JPH0238243B2 - - Google Patents
Info
- Publication number
- JPH0238243B2 JPH0238243B2 JP62089225A JP8922587A JPH0238243B2 JP H0238243 B2 JPH0238243 B2 JP H0238243B2 JP 62089225 A JP62089225 A JP 62089225A JP 8922587 A JP8922587 A JP 8922587A JP H0238243 B2 JPH0238243 B2 JP H0238243B2
- Authority
- JP
- Japan
- Prior art keywords
- flocculant
- aggregates
- amount
- injection rate
- injection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002347 injection Methods 0.000 claims description 117
- 239000007924 injection Substances 0.000 claims description 117
- 238000003756 stirring Methods 0.000 claims description 83
- 239000000725 suspension Substances 0.000 claims description 71
- 239000007788 liquid Substances 0.000 claims description 46
- 238000007726 management method Methods 0.000 claims description 39
- 230000002776 aggregation Effects 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000004220 aggregation Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 238000004062 sedimentation Methods 0.000 claims description 16
- 239000006228 supernatant Substances 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 13
- 238000005054 agglomeration Methods 0.000 claims description 11
- 239000000701 coagulant Substances 0.000 claims description 10
- 230000003311 flocculating effect Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 9
- 238000005189 flocculation Methods 0.000 description 7
- 230000016615 flocculation Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 5
- 239000005995 Aluminium silicate Substances 0.000 description 4
- 235000012211 aluminium silicate Nutrition 0.000 description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 239000008235 industrial water Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- HLCFGWHYROZGBI-JJKGCWMISA-M Potassium gluconate Chemical compound [K+].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O HLCFGWHYROZGBI-JJKGCWMISA-M 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- 244000061458 Solanum melongena Species 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
【発明の詳細な説明】
(1) 発明の目的
[産業上の利用分野]
本発明は、凝集剤の注入管理方法に関し、特に
発光装置に対して撹拌領域中の懸濁液を介し受光
装置を配置して受光しつつ、前記懸濁液に対し急
速撹拌しながら凝集剤を注入したのち、緩速撹拌
中の平坦化した受光光量ならびに撹拌停止後の受
光光量から懸濁液と凝集剤との混合液の凝集状態
を検知することにより凝集剤の注入率を適正化す
る凝集剤の注入管理方法に関するものである。[Detailed Description of the Invention] (1) Purpose of the Invention [Industrial Application Field] The present invention relates to a method for controlling the injection of a flocculant, and in particular to a method for controlling the injection of a flocculant into a light emitting device through a suspension in a stirring region. After injecting the flocculant into the suspension while rapidly stirring the suspension while receiving light, the relationship between the suspension and the flocculant is determined from the flattened received light amount during slow stirring and the received light amount after the stirring is stopped. The present invention relates to a flocculant injection management method that optimizes the flocculant injection rate by detecting the flocculation state of a liquid mixture.
[従来の技術]
従来この種の凝集剤の注入管理方法としては、
上水、工業用水、下水、産業廃液などの懸濁液を
適当量だけ採取し、複数のビーカに等量ずつ分配
し、凝集剤をその注入率を変化させてそれぞれ注
入して撹拌静置し、そののち試験者の目視観察お
よび経験によつて凝集状態を検知することによ
り、凝集剤の注入率を適正化するよう管理するも
のが提案されていた。[Prior art] Conventionally, the injection control method for this type of flocculant is as follows:
Collect an appropriate amount of suspension such as tap water, industrial water, sewage, or industrial waste liquid, distribute it in equal amounts to multiple beakers, inject flocculant at different injection rates, and stir and let stand. It has been proposed that the flocculant injection rate is controlled to be appropriate by detecting the flocculation state through visual observation and experience of the tester.
[解決すべき問題点]
しかしながら従来の凝集剤の注入管理方法で
は、試験者の目視観察および経験によつて凝集状
態を検知していたので、試験者によつて凝集状態
の検知結果に相違が生じじ凝集剤の注入率を必ず
しも適正化できない欠点があり、また凝集状態の
検知ひいては凝集剤の注入率を決定することに多
大の時間を要する欠点があつた。[Problems to be solved] However, in the conventional flocculant injection control method, the agglomeration state was detected by visual observation and experience of the tester, so there were differences in the detection results of the agglomeration state depending on the tester. This method has the disadvantage that the injection rate of the flocculant cannot always be optimized, and it takes a lot of time to detect the flocculant state and determine the flocculant injection rate.
