JPH0239464B2 - SEMENTOKONWAZAINOSEIZOHO - Google Patents
SEMENTOKONWAZAINOSEIZOHOInfo
- Publication number
- JPH0239464B2 JPH0239464B2 JP22737182A JP22737182A JPH0239464B2 JP H0239464 B2 JPH0239464 B2 JP H0239464B2 JP 22737182 A JP22737182 A JP 22737182A JP 22737182 A JP22737182 A JP 22737182A JP H0239464 B2 JPH0239464 B2 JP H0239464B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- cement
- less
- insoluble anhydrite
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 40
- 239000004568 cement Substances 0.000 claims description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 17
- 239000011398 Portland cement Substances 0.000 claims description 15
- 239000003638 chemical reducing agent Substances 0.000 claims description 15
- 239000004094 surface-active agent Substances 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000004567 concrete Substances 0.000 description 16
- 239000000203 mixture Substances 0.000 description 12
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 239000010419 fine particle Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000000227 grinding Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229920001732 Lignosulfonate Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- WURBVZBTWMNKQT-UHFFFAOYSA-N 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1,2,4-triazol-1-yl)butan-2-one Chemical compound C1=NC=NN1C(C(=O)C(C)(C)C)OC1=CC=C(Cl)C=C1 WURBVZBTWMNKQT-UHFFFAOYSA-N 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 239000011372 high-strength concrete Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
本発明は不溶性無水石膏を混合した早期高強性
セメント混和材の新規な製造法に関し、さらに詳
しくは不溶性無水石膏を特定粒度範囲に単独粉砕
した後、セメントと混合するセメント混和材の製
造法に関する。
従来からポルトランドセメントに微粉砕した不
溶性無水石膏を1〜15%添加し蒸気養生すると強
度が増進することが知られているが、不溶性無水
石膏をボールミル等で微粉砕するとき、粉砕され
た微粉同士が付着して粉砕が阻害され、不溶性無
水石膏が付着水分で濡れているときは、微粉の付
着が促進され粉砕が困難となる。従つてこの対策
としてポルトランドセメントまたはポルトランド
セメントクリンカを不溶性無水石膏に混合して粉
砕する方法があるが、この方法では不溶性無水石
膏、セメントのそれぞれの粒度が管理できない。
粉砕物はブレーン値として表示されてもそれは平
均的細かさの値であつて粒度分布を示すものでは
ない。すなわち強度に影響する細かさとして、粗
すぎると強度の増進は少なく、また細かすぎると
コンクリートの作業性が悪くなり、特に遠心成形
時は内面近くに石膏の微粉が偏り有効に働かない
という欠点があつた。
本発明者らはかかる実情に鑑み、不溶性無水石
膏の粉砕に関し、粒度と強度との関係、微粉同士
の付着の問題、さらに有効な粉砕機の選定等につ
き種々研究した結果、不溶性無水石膏の粒組成と
コンクリート強度との関係については
44μ以上 35重量%以下
44〜2.8μ 55〜75重量%
2.8μ以下 20重量%以下
の粒組成のものがコンクリート強度の発現、コン
クリートの作業性に最適であることを見出した。
すなわち44μ以上の不溶性無水石膏はポルトラン
ドセメントとの反応が十分でなく、強度の発現に
は少ない方が好ましい。また2.8μ以下の不溶性無
水石膏が多いとコンクリート成形時の単位水量が
増えてコンクリート強度の発現に好ましくない
上、遠心成形時に不溶性無水石膏が内面に浮き出
て締め固めが不良となる更に粉砕に多くのエネル
ギーを必要とするので好ましくない。
不溶性無水石膏の粉砕には衝撃粉砕機(例えば
奈良式自由粉砕機等)を用いることにより微粉同
士の付着が少なく、かつ上記の好ましい粒度範囲
の微粉に粉砕するのが容易であることをも見出し
た。奈良式自由粉砕機は固定盤、回転盤の中心か
ら不溶性無水石膏が入り空気の流れと共に拡散し
衝撃力を受けて微粉砕され、さらに外周ピンとス
クリーンにより衝撃粉砕された後に排出される
が、不溶性無水石膏の粒度は回転盤の回転数、衝
撃ピンの本数並びにスクリーンの孔径により調整
できる利点があり、セパレーター分級により有効
な粒組成とすることができる。セパレーターで分
級し、粗粒分は再び粉砕機に戻し閉回路粉砕する
と粗粒分、微細粒分の生成が少なく、有効な粒分
を多くすることが可能である。その上セパレータ
ー分級には多量の空気が使用されるため、不溶性
無水石膏中の付着水分は粉砕機外に持ち去られる
ので1%程度の付着水分でも微粉同士の付着なし
に粉砕できる。さらには粉砕機に熱風を入れるこ
とにより付着水分が約10%程度含まれていても粉
砕は容易である。
また、ポルトランドセメントクリンカの粉砕助
剤としてジエチレングリコール、トリエタノール
アミン、リグニンスルホン酸塩などが広く用いら
れているが、不溶性無水石膏の粉砕にはこれらの
ものは未だ使用された例はない。不溶性無水石膏
の粉砕時にこれらジエチレングリコール、トリエ
