流側に戻す配管17を備え
ている。The pure water production apparatus shown in Fig. 1 includes a first reverse osmosis membrane separator (
1st RO) 1, a second reverse osmosis membrane separator (2nd RO) 2, and an electrodialyzer (CDI) 3 or 6, piping 11 that feeds raw water to the 1st ROI, permeation of the 1st R01 Piping 12 that supplies water to the 2nd RO2, Piping 13 that discharges the concentrated water of the 1st ROI to the outside of the system, Piping 14 that supplies the permeated water of the 2nd R02 to the CD 13 (this piping 14 is connected to the CDI, which will be described later). It branches into a water supply pipe 14a to the concentration chamber and a water supply pipe 14b to the dilution chamber.), 2nd RO2
Piping 15 that returns concentrated water to the upstream side of No. 1R01, CDl
A pipe 16 for taking out the treated water of No. 3, and a pipe 17 for returning the concentrated water of CDl3 to the upstream side of the first ROI or the second R02.
このような本発明の装置による原水の処理手順について
、以下に説明する。The procedure for treating raw water using the apparatus of the present invention will be described below.
第1図に示す如く、原水である市水、工業用水、井水等
は、配管11により第1ROIに供給される。第1R0
1においては、原水の有効利用の面から回収率を比較的
高く、例えば50%以上、特に80〜90%程度で運転
するのが好ましい。As shown in FIG. 1, raw water such as city water, industrial water, well water, etc. is supplied to the first ROI through a pipe 11. 1st R0
In No. 1, it is preferable to operate at a relatively high recovery rate, for example, 50% or more, particularly about 80 to 90%, from the standpoint of effective utilization of raw water.
第1R01により、原水中の電解質、TOC成分が除去
されるが、第1R01においては、後段の第2RO2に
おける負荷を低減し、高純度の処理水を得るために、原
水中の電解質の大部分、例えば、N a Cf)、 2
00 m g / 11の供給水に対しては、97%以
上、とりわけ99%以上の塩を除去するように運転する
のが好ましい。In the 1st R01, electrolytes and TOC components in the raw water are removed, but in the 1st R01, most of the electrolytes in the raw water are For example, N a Cf), 2
For a feed water of 00 mg/11, it is preferred to operate to remove more than 97% of the salt, especially more than 99%.
第1R01の透過水は、次いで配管12により第2RO
2に送給される。一方、第1R01の濃縮水は配管13
より系外へ排出される。The permeated water of the 1st R01 is then transferred to the 2nd RO through the piping 12.
2. On the other hand, the concentrated water of No. 1R01 is connected to pipe 13.
is discharged out of the system.
第2R02においては、処理水の有効利用の面から、回
収率は75〜90%程度とし、また濃縮水は配管15に
より第1ROIの原水供給系に戻す。In the second R02, the recovery rate is set to about 75 to 90% from the viewpoint of effective use of the treated water, and the concentrated water is returned to the raw water supply system of the first ROI through the pipe 15.
第2R02により、被処理水中の電解質、TOC成分が
更に除去される。なお、第2RO2においては、後段の
CDl3における負荷を低減し、高純度の処理水を得る
ために、被処理水(即ち第1Ro1への原水)中の電解
質の殆ど、例えばN a CIL200 m g /
JZの原水に対しては、97%以上、とりわけ99%以
上の塩を除去するように運転するのが好ましい。In the second R02, the electrolyte and TOC components in the water to be treated are further removed. In addition, in the second RO2, in order to reduce the load on the downstream CDl3 and obtain high-purity treated water, most of the electrolyte in the water to be treated (i.e., the raw water to the first Ro1), for example, Na CIL200 mg /
For JZ raw water, it is preferable to operate to remove 97% or more, particularly 99% or more of salt.
このような第2R02により、原水中の電解質の殆ど、
例えば99.5%程度が脱塩され、透過水として通常は
s i O2?a度20pPb以下の高純度水が得られ
る。Due to this 2nd R02, most of the electrolytes in the raw water,
For example, about 99.5% of the water is desalted, and the permeate is usually s i O2? High purity water with a degree of 20 pPb or less can be obtained.
第2RO2の透過水は、十分に高純度であるが、更に配
管14によりCDl3に送給して処理することにより、
より一層高純度な超純水を得ることが可能となる。The permeated water of the second RO2 is of sufficiently high purity, but by further feeding it to the CDl3 through the pipe 14 for treatment,
It becomes possible to obtain ultrapure water with even higher purity.