そこで本発明は、これらの欠点を除去するため
に、発光装置と受光装置との間の撹拌領域で懸濁
液に対し凝集剤を注入して撹拌しその受光装置に
よる受光光量から懸濁液と凝集剤との混合液の凝
集状態を検知することにより、凝集剤の注入率を
適正化する凝集剤の注入管理方法を提供せんとす
るものである。 Therefore, in order to eliminate these drawbacks, the present invention injects a flocculant into the suspension and stirs it in the stirring area between the light emitting device and the light receiving device, and determines whether the suspension is liquid or not based on the amount of light received by the light receiving device. It is an object of the present invention to provide a flocculant injection management method that optimizes the flocculant injection rate by detecting the flocculating state of a mixed liquid with the flocculant.
(2) 発明の構成
[問題点の解決手段]
本発明により提供される問題点の解決手段は、
「(a) 懸濁液を撹拌する第1の工程と、
(b) 撹拌中の懸濁液に対し凝集剤を注入する第2
の工程と、
(c) 凝集剤の注入ののち第1の工程よりも低下さ
れた撹拌速度で懸濁液と凝集剤との混合液を撹
拌する第3の工程と、
(d) 少なくとも第3の工程に際して前記混合液を
介して発光装置より受光装置に与えられた受光
光量を測定する第4の工程と、
(e) 第4の工程で測定された受光光量が平坦化し
たときの受光光量から前記混合液の凝集状態を
検知する第5の工程と、
(f) 第5の工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第6の工程と
を備えてなることを特徴とする凝集剤の注入管理
方法」
である。(2) Structure of the invention [Means for solving the problems] The means for solving the problems provided by the present invention are as follows: ``(a) A first step of stirring a suspension; (b) A suspension during stirring. The second step is to inject a flocculant into the liquid.
(c) a third step of stirring the suspension and flocculant mixture at a lower stirring speed than in the first step after the injection of the flocculant; and (d) at least a third step. a fourth step of measuring the amount of light received from the light emitting device to the light receiving device through the mixed liquid during the step; (e) the amount of light received when the amount of light received measured in the fourth step is flattened; (f) a sixth step of determining an appropriate injection rate of the flocculant according to the agglomeration state detected in the fifth step. A coagulant injection management method characterized by the following.
また本発明により提供される問題点の他の解決
手段は、
「(a) 懸濁液を撹拌する第1の工程と、
(b) 撹拌中の懸濁液に対し凝集剤を注入する第2
の工程と、
(c) 凝集剤の注入ののち第1の工程よりも低下さ
れた撹拌速度で懸濁液と凝集剤との混合液を撹
拌する第3の工程と、
(d) 少なくとも第3の工程に際して前記混合液を
介して発光装置より受光装置に与えられた受光
光量を測定する第4の工程と、
(e) 第4の工程で測定された受光光量が平坦化し
たのち、前記混合液の撹拌を停止する第5の工
程と、
(f) 第5の工程に際して前記混合液を介して発光
装置より受光装置に与えられた受光光量を測定
する第6の工程と、
(g) 第4の工程および第6の工程で測定された受
光光量から前記混合液の凝集状態を検知する第
7の工程と、
(h) 第7の工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第8の工程と
を備えてなることを特徴とする凝集剤の注入管理
方法」
である。 Another solution to the problem provided by the present invention is that ``(a) the first step of stirring the suspension, and (b) the second step of injecting a flocculant into the suspension being stirred.
(c) a third step of stirring the suspension and flocculant mixture at a lower stirring speed than in the first step after the injection of the flocculant; and (d) at least a third step. (e) after the amount of received light measured in the fourth step is flattened, the mixing (f) a sixth step of measuring the amount of light received from the light emitting device to the light receiving device through the mixed liquid during the fifth step; (g) a fifth step of stopping stirring of the liquid; (h) determining the appropriateness of the flocculant according to the aggregation state detected in the seventh step; and an eighth step of determining the injection rate.''