タノールアミン、リグニンスルホン酸塩等の界面
活性剤を不溶性無水石膏に添加すると微粉の再結
合が減少し、粉砕が促進されることも見出した。
さらにコンクリート成形時に添加する高性能減水
剤(例えばマイテイ、メルメント等)も研究の結
果、上記界面活性剤と同様に粉砕助剤として有効
であることも判明した。高性能減水剤を粉砕助剤
として使用した場合は粉砕後において減水剤とし
ての効力を損うことなく不溶性無水石膏中に残存
するので高強度コンクリートの減水剤として有効
に働くことも確認された。
以上の各知見を総合して不溶性無水石膏を単独
あるいは界面活性剤または高性能減水剤を添加し
て粉砕し44μ以上35重量%以下、44〜2.8μ55〜75
重量%、2.8μ以下20重量%以下としたもの100重
量部にポルトランドセメント系セメント15〜100
重量部を混合することを特徴とするセメント混和
材の製造法を発明するに至つたものである。
不溶性無水石膏の粉砕時に添加する界面活性
剤、高性能減水剤は粉状又は液状のものが使用可
能であり、液状のものは不溶性無水石膏の粉砕時
に熱風を吹込む方法で採用することが出来る。ま
たその添加量は不溶性無水石膏100重量部当り固
形分として10重量部以下である。10重量部以下に
限定したのは不溶性無水石膏を主成分とするこの
種混和材はセメントに対し通常10%程度以下で使
用されるためにコンクリート混練時に用いられる
高性能減水剤の全量をプレミツクスした場合の値
を基準としたためである。
不溶性無水石膏を単独粉砕し規定する粒組成に
なつたものをポルトランドセメント系セメントに
混合するが、ポルトランドセメント系セメントと
しては普通、早強、超早強、中庸熱ポルトランド
セメント並びにシリカセメント、フライアツシユ
セメント、高炉セメントが用いられ、早期強度の
目的には早強セメント、超早強セメントの混合が
特に有効である。
混合量は不溶性無水石膏100重量部に対し上記
セメント15〜100重量部である。ポルトランド系
セメント15重量部以下では、不溶性無水せつこう
の分散に効果は少ない。又100重量部以上ではコ
ンクリートに多量に添加するため、経済上、取扱
上から混和材としての利点が少なくなるからであ
る。
不溶性無水石膏の粒組成は試料2.5gをエチル
アルコール2に分散させLEEDS&
NORTHRUP製マイクロトラツク粒度分析計
(モデル7991−01)で、176、125、88、62、44、
31、22、16、7.8、5.5、3.9、および2.8μの通過分
の測定結果から、44μ以上、44〜2.8μ、2.8μ以下
の粒組成を計算によつて求める。
本発明のセメント混和材の製造法は不溶性無水
石膏を粉砕機で特定粒組成に単独粉砕し、セメン
トと混合することにより不溶性無水石膏微粉同士
の付着もなく、またある程度の付着水分を有する
場合も容易に粉砕でき、かつコンクリート強度が
大きいセメント混和材を与える。さらに粉砕時に
界面活性剤、高性能減水剤の添加は上記好適な粉
砕を促進させ、特に高性能減水剤の添加はセメン
ト混和材中に均一に分散しているので減水の効果
をより高めることができる上、現場での混練作業
の合理化をはかることができる。
次に実施例を挙げて本発明を具体的に説明す
る。
実施例 1
不溶性無水石膏を奈良式自由粉砕機M−4型で
粉砕して、粒組成の異なる粉砕物を5種類得た。
この微粉の不溶性無水石膏100重量部に普通ポル
トランドセメント50重量部を混合し、セメント混
和材を製造した。
このセメント混和材を表1に示す配合でコンク
リートを練り混ぜ、それを外径20cm高さ30cm壁厚
4cmの円筒形供試体用型枠に投入し低速3g(g
は重力加速度)で5分、中速15gで5分、高速30
gで5分遠心成形した。その成形体について第1
図の蒸気養生を行い材令1日及び7日で圧縮強度
試験を行つた。その結果を表1に示す。
The present invention relates to a new method for producing an early high-strength cement admixture mixed with insoluble anhydrite, and more specifically, relates to a method for producing a cement admixture in which insoluble anhydrite is individually crushed to a specific particle size range and then mixed with cement. It has been known that adding 1 to 15% of finely ground insoluble anhydrite to Portland cement and steam curing improves its strength. If the insoluble anhydrite is wet with the attached moisture, the adhesion of fine powder is promoted and pulverization becomes difficult. Therefore, as a countermeasure to this problem, there is a method of mixing Portland cement or Portland cement clinker with insoluble anhydrite and pulverizing the mixture, but with this method, the particle sizes of the insoluble anhydrite and cement cannot be controlled.
Even if a pulverized product is expressed as a Blaine value, it is a value of average fineness and does not indicate particle size distribution. In other words, as for the fineness that affects strength, if it is too coarse, there will be little increase in strength, and if it is too fine, the workability of the concrete will be poor, and especially during centrifugal molding, there is a disadvantage that fine gypsum powder is concentrated near the inner surface and does not work effectively. It