この第2R02の透過水は、既に大部分の電解質が除去
されており、比抵抗値は例えば1〜2MΩ・Cm程度と
なっている。このため、CDl3に対する負荷が小さく
、CDl3の再生操作、再生装置、廃液処理設備が不必
要とされる。Most of the electrolyte has already been removed from this second R02 permeated water, and the specific resistance value is, for example, about 1 to 2 MΩ·Cm. Therefore, the load on CDl3 is small, and a CDl3 regeneration operation, regeneration device, and waste liquid treatment equipment are unnecessary.
一方、第2R02の濃縮水け、そのSiO2濃度が通常
、原水のSiO2濃度よりも低く、純度の高いものであ
るので、これを配管15より第1Rotの上流側に循環
する。On the other hand, since the SiO2 concentration of the second R02 concentrated water is usually lower than the SiO2 concentration of the raw water and has a high purity, it is circulated from the pipe 15 to the upstream side of the first Rot.
次に、CDl3における処理について、第2図を参照し
て説明する。Next, the processing in CDl3 will be explained with reference to FIG.
図示の如く、CDl3は、容器1内に複数のアニオン交
換膜Aとカチオン交換膜Cとが交互に並列に配置されて
おり、それぞれ濃縮室31と希釈室32とが交互に隔成
されている。そして、希釈室32には、アニオン交換樹
脂とカチオン交換樹脂との混合物33が充填されている
。34は一極、35は十極である。As shown in the figure, in the CDl3, a plurality of anion exchange membranes A and cation exchange membranes C are alternately arranged in parallel in a container 1, and a concentration chamber 31 and a dilution chamber 32 are alternately separated from each other. . The dilution chamber 32 is filled with a mixture 33 of an anion exchange resin and a cation exchange resin. 34 is one pole, and 35 is ten poles.
第2R02の透過水は、配管14から、CDl3の濃縮
室31への給水配管14a及び希釈室32への給水配管
14bに分岐され、それぞれ濃縮室31及び希釈室32
に供給される。The permeated water of the 2nd R02 is branched from the pipe 14 to a water supply pipe 14a to the concentration chamber 31 of CDl3 and a water supply pipe 14b to the dilution chamber 32, respectively.
is supplied to
CDl3に供給された第2R02の透過水は、前述の第
4図にて説明した原理により、Na十等のカチオンはカ
チオン交換膜Cを透過して、CJZ−等のアニオンはア
ニオン交換膜Aを透過して、それぞれ濃縮室31内に濃
縮される。このようにしてアニオン、カチオンが除去さ
れた処理水は、希釈室32より配管16を経て排出され
必要に応じて後処理された後、コースポイントへ送給さ
れる。In the permeated water of No. 2R02 supplied to CDl3, cations such as Na10 pass through the cation exchange membrane C, and anions such as CJZ- pass through the anion exchange membrane A according to the principle explained in FIG. 4 above. They pass through and are concentrated in the concentration chambers 31, respectively. The treated water from which anions and cations have been removed in this way is discharged from the dilution chamber 32 via the pipe 16, subjected to post-treatment as required, and then sent to the course point.
一方、濃縮室31内の濃縮水は配管17より排出され、
配管17gを経て第1R01の上流側に循環される。こ
の濃縮水は、第1R01に供給される原水に比し十分に
低いTDS濃度であるため、第1R01に循環すること
ができ、これにより、従来の1段RO処理の場合と同等
の原水給水量で高純度水を得ることができる。このCD
l3の濃縮水は、配管1フbにより第2R02の上流側
に返送しても良い。On the other hand, the concentrated water in the concentration chamber 31 is discharged from the pipe 17,
It is circulated to the upstream side of the first R01 through the pipe 17g. This concentrated water has a sufficiently lower TDS concentration than the raw water supplied to the 1st R01, so it can be circulated to the 1st R01, resulting in the same raw water supply amount as in the case of conventional one-stage RO treatment. High purity water can be obtained. This CD
The concentrated water 13 may be returned to the upstream side of the second R02 through the pipe 1b.
本発明の純水製造装置においては、第1R01の前段あ
るいは後段に脱炭酸塔を設けても良い。In the pure water production apparatus of the present invention, a decarbonation tower may be provided before or after the first R01.