[作 用]
本発明にかかる凝集剤の注入管理方法は、撹拌
中の懸濁液に凝集剤を注入したのち、懸濁液の撹
拌速度を低下せしめ、かつ懸濁液と凝集剤との混
合液を介して発光装置より受光装置に対して与え
られた受光光量を測定し、その受光光量が平坦化
したときの受光光量から前記混合液の凝集状態を
検知し、検知された凝集状態に応じて凝集剤の適
正注入率を決定する作用をなしており、試験者の
目視観察ならびに経験を排除する作用をなし、ひ
いては検知結果を指標化する作用ならびり指標化
された検知結果に応じて凝集剤の注入率を適正化
する作用をなす。[Function] The flocculant injection management method according to the present invention involves injecting the flocculant into the suspension being stirred, and then reducing the stirring speed of the suspension and preventing the mixing of the suspension and the flocculant. Measure the amount of light received by the light receiving device from the light emitting device through the liquid, detect the agglomeration state of the mixed liquid from the amount of light received when the amount of received light becomes flat, and respond according to the detected aggregation state. It has the function of determining the appropriate injection rate of flocculant, eliminates the visual observation and experience of the tester, and has the function of converting the detection result into an index. It acts to optimize the injection rate of the agent.
また本発明にかかる他の凝集剤の注入管理方法
は、撹拌中の懸濁液に凝集剤を注入したのち、懸
濁液の撹拌速度を低下せしめ、かつ懸濁液と凝集
剤との混合液を介して発光装置より受光装置に対
して与えられた受光光量を測定し、その受光光量
が平坦化したのち前記受光光量を測定しつつ前記
混合液の撹拌を停止し、それらの受光光量から前
記混合体の凝集状態を検知し、検知された凝集状
態に応じて凝集剤の適正注入率を決定する作用を
なしており、試験者の目視観察ならびに経験を排
除する作用、検知結果を指標化する作用ならびに
指標化された検知結果に応じて凝集剤の注入率を
適正化する作用に加え、検知項目を増加して検知
結果の精度ひいては凝集剤の注入率の適正化の精
度を向上せしめる作用をなす。 Another flocculant injection control method according to the present invention involves injecting the flocculant into the suspension being stirred, then reducing the stirring speed of the suspension, and dissolving the mixture of the suspension and the flocculant. The amount of received light given to the light receiving device from the light emitting device is measured through the light emitting device, and after the amount of received light becomes flat, stirring of the mixed liquid is stopped while measuring the amount of received light, and the amount of received light is determined from the amount of received light. The function is to detect the agglomeration state of the mixture and determine the appropriate injection rate of the flocculant according to the detected aggregation state, eliminating the visual observation and experience of the tester, and converting the detection result into an index. In addition to the function of optimizing the injection rate of flocculant according to the detection results expressed as an index, it also increases the number of detection items to improve the accuracy of the detection results and the accuracy of optimizing the injection rate of flocculant. Eggplant.
[実施例]
次に本発明について添付図面を参照しつつ具体
的に説明する。[Example] Next, the present invention will be specifically described with reference to the accompanying drawings.
(添付図面の説明)
第1図は、本発明の凝集剤の注入管理方法の一
実施例を実行するための管理装置をを示す断面図
である。(Description of the attached drawings) FIG. 1 is a sectional view showing a management device for carrying out an embodiment of the flocculant injection management method of the present invention.
第2図は、第1図の管理装置によつて本発明の
一実施例を実行した場合の受光光量の時間的変
化を示すグラフ図である。 FIG. 2 is a graph diagram showing temporal changes in the amount of received light when the embodiment of the present invention is executed by the management device shown in FIG.
第3図は、第2図のグラフ図より求めた凝集体
の径d、数n、体積Vおよび有効密度ρと凝集剤
の注入率WA1との間の関係を示すグラフ図であ
る。 FIG. 3 is a graph showing the relationship between the diameter d, number n, volume V and effective density ρ of the aggregates determined from the graph of FIG. 2 and the injection rate W A1 of the flocculant.
第4図は、第2図のグラフ図より求めた上澄水
濁度τ、凝集体の沈降速度Sおよび有効密度ρと
凝集剤の注入率WA1との間の関係を示すグラフ図
である。 FIG. 4 is a graph showing the relationship between the supernatant water turbidity τ, the settling velocity S and effective density ρ of the flocculant, and the flocculant injection rate W A1 determined from the graph of FIG.
第5図は、第1図の管理装置を4つ並置した管
理装置を示す断面図である。 FIG. 5 is a sectional view showing a management device in which four management devices of FIG. 1 are arranged side by side.
第6図は、第1図の管理装置あるいは第5図の
管理装置を適用した実際の懸濁液処理装置を示す
断面図である。 FIG. 6 is a sectional view showing an actual suspension processing apparatus to which the management device of FIG. 1 or the management device of FIG. 5 is applied.