was hot. In view of the above circumstances, the present inventors conducted various studies on the relationship between particle size and strength, the problem of adhesion between fine particles, and the selection of an effective crusher regarding the crushing of insoluble anhydrite. Regarding the relationship between composition and concrete strength, grain compositions of 44μ or more and 35% by weight or less 44-2.8μ 55-75% by weight 2.8μ or less 20% by weight or less are optimal for developing concrete strength and concrete workability. I discovered that.
In other words, insoluble anhydrite with a size of 44μ or more does not react sufficiently with Portland cement, and a smaller amount is preferable for developing strength. In addition, if there is a large amount of insoluble anhydrite with a size of 2.8μ or less, the unit water volume during concrete molding will increase, which is not favorable for developing concrete strength.In addition, during centrifugal molding, insoluble anhydrite will rise to the inner surface, resulting in poor compaction. This is not desirable because it requires energy. We have also found that by using an impact crusher (for example, a Nara free crusher) to crush insoluble anhydrite, there is less adhesion of fine particles to each other, and it is easy to crush the insoluble anhydrite into fine powders within the preferred particle size range mentioned above. Ta. In the Nara type free crusher, insoluble anhydrite enters from the center of the fixed plate and rotating plate, diffuses with the air flow, is pulverized by the impact force, and is discharged after being impact pulverized by the outer pins and screen. The particle size of anhydrite has the advantage that it can be adjusted by the rotation speed of the rotary disk, the number of impact pins, and the hole diameter of the screen, and an effective particle composition can be obtained by classification with a separator. If the material is classified using a separator and the coarse particles are returned to the crusher and subjected to closed-circuit pulverization, the production of coarse particles and fine particles is small, making it possible to increase the effective particle fraction. Furthermore, since a large amount of air is used for separator classification, the moisture adhering to the insoluble anhydrite is carried away to the outside of the pulverizer, so even if the adhering moisture is about 1%, it can be pulverized without the fine particles adhering to each other. Furthermore, by introducing hot air into the pulverizer, pulverization is easy even when the adhering moisture content is approximately 10%. Further, diethylene glycol, triethanolamine, lignin sulfonate, etc. are widely used as grinding aids for Portland cement clinker, but these have not yet been used for grinding insoluble anhydrite. It has also been found that adding surfactants such as diethylene glycol, triethanolamine, and lignin sulfonate to insoluble anhydrite reduces the recombination of fine powder and promotes pulverization.