第3図は、脱炭酸塔4を第1ROIと第2RO2との間
に配管12a、12bにて接続して設けた実施例を示す
系統図である。なお、第3図において、第1図に示す部
材と同一機能を有する部材は同一符号を付して示し、そ
の説明を省略する。FIG. 3 is a system diagram showing an embodiment in which the decarboxylation tower 4 is connected between the first ROI and the second RO2 by pipes 12a and 12b. In FIG. 3, members having the same functions as those shown in FIG. 1 are designated by the same reference numerals, and their explanations will be omitted.
脱炭酸塔4により第1R01の透過水中の溶存ガスを除
去することにより、ROによる除去性能の低いCO2成
分が最大限に除去され、処理水の純度が高められると共
に、第2R02の膜負荷が低減される。なお、この脱炭
酸塔4におけるCO2成分の効率的除去の面からは、原
水のpHは5〜5.5程度となるように調整するのが特
に好ましい。By removing the dissolved gas in the permeated water of the 1st R01 using the decarbonation tower 4, the CO2 component with low removal performance by RO is removed to the maximum extent, increasing the purity of the treated water and reducing the membrane load of the 2nd R02. be done. From the viewpoint of efficient removal of CO2 components in the decarboxylation tower 4, it is particularly preferable to adjust the pH of the raw water to about 5 to 5.5.
このような本発明の純水製造装置において、第1RO又
は第2ROに装着する逆浸透膜としては、ポリアミド膜
、酢酸セルロース膜、アラミド系膜等の通常の市販膜を
用いることができる。In such a pure water production apparatus of the present invention, as the reverse osmosis membrane attached to the first RO or the second RO, ordinary commercially available membranes such as polyamide membranes, cellulose acetate membranes, aramid membranes, etc. can be used.
以下、実験例について説明する。An experimental example will be explained below.
実験例1(本発明例)
第3図に示す本発明の純水製造装置を用い、神奈川県厚
木市の市水を処理した。Experimental Example 1 (Example of the Present Invention) City water in Atsugi City, Kanagawa Prefecture was treated using the pure water production apparatus of the present invention shown in FIG.
第1RO1第2ROとしては、架橋アラミド系複合膜を
用いたスパイラル型8インチモジュールを内蔵した逆浸
透分離器を2段に配列したものを用いた。As the first RO and the second RO, reverse osmosis separators each having a built-in spiral type 8-inch module using a crosslinked aramid composite membrane were arranged in two stages.
また、CDIとしては、ポリプロピレン系樹脂のアニオ
ン交換膜及びカチオン交換膜(1枚当り約0.5rn”
)を各30枚、第2図に示すように交互に配列しく第2
図に示す図では、希釈室は3つしか形成されていないが
、本実施例においては、各々30枚のアニオン交換膜及
びカチオン交換膜を用いて、希釈室を30室形成した)
、H膨強酸性カチオン交換樹脂とOH形強塩基性アニオ
ン交換樹脂を容積比40 : 60で混合したもの約3
゜lを各希釈室に充填したものを用いた。CDI also includes polypropylene resin anion exchange membranes and cation exchange membranes (approximately 0.5 rn" per membrane).
), 30 of each, arranged alternately as shown in Figure 2.
In the figure shown, only three dilution chambers are formed, but in this example, 30 dilution chambers were formed using 30 anion exchange membranes and 30 cation exchange membranes.)
, H-swelled acidic cation exchange resin and OH type strongly basic anion exchange resin mixed at a volume ratio of 40:60, approximately 3
Each dilution chamber was filled with .
CDIの通水条件は下記の通りとした。The conditions for water flow through the CDI were as follows.
処理水流量:1.0ゴ/hr 濃縮水流量:0.2rn”/hr 電圧:100V 水 温 = 17℃ 各部位の水質を第1表に示す。Processed water flow rate: 1.0 go/hr Concentrated water flow rate: 0.2rn”/hr Voltage: 100V Water temperature = 17℃ Table 1 shows the water quality at each site.
/
/
/
/
/
/
実験例2(比較例)
ROを1段としたこと以外は、実験例1と同様にして処
理を行なった。/ / / / / / Experimental Example 2 (Comparative Example) The treatment was carried out in the same manner as Experimental Example 1, except that the RO was used in one stage.
結果を第2表に示す。The results are shown in Table 2.
第2表
第1表及び第2表より、本発明の純水製造装置によれば
、極めて高純度の純水が得られることが明らかである。Table 2 From Tables 1 and 2, it is clear that the pure water production apparatus of the present invention can produce extremely high purity water.