第7図a〜cは、第6図の懸濁液処理装置にお
いて本発明の一実施例により凝集剤の注入率を管
理した結果を示すグラフ図である。 7a to 7c are graphs showing the results of controlling the injection rate of the flocculant according to an embodiment of the present invention in the suspension processing apparatus of FIG. 6.
(管理装置)
まず第1図を参照しつつ、本発明の凝集剤の注
入管理方法を実行するための管理装置について説
明する。(Management Device) First, a management device for carrying out the flocculant injection management method of the present invention will be described with reference to FIG.
10は回分式の撹拌槽で、適宜の容量たとえば
1の容量を有しており、懸濁液と凝集剤との混
合液11が収容されている。12は撹拌槽10内
に配設された撹拌羽根で、撹拌槽10の下方に配
置された駆動手段たとえば電動モータ14の出力
軸16の自由端部に適宜に装着されている。 Reference numeral 10 denotes a batch-type stirring tank having an appropriate capacity, for example, 1, and containing a mixed liquid 11 of a suspension and a flocculant. Reference numeral 12 denotes a stirring blade disposed in the stirring tank 10, which is appropriately attached to the free end of an output shaft 16 of a drive means, for example, an electric motor 14, arranged below the stirring tank 10.
18はリード線19によつて適宜の電源(図示
せず)に接続された発光装置で、撹拌槽10の側
面に配設されており、蛍光ランプ、タングステン
ランプ、ハロゲンランプ、発光ダイオード、レー
ザ発光手段などの適宜の光源によつて発生された
光を適宜の光学系たとえばスリツトを介し平行光
線束として撹拌槽10内の混合液11に供給して
いる。20はフオトトランジスタ、フオトダイオ
ード、CdS,CCDなどの適宜の光電変換素子を受
光手段として包有している受光装置で、撹拌槽1
0の側面に配設されており、発光装置18により
平行光線束として供給された光を混合液11を介
して受光している。発光装置18によつて与えら
れた光が、混合液11中の凝集体すなわちフロツ
ク17によつて散乱あるいは遮断されるので、受
光装置20は、散乱光あるいは減衰された透過光
を受光している。受光装置20は、透過光を受光
するために発光装置18に対し対向せしめてもよ
く、また散乱光を受光するために発光装置18か
らの平行光線束に対し所定の角度をもつて配置せ
しめてもよい。加えて透過光および散乱光を受光
するために、2つの受光装置20を配置してもよ
い。ここでは説明を簡潔とするために以下、受光
装置20は、発光装置18に対して対向されてい
るものとする。また第1図では、発光装置18お
よび受光装置20が一組だけ配置されていいる
が、これに限定されるものではなく、所望に応じ
て発光装置18および受光装置20を複数組配置
してもよい。発光装置18および受光装置20
は、特に同一水平面上に配設されておれば、凝集
体すなわちフロツク17の沈降状態を測定するた
めに好都合である。 A light emitting device 18 is connected to a suitable power source (not shown) by a lead wire 19, and is disposed on the side of the stirring tank 10, and is capable of emitting fluorescent lamps, tungsten lamps, halogen lamps, light emitting diodes, and laser light. Light generated by a suitable light source such as a light source is supplied to the mixed liquid 11 in the stirring tank 10 as a parallel beam bundle through a suitable optical system such as a slit. Reference numeral 20 denotes a light receiving device which includes a suitable photoelectric conversion element such as a phototransistor, photodiode, CdS, CCD, etc. as a light receiving means.
The light emitting device 18 receives the light supplied as a parallel beam bundle by the light emitting device 18 via the liquid mixture 11. Since the light provided by the light emitting device 18 is scattered or blocked by the aggregates or flocs 17 in the liquid mixture 11, the light receiving device 20 receives scattered light or attenuated transmitted light. . The light receiving device 20 may be placed opposite the light emitting device 18 in order to receive transmitted light, or may be placed at a predetermined angle with respect to the parallel light beam from the light emitting device 18 in order to receive scattered light. Good too. In addition, two light receiving devices 20 may be arranged to receive transmitted light and scattered light. Hereinafter, in order to simplify the explanation, it is assumed that the light receiving device 20 is opposed to the light emitting device 18. Although only one set of the light emitting device 18 and the light receiving device 20 are arranged in FIG. 1, the present invention is not limited to this, and multiple sets of the light emitting device 18 and the light receiving device 20 may be arranged as desired. good. Light emitting device 18 and light receiving device 20
It is convenient to measure the sedimentation state of the aggregates or flocs 17, especially if they are arranged on the same horizontal plane.