Further, as a result of research, it has been found that high-performance water reducing agents (such as Mighty, Melment, etc.) added during concrete molding are also effective as crushing aids, similar to the above-mentioned surfactants. It was also confirmed that when a high-performance water reducer is used as a crushing aid, it remains in the insoluble anhydrite after crushing without impairing its effectiveness as a water reducer, so it works effectively as a water reducer for high-strength concrete. Combining the above knowledge, insoluble anhydrite alone or with the addition of a surfactant or a high-performance water reducing agent is pulverized to 44μ or more and 35% by weight or less, 44-2.8μ55-75
Weight%, 2.8μ or less 20% by weight or less 100 parts by weight of Portland cement cement 15-100
This led to the invention of a method for producing a cement admixture characterized by mixing parts by weight. The surfactant and high performance water reducing agent that are added when crushing insoluble anhydrite can be used in powder or liquid form, and liquid types can be used by blowing hot air into them when crushing insoluble anhydrite. . The amount added is 10 parts by weight or less as solid content per 100 parts by weight of insoluble anhydrite. The reason for limiting the amount to 10 parts by weight or less is that this type of admixture, which has insoluble anhydrite as its main component, is usually used at less than 10% of the cement, so the entire amount of high-performance water reducer used during concrete mixing was premixed. This is because the value in the case was used as the standard. Insoluble anhydrite is crushed separately and mixed into a specified particle composition with Portland cement-based cement. Portland cement-based cements include ordinary, early-strength, ultra-early-strength, medium-heat Portland cement, silica cement, and fly ash. Cement and blast furnace cement are used, and for the purpose of early strength, a mixture of early strength cement and ultra early strength cement is particularly effective. The mixing amount is 15 to 100 parts by weight of the above cement per 100 parts by weight of insoluble anhydrite. If the amount of Portland cement is less than 15 parts by weight, it will not be effective in dispersing insoluble anhydrous gypsum. In addition, if the amount exceeds 100 parts by weight, a large amount is added to the concrete, which reduces its advantages as an admixture in terms of economy and handling. The particle composition of insoluble anhydrite was determined by dispersing 2.5 g of the sample in 2 ethyl alcohol and using LEEDS &
176, 125, 88, 62, 44,
From the measurement results of 31, 22, 16, 7.8, 5.5, 3.9, and 2.8μ, the particle composition of 44μ or more, 44-2.8μ, and 2.8μ or less is determined by calculation. The method for producing the cement admixture of the present invention involves pulverizing insoluble anhydrite alone into a specific particle composition using a pulverizer, and mixing it with cement, thereby eliminating the adhesion of insoluble anhydrite fine particles to each other, and even in cases where the insoluble anhydrite particles have a certain amount of adhering moisture. To provide a cement admixture that can be easily crushed and has high concrete strength. Furthermore, the addition of surfactants and high performance water reducers during pulverization promotes the above-mentioned preferred pulverization, and in particular, the addition of high performance water reducers can further enhance the water reduction effect since they are uniformly dispersed in the cement admixture. Not only that, but the kneading work on site can be streamlined. Next, the present invention will be specifically explained with reference to Examples. Example 1 Insoluble anhydrite was pulverized using a Nara type free pulverizer model M-4 to obtain five types of pulverized products having different particle compositions.
100 parts by weight of this finely powdered insoluble anhydrite was mixed with 50 parts by weight of ordinary Portland cement to produce a cement admixture. This cement admixture was mixed with concrete according to the composition shown in Table 1, and the mixture was poured into a cylindrical specimen form with an outer diameter of 20 cm, a height of 30 cm, and a wall thickness of 4 cm.
is gravitational acceleration) for 5 minutes, medium speed 15g for 5 minutes, high speed 30
It was centrifuged for 5 minutes at g. Regarding the molded object, the first
Steam curing was performed as shown in the figure, and compressive strength tests were conducted at 1 and 7 days old. The results are shown in Table 1.