[発明の効果]
以上詳述した通り、本発明の純水製造装置は、
■ 極めて高純度の水を安定かつ連続的に採水すること
ができる。[Effects of the Invention] As detailed above, the pure water production apparatus of the present invention can: (1) Stably and continuously sample water of extremely high purity.
■ CDIの濃縮水をROに循環することができるため
、節水を図ることができる。■ Concentrated water from CDI can be circulated to RO, saving water.
■ 樹脂の再生が不要であり、従って、処理を要する廃
水の排出がない。■ No resin regeneration is required and therefore no wastewater discharges requiring treatment.
等の(1,れた効果が奏され、比抵抗10MΩ・Cm以
上、5iO220ppb以下の極めて高純度の超純水を
効率的に製造することが可能となる。The following effects are achieved, and it becomes possible to efficiently produce extremely high-purity ultrapure water with a specific resistance of 10 MΩ·Cm or more and 5iO2 of 20 ppb or less.
第1図は本発明の純水製造装置の一実施例を示す系統図
、第2図はCDIの一実施例を示す系統図、第3図は本
発明の純水製造装置の他の実施例を示す系統図、第4図
はCDIの原理を説明する構成図である。
1・・・第1RO12・・・第2R0゜3・・・CDI
、 4・・・脱炭酸塔。Fig. 1 is a system diagram showing one embodiment of the pure water production apparatus of the present invention, Fig. 2 is a system diagram showing one embodiment of the CDI, and Fig. 3 is another embodiment of the pure water production apparatus of the present invention. FIG. 4 is a block diagram illustrating the principle of CDI. 1...1st RO12...2nd R0゜3...CDI
, 4...Decarboxylation tower.
Claims (1)
、該第1の逆浸透膜分離器の透過水を逆浸透膜処理する
第2の逆浸透膜分離器と、第2の逆浸透膜分離器の透過
水を電気透析する電気透析器とを備え、 該電気透析器は、複数のアニオン交換膜及びカチオン交
換膜を交互に配列して濃縮室と希釈室とを交互に形成し
てなり、前記希釈室にはアニオン交換樹脂とカチオン交
換樹脂とが混合されて充填されていることを特徴とする
純水製造装置。(1) A first reverse osmosis membrane separator that processes raw water with a reverse osmosis membrane, a second reverse osmosis membrane separator that processes the permeated water of the first reverse osmosis membrane separator with a reverse osmosis membrane, and and an electrodialyzer that electrodialyzes the permeated water of the reverse osmosis membrane separator No. 2, and the electrodialyzer has a plurality of anion exchange membranes and cation exchange membranes arranged alternately to alternately serve as a concentration chamber and a dilution chamber. 1. A pure water producing apparatus characterized in that the dilution chamber is filled with a mixture of an anion exchange resin and a cation exchange resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63187641A JPH0240220A (en) | 1988-07-27 | 1988-07-27 | Pure water producing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63187641A JPH0240220A (en) | 1988-07-27 | 1988-07-27 | Pure water producing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0240220A true JPH0240220A (en) | 1990-02-09 |
Family
ID=16209671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63187641A Pending JPH0240220A (en) | 1988-07-27 | 1988-07-27 | Pure water producing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0240220A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1129765A1 (en) * | 2000-03-02 | 2001-09-05 | Asahi Glass Company Ltd. | Method for producing deionized water |
JP2001259376A (en) * | 2000-03-16 | 2001-09-25 | Japan Organo Co Ltd | Deionized water making apparatus |
JP2003001259A (en) * | 2001-06-22 | 2003-01-07 | Kurita Water Ind Ltd | Ultrapure water production equipment |
JP2004000919A (en) * | 2002-04-05 | 2004-01-08 | Kurita Water Ind Ltd | Demineralized water production equipment |
CN103232128A (en) * | 2013-01-16 | 2013-08-07 | 江苏大学 | Direct drinking water production method |
CN103241804A (en) * | 2013-04-17 | 2013-08-14 | 深圳安吉尔饮水产业集团有限公司 | Wastewater-tank-free reverse osmosis purified water drinking machine |
JP2014000575A (en) * | 2013-10-10 | 2014-01-09 | Kurita Water Ind Ltd | Apparatus and method for producing purified water |
JP2014147872A (en) * | 2013-01-31 | 2014-08-21 | Kurita Water Ind Ltd | Pure water manufacturing apparatus and method for operating the same |
JP6720428B1 (en) * | 2019-01-16 | 2020-07-08 | オルガノ株式会社 | Pure water production apparatus and operating method thereof |
WO2020148961A1 (en) * | 2019-01-16 | 2020-07-23 | オルガノ株式会社 | Pure water production apparatus, and method for operating same |
-
1988