22は受光装置20にリード線21を介して接
続された測定装置で、受光装置20の受光した光
量(以下“受光光量”という)を測定する。加
えて測定装置22は、測定した受光光量から凝
集剤の注入前の受光光量i(τ)と撹拌羽根1
2による緩速撹拌に伴なつて平坦化したときの受
光光量の変動幅(すなわち所定値LおよびH
間の差分)Δおよび変動周期Fとを求めて出力
しており、所望によつては更に撹拌羽根12によ
る緩速撹拌の停止後に平坦化したときの受光光量
f(τ)と撹拌羽根12による緩速撹拌の停止
時から受光光量が平坦化するまでの時間Tとを
求めて出力してもよい。 A measuring device 22 is connected to the light receiving device 20 via a lead wire 21, and measures the amount of light received by the light receiving device 20 (hereinafter referred to as "received light amount"). In addition, the measuring device 22 calculates the amount of received light i (τ) before injection of the flocculant and the stirring blade 1 from the measured amount of received light.
2. The range of variation in the amount of received light when it is flattened due to slow stirring (i.e., the predetermined values L and H)
The difference between Δ) and the fluctuation period F are determined and output, and if desired, the amount of received light when flattened after slow stirring by the stirring blade 12 is stopped is output.
f (τ) and the time T from when slow stirring by the stirring blade 12 stops until the amount of received light becomes flat may be determined and output.
24は一端部が開閉弁25を介して撹拌槽10
に開口された供給管で、他端部が懸濁液たとえば
上水、工業用水、下水、産業廃液などの供給源
(図示せず)に連通されている。26は凝集剤供
給源28に一端部が連通された凝集剤供給管で、
他端部が開閉弁27を介して撹拌槽10に開口さ
れている。30は排水管で、一端部が撹拌槽10
の底部に開口され、かつ他端部が開閉弁32を介
して適宜の貯留槽(図示せず)などに開口されて
おり、撹拌槽10から検知済の混合液11を排除
する。34は暗箱で、少なくとも撹拌槽10、発
光装置18および受光装置20を収容しており、
外光の影響を除去している。 24 has one end connected to the stirring tank 10 via the on-off valve 25.
The other end of the supply pipe is connected to a supply source (not shown) of a suspension liquid, such as tap water, industrial water, sewage, or industrial waste liquid. 26 is a flocculant supply pipe whose one end communicates with the flocculant supply source 28;
The other end is opened to the stirring tank 10 via an on-off valve 27. 30 is a drain pipe, one end of which is a stirring tank 10
The stirring tank 10 is opened at the bottom, and the other end is opened to a suitable storage tank (not shown) through an on-off valve 32 to remove the detected mixed liquid 11 from the stirring tank 10. 34 is a dark box which houses at least the stirring tank 10, the light emitting device 18 and the light receiving device 20;
Eliminates the effects of external light.
36は駆動手段14と測定装置22と開閉弁2
5,27とに接続された演算装置で、駆動手段1
4から撹拌羽根12の周速υが与えられており、
測定装置22から受光光量Ii(τ)と受光光量
の変動幅Δおよび変動周期Fとが与えられ所望
によつて受光光量f(τ)と時間Tとが併せて
与えられており、開閉弁25,27から懸濁液の
供給量Mおよび凝集剤の供給量Nが与えられてい
る。演算装置36は、凝集体すなわちフロツク1
7の凝集状態を判断するパラメータを算出してい
る。すなわち演算装置36は、受光光量の変動
幅Δ(ボルト)と定数αとを用いて凝集体すな
わちフロツク17の径d(cm)を
d=αΔ
と算出し、受光光量の変動周期F(秒)と撹拌
羽根12の周速υ(m/秒)と定数βを用いて凝
集体すなわちフロツク17の数n(1/cm3)を
n=β(1/Fυ)3
と算出し、凝集体すなわちフロツク17の径d
(cm)および数n(1/cm3)と定数εとを用いて凝
集体すなわちフロツク17の体積V(cm3)を
V=εd3n
と算出し、受光光量Ii(τ)(ボルト)より求めた
懸濁液の浮遊物の初期濃度Wss(mg/)と供給
量M,Nより求めた凝集剤の注入率WA1(mg/)
と凝集体すなわちフロツク17の径d(cm)およ
び数n(1/cm3)と定数γと凝集剤に固有の係数
aとを用いて凝集体すなわちフロツク17の有効
密度ρ(g/cm3)を
ρ=γ1/d3n(Wss+aWA1)
と算出しており、更に所望によつては、時間Tと
定数δとを用いて凝集体すなわちフロツク17の
沈降速度S(cm/分)を
S=δ1/T
と算出し、受光光量f(τ)と定数λとを用い
て凝集体すなわちフロツク17の沈降したのちの
上澄水濁度τ(度)を
τ=λf(τ)
と算出している。ここで演算装置36の算出した
パラメータと凝集体すなわちフロツク17の実際
の凝集状態との関係は、径dあるいは数n、体積
V、有効密度ρ、沈降速度S、上澄水濁度τの順
で緊密となつているので、凝集体すなわちフロツ
ク17の凝集状態を精密に検知することが所望で
あれば後者のパラメーターを利用すればよく、更
にその凝集状態を一層精密に検知することが所望
であれば複数のパラメータを組合せて利用すれば