【表】
表1に示す通り、不溶性無水石膏の粉砕後の粒
度が44μ以上35重量%以下、44〜2.8μ55〜75重量
%、2.8μ以下20重量%以下の場合、圧縮強度が高
いことが認められた。
実施例 2
つぎに試料番号No.3で使用した不溶性無水石膏
の粉砕物に混和するセメントの種類およびその混
和量を変えたセメント混和材を6種類つくり前述
と同様の方法で圧縮強度試験を行つた。その結果
を表2に示す。[Table] As shown in Table 1, when the particle size of insoluble anhydrite after crushing is 44μ or more and 35% by weight or less, 44-2.8μ and 55-75% by weight, and 2.8μ or less and 20% by weight or less, the compressive strength is high. Admitted. Example 2 Next, six types of cement admixtures were made by varying the type and amount of cement mixed with the crushed insoluble anhydrite used in Sample No. 3, and compressive strength tests were conducted in the same manner as described above. Ivy. The results are shown in Table 2.
【表】
表2に示す通り、不溶性無水石膏の粉砕物100
重量部に対して、混和するセメントの量が10重量
部を越えると、圧縮強度が高いことが認められ
た。また混和するセメントは普通ポルトランドセ
メントよりも早強ポルトランドセメントの方が、
圧縮強度が高くなることも認められた。
実施例 3
つぎに不溶性無水石膏の粋砕時に高性能減水剤
又は界面活性剤を添加した場合の粉砕助剤効果お
よびコンクリートの減水効果を調べた。その結果
を表3に示す。なおコンクリート1m3当りに配合
する高性能減水剤の量は、既に不溶性無水石膏の
粉砕時に添加した分だけ減じ、総量を一定にし
た。[Table] As shown in Table 2, crushed insoluble anhydrite 100
It was found that when the amount of cement mixed exceeds 10 parts by weight, the compressive strength is high. Also, as for the cement to be mixed, early-strength Portland cement is better than normal Portland cement.
It was also observed that the compressive strength increased. Example 3 Next, the effect of a crushing aid and the effect of reducing water on concrete when a high performance water reducing agent or surfactant was added during crushing of insoluble anhydrite was investigated. The results are shown in Table 3. The amount of high-performance water reducing agent mixed per 1 m 3 of concrete was reduced by the amount already added when insoluble anhydrite was crushed, and the total amount was kept constant.
【表】
※※ ジエチレングリコール
*** マイテイ150
表3に示す通り、高性能減水剤又は界面活性剤
を添加すれば粉砕高比があがることから、その粉
砕助剤効果が認められた。又コンクリート1m3当
りに配合する高性能減水剤の量を減らしてもスラ
ンプ値が一定となることから粉砕時に添加した高
性能減水剤がそのまま残りコンクリートの減水効
果に寄与することが認められた。[Table] ※※ Diethylene glycol *** Mighty 150
As shown in Table 3, the grinding ratio was increased by adding a high-performance water reducing agent or a surfactant, so the effect of the grinding aid was recognized. In addition, the slump value remained constant even if the amount of high performance water reducer mixed per 1 m 3 of concrete was reduced, indicating that the high performance water reducer added during crushing remained intact and contributed to the water reduction effect of concrete.
図はコンクリート成形後の常圧蒸気養生のフロ
ーシートである。
The figure is a flow sheet for atmospheric pressure steam curing after concrete forming.