- 1988-07-27 JP JP63187641A patent/JPH0240220A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1129765A1 (en) * | 2000-03-02 | 2001-09-05 | Asahi Glass Company Ltd. | Method for producing deionized water |
US6565725B2 (en) | 2000-03-02 | 2003-05-20 | Asahi Glass Company, Limited | Method for producing deionized water |
JP2001259376A (en) * | 2000-03-16 | 2001-09-25 | Japan Organo Co Ltd | Deionized water making apparatus |
JP4499239B2 (en) * | 2000-03-16 | 2010-07-07 | オルガノ株式会社 | Deionized water production equipment |
JP2003001259A (en) * | 2001-06-22 | 2003-01-07 | Kurita Water Ind Ltd | Ultrapure water production equipment |
JP4710176B2 (en) * | 2001-06-22 | 2011-06-29 | 栗田工業株式会社 | Ultrapure water production equipment |
JP2004000919A (en) * | 2002-04-05 | 2004-01-08 | Kurita Water Ind Ltd | Demineralized water production equipment |
JP4599803B2 (en) * | 2002-04-05 | 2010-12-15 | 栗田工業株式会社 | Demineralized water production equipment |
CN103232128A (en) * | 2013-01-16 | 2013-08-07 | 江苏大学 | Direct drinking water production method |
JP2014147872A (en) * | 2013-01-31 | 2014-08-21 | Kurita Water Ind Ltd | Pure water manufacturing apparatus and method for operating the same |
CN103241804A (en) * | 2013-04-17 | 2013-08-14 | 深圳安吉尔饮水产业集团有限公司 | Wastewater-tank-free reverse osmosis purified water drinking machine |
JP2014000575A (en) * | 2013-10-10 | 2014-01-09 | Kurita Water Ind Ltd | Apparatus and method for producing purified water |
JP6720428B1 (en) * | 2019-01-16 | 2020-07-08 | オルガノ株式会社 | Pure water production apparatus and operating method thereof |
WO2020148961A1 (en) * | 2019-01-16 | 2020-07-23 | オルガノ株式会社 | Pure water production apparatus, and method for operating same |
CN113015702A (en) * | 2019-01-16 | 2021-06-22 | 奥加诺株式会社 | Pure water production apparatus and method for operating same |
CN113015702B (en) * | 2019-01-16 | 2023-12-12 | 奥加诺株式会社 | Pure water production apparatus and method for operating same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080179242A1 (en) | Method for treatment of feedwaters by membrane separation under acidic conditions | |
CN206142985U (en) | High processing system who contains zero release of salt industrial waste water | |
CN103979729A (en) | Desulfurization waste water recycling and zero discharge system and method | |
SG184749A1 (en) | Low energy system and method of desalinating seawater | |
GB2249307A (en) | Process for purifying water by means of a combination of electrodialysis and reverse osmosis | |
JP3575271B2 (en) | Pure water production method | |
US20130056416A1 (en) | Conversion of seawater to drinking water at room temperature | |
TWI428293B (en) | Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water | |
US6998044B2 (en) | Electrophoretic cross-flow filtration and electrodeionization: method for treating effluent waste and apparatus for use therewith | |
JPH0240220A (en) | Pure water producing device | |
JP2004000919A (en) | Demineralized water production equipment | |
JP3413883B2 (en) | Pure water production equipment | |
CN107555542B (en) | Multi-stage nanofiltration-reverse osmosis-membrane distillation combined desalting and salt separation method | |
JP2000051665A (en) | Desalting method | |
JP5277559B2 (en) | Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water | |
JPH0638953B2 (en) | High-purity water manufacturing equipment | |
CN107098526A (en) | The film concentrator and handling process of strong brine zero-emission sub-prime crystallization | |
JPH0649190B2 (en) | High-purity water manufacturing equipment | |
JP2012225755A (en) | Radioactive contamination water processing system, barge type radioactive contamination water processing facility, radioactive contamination water processing method, and on-barge radioactive contamination water processing method | |
JPH0326390A (en) | Pure water production equipment | |
JP5115271B2 (en) | Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water | |
JPH0759296B2 (en) | Pure water production equipment | |
WO2014170981A1 (en) | Water treatment system | |
CN103449627B (en) | Wastewater treatment method | |
JP3473472B2 (en) | Treatment method for fluorine-containing water |