よい。 36 is a driving means 14, a measuring device 22, and an on-off valve 2
5, 27, the driving means 1
4 gives the circumferential speed υ of the stirring blade 12,
The measuring device 22 gives the amount of received light I i (τ), the fluctuation range Δ and the fluctuation period F of the amount of received light, and if desired, the amount of received light f (τ) and the time T. 25 and 27, the supply amount M of the suspension and the supply amount N of the flocculant are given. The arithmetic unit 36 operates on the aggregate or floc 1.
The parameters for determining the agglomeration state of No. 7 are calculated. That is, the arithmetic unit 36 calculates the diameter d (cm) of the aggregate, that is, the floc 17, as d=αΔ using the fluctuation range Δ (volts) of the amount of received light and the constant α, and calculates the fluctuation period F (seconds) of the amount of received light. Using the circumferential speed υ (m/sec) of the stirring blade 12 and the constant β, calculate the number n (1/cm 3 ) of aggregates, that is, flocs 17, as n=β (1/Fυ) 3 , and calculate the aggregates, i.e. Diameter d of flock 17
(cm), the number n (1/cm 3 ), and the constant ε, calculate the volume V (cm 3 ) of the aggregate, that is, the floc 17, as V=εd 3 n , and calculate the amount of received light I i (τ) (volts). ), the initial concentration of suspended solids in the suspension, Wss (mg/), and the flocculant injection rate, W A1 (mg/), determined from the supply amounts M and N.
The effective density ρ (g/cm 3 ) is calculated as ρ=γ1/d 3 n (W ss +aW A1 ), and if desired, the settling velocity S (cm/min) of the flocs 17 is calculated using the time T and the constant δ. ) is calculated as S=δ1/T, and using the received light amount f (τ) and constant λ, the supernatant water turbidity τ (degrees) after the flocs 17 have settled is calculated as τ=λ f (τ) It is calculated as follows. Here, the relationship between the parameters calculated by the calculation device 36 and the actual aggregation state of the flocs 17 is as follows: diameter d or number n, volume V, effective density ρ, settling velocity S, and supernatant water turbidity τ. Therefore, if it is desired to accurately detect the aggregation state of the flocs 17, the latter parameter may be used, and if it is desired to detect the aggregation state even more precisely. For example, a combination of multiple parameters may be used.
38は演算装置36に接続された他の演算装置
で、演算装置36によつて算出された凝集体すな
わちフロツク17の径d,数n,体積V,有効密
度ρ、注降速度Sおよび凝集体すなわちフロツク
17の沈降したのちの上澄水濁度τのうちの少な
くとも1つをそのときの凝集剤の注入率WA1に対
して順次記憶しておき、このときの懸濁液に対す
る凝集剤の注入率の適正WA1 *を算出している。
すなわち演算装置38は、開閉弁25,27から
与えられた懸濁液の供給量Mおよび凝集剤の供給
量Nによつて算出された凝集剤の注入率WA1(演
算装置36から与えられる)の変化に対し、凝集
剤体すなわちフロツク17の径d、体積Vあるい
は有効密度ρの変化が急峻となり始め、更にはそ
の数n、沈降速度Sもしくは上澄水濁度τの変化
が緩慢となり始めるときに対応して、凝集剤の注
入率WA1を適正注入率WA1 *と決定する。 38 is another arithmetic device connected to the arithmetic device 36, which calculates the diameter d, number n, volume V, effective density ρ, pouring speed S, and agglomerate of the floc 17 calculated by the arithmetic device 36. That is, at least one of the supernatant water turbidities τ after sedimentation of the floc 17 is stored in sequence for the flocculant injection rate W A1 at that time, and the flocculant injection into the suspension at this time is The appropriate rate W A1 * is calculated.