Claims (1)
系セメント15〜100重量部を混合することを特徴
とするセメント混和材の製造法。 2 不溶性無水石膏を粉砕機で単独粉砕する際、
不溶性無水石膏に界面活性剤または高性能減水剤
を添加して粉砕して 粒度 44μ以上 35重量%以下 44μ〜2.8μ 55〜75重量% 2.8μ以下 20重量%以下 としたもの100重量部にポルトランドセメント系
セメント15〜100重量部を混合することを特徴と
するセメント混和材の製造法。[Scope of Claims] 1. 100 parts by weight of insoluble anhydrite pulverized by a crusher to have a particle size of 44μ or more and 35% by weight or less 44-2.8μ 55-75% by weight 2.8μ or less 20% by weight or less, and Portland cement. A method for producing a cement admixture, characterized by mixing 15 to 100 parts by weight of cement-based cement. 2 When crushing insoluble anhydrite alone with a crusher,
Insoluble anhydrite is pulverized by adding a surfactant or a high-performance water reducing agent to obtain a particle size of 44 μ or more and 35 weight % or less 44 μ to 2.8 μ 55 to 75 weight % 2.8 μ or less 20 weight % or less, and 100 parts by weight of Portland cement is added. A method for producing a cement admixture, characterized by mixing 15 to 100 parts by weight of cement-based cement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22737182A JPH0239464B2 (en) | 1982-12-28 | 1982-12-28 | SEMENTOKONWAZAINOSEIZOHO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22737182A JPH0239464B2 (en) | 1982-12-28 | 1982-12-28 | SEMENTOKONWAZAINOSEIZOHO |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59121141A JPS59121141A (en) | 1984-07-13 |
JPH0239464B2 true JPH0239464B2 (en) | 1990-09-05 |
Family
ID=16859751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22737182A Expired - Lifetime JPH0239464B2 (en) | 1982-12-28 | 1982-12-28 | SEMENTOKONWAZAINOSEIZOHO |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0239464B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015509037A (en) * | 2011-12-22 | 2015-03-26 | ジーカ テクノロジー アクチェンゲゼルシャフト | Improved efficiency of equipment that separates solid particles according to particle size |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003002706A (en) * | 2001-06-20 | 2003-01-08 | Mitsubishi Materials Corp | Method of treating industrial waste water |
-
1982
- 1982-12-28 JP JP22737182A patent/JPH0239464B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015509037A (en) * | 2011-12-22 | 2015-03-26 | ジーカ テクノロジー アクチェンゲゼルシャフト | Improved efficiency of equipment that separates solid particles according to particle size |
Also Published As
Publication number | Publication date |
---|---|
JPS59121141A (en) | 1984-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110683774B (en) | Cementing material taking slag-steel slag-gypsum as raw material and preparation method thereof | |
CN109455966B (en) | Concrete admixture, preparation method thereof and concrete | |
JPH08509670A (en) | Cement manufacturing method | |
JPH0411496B2 (en) | ||
JP4940134B2 (en) | Processing system for producing composite cementitious materials with low carbon dioxide emission | |
JPH0891885A (en) | Production of cement composition | |
JP3116477B2 (en) | Manufacturing method of high strength cement | |
JPH11147750A (en) | Cement composition | |
JPH07267697A (en) | Hydraulic composition | |
JP2001233645A (en) | Ultrafine particle cement | |
JP3146593B2 (en) | Manufacturing method of high strength cement | |
JP2626820B2 (en) | Manufacturing method of high fine powder blast furnace cement | |
JPH0239464B2 (en) | SEMENTOKONWAZAINOSEIZOHO | |
JP6414873B2 (en) | Method for producing cement composition | |
JP6166274B2 (en) | Improved efficiency of equipment that separates solid particles according to particle size | |
JP3707356B2 (en) | Method for producing fly ash cement | |
JPH06199549A (en) | Cement composition for high strength concrete | |
JP3193172B2 (en) | Method for producing spheroidized cement | |
JPH0676235B2 (en) | Hydraulic cement composition | |
CN107082587B (en) | A kind of preparation method of gypsum retarder | |
JP3075783B2 (en) | Method for producing concrete molded product by centrifugal force | |
JP2869489B2 (en) | Hardened spheroidized cement, method for producing the same, and composition for producing the same | |
JPH0532438A (en) | Highly efficient method for producing spheroidized cement | |
JP4526672B2 (en) | Utilization of waste gypsum in gypsum board waste as a raw material for cement | |
JP2873384B2 (en) | Manufacturing method of high-strength cement hardened material |