That is, the calculation device 38 calculates the flocculant injection rate W A1 (given from the calculation device 36) calculated from the suspension supply amount M given from the on-off valves 25 and 27 and the flocculant supply amount N. When the diameter d, volume V, or effective density ρ of the flocculant body, that is, the floc 17, starts to change steeply in response to a change in , and the number n, sedimentation rate S, or supernatant water turbidity τ starts to change slowly. Correspondingly, the injection rate W A1 of the flocculant is determined as the appropriate injection rate W A1 * .
(注入管理方法)
次いで第1図ないし第4図を参照しつつ、本発
明の凝集剤の注入管理方法を、第1図に示した管
理装置の動作とともに詳細に説明する。(Injection Management Method) Next, the flocculant injection management method of the present invention will be described in detail with reference to FIGS. 1 to 4, together with the operation of the management device shown in FIG.
開閉弁32を開放し排水管30を介して撹拌槽
10内の残留する混合液11を排除したのち、開
閉弁32を閉鎖する。 After opening the on-off valve 32 and removing the mixed liquid 11 remaining in the stirring tank 10 through the drain pipe 30, the on-off valve 32 is closed.
開閉弁25を所定時間だけ開放し、供給管24
を介して懸濁液の供給源(図示せず)から、所定
量M(たとえば1)の懸濁液を撹拌槽10内に
供給する。 The on-off valve 25 is opened for a predetermined period of time, and the supply pipe 24 is opened.
A predetermined amount M (for example, 1) of the suspension is supplied into the stirring tank 10 from a suspension supply source (not shown) via the suspension.
撹拌槽10内への懸濁液の供給が完了すると、
時刻t1において駆動手段たとえば電動モータ14
により撹拌羽根12が急速回転すなわち高速度で
回転され始める。 When the supply of the suspension into the stirring tank 10 is completed,
At time t 1 the drive means, e.g. electric motor 14
As a result, the stirring blade 12 begins to rotate rapidly, that is, at a high speed.
そののち時刻t2において開閉弁27を所定時間
だけ開放することにより、所定量の凝集剤が、凝
集剤供給源28から凝集剤供給管26を介して撹
拌槽10に対し注入される。凝集剤としては、ポ
リアルミニウムクロライドなどの既知の凝集剤を
所望に応じて使用すればよい。 Thereafter, by opening the on-off valve 27 for a predetermined time at time t 2 , a predetermined amount of flocculant is injected into the stirring tank 10 from the flocculant supply source 28 via the flocculant supply pipe 26 . As the flocculant, known flocculants such as polyaluminum chloride may be used as desired.
撹拌羽根12の急速回転の開始に先立つて、発
光装置18、受光装置20および測定装置22が
始動されており、撹拌槽10内の懸濁液を介して
透過光の受光光量Ii(τ)が測定され、演算装置
36に与えられている。 Prior to the start of rapid rotation of the stirring blade 12, the light emitting device 18, the light receiving device 20, and the measuring device 22 are started, and the amount of received light transmitted through the suspension in the stirring tank 10 is I i (τ). is measured and provided to the arithmetic unit 36.
時刻t2すなわち凝集剤が供給される時刻までの
受光光量は、懸濁液に含有されている浮遊物の
初期濃度Wssに対応して一定値Ii(τ)となつてい
る。時刻t2において凝集剤が所定量Nだけ注入さ
れると、混合液11内で凝集体すなわちフロツク
17が徐々に形成され、かつ混合液11が撹拌槽
10内で急速に撹拌移動されているので、受光装
置20の受光光量が緩慢に増大する。 The amount of light received until time t 2 , that is, the time when the flocculant is supplied, is a constant value I i (τ) corresponding to the initial concentration W ss of suspended matter contained in the suspension. When a predetermined amount N of flocculant is injected at time t 2 , aggregates, that is, flocs 17 are gradually formed in the mixed liquid 11 , and the mixed liquid 11 is rapidly stirred and moved in the stirring tank 10 . , the amount of light received by the light receiving device 20 increases slowly.
時刻t3において、撹拌羽根12が緩速回転すな
わち低速度で回転され始めると、更に混合液11
内で凝集体すなわちフロツク17が形成されてそ
の径dが増大し、かつ混合液11が撹拌槽10内
で緩速に撹拌移動されているので、受光装置20
の受光光量が小刻みに増減しながら全体として
増大する。 At time t3 , when the stirring blade 12 starts to rotate slowly, that is, at a low speed, the mixed liquid 11
Since aggregates or flocs 17 are formed within the agitation tank 10 and their diameter d increases, and the mixed liquid 11 is being stirred and moved slowly within the agitation tank 10, the light receiving device 20
The amount of received light increases and decreases little by little while increasing as a whole.
時刻t4に達すると、混合液11内で凝集体すな
わちフロツク17が十分に凝集されその径dが変
化しなくなり、かつ混合液11が撹拌槽10内で
緩速に撹拌移動されているので、受光装置20の
受光光量が平坦化し凝集体すなわちフロツク1
7の通過に伴なつて所定値LおよびH間で周期
的に変動するようになる。 When time t4 is reached, the flocs 17 are sufficiently agglomerated in the mixed liquid 11 and the diameter d does not change, and the mixed liquid 11 is being stirred and moved slowly in the stirring tank 10. The amount of light received by the light receiving device 20 is flattened and aggregates, that is, flocs 1
7, it begins to fluctuate periodically between predetermined values L and H.
更に時刻t5において、撹拌羽根12の回転を停
止して撹拌を停止せしめると、混合液11内で形
成された凝集体すなわちフロツク17が沈降を開
始するので、受光装置20の受光光量が小刻み
に増減しつつ、時刻t6においてほぼ一定の値f
(τ)に達する。時刻t6以降では、混合液11中
の凝集体すなわちフロツク17がもはや沈降しな
いので、受光光量は一定の値f(τ)を維持
する。 Furthermore, at time t5 , when the rotation of the stirring blade 12 is stopped to stop the stirring, the aggregates formed in the mixed liquid 11, that is, the flocs 17, start to settle, so that the amount of light received by the light receiving device 20 gradually decreases. The value f is almost constant at time t 6 while increasing and decreasing
(τ) is reached. After time t6 , the flocs 17 in the mixed liquid 11 no longer settle, so the amount of received light maintains a constant value f (τ).
たとえば1の真水にカオリン25mgを添加した
カオリン懸濁液を用い、かつ凝集剤としてポリア
ルミニウムクロライドを15mg/の注入率となる
ように注入した場合の受光装置20による受光光
量を測定装置22で測定したところ、第2図の
とおりであつた。 For example, when using a kaolin suspension obtained by adding 25 mg of kaolin to fresh water in Step 1, and injecting polyaluminum chloride as a flocculant at an injection rate of 15 mg/1, the amount of light received by the light receiving device 20 is measured by the measuring device 22. The result was as shown in Figure 2.
そののち演算装置36が、上述したところによ
つて凝集体すなわちフロツク17の径d、数n、
体積Vおよび有効密度ρを算出し、更に所望によ
りその沈降速度Sおよび上澄水濁度τを併せて算
出する。演算装置36の算出したこれらのパラメ
ータにより、上述したごとく、凝集体すなわちフ
ロツク17の凝集状態を検知できる。 Thereafter, the arithmetic unit 36 calculates the diameter d, the number n, and the number n of the aggregates or flocs 17 as described above.
The volume V and effective density ρ are calculated, and if desired, the sedimentation rate S and supernatant water turbidity τ are also calculated. Using these parameters calculated by the arithmetic unit 36, the aggregation state of the flocs 17 can be detected as described above.
演算装置36によつて算出された凝集体すなわ
ちフロツク17の径d、数n、体積V、有効密度
ρ、沈降速度Sおよび上澄水濁度τは、演算装置
38において凝集剤の注入率WA1に対して記憶さ
れる。演算装置38は、凝集体すなわちフロツク
17の径d、体積Vあるいは有効密度ρの変化が
急峻となり始めるとき、あるいはその数n、沈降
速度Sもしくは上澄水濁度τの変化が緩慢となり
始めるときの凝集剤の注入率WA1を適正注入率
WA1 *と決定し、所望に応じて出力する。 The diameter d, number n, volume V, effective density ρ, sedimentation rate S, and supernatant water turbidity τ of the flocs 17 calculated by the calculation device 36 are determined by the calculation device 38 as the flocculant injection rate W A1 is stored for. The calculation device 38 calculates when the diameter d, volume V or effective density ρ of the flocs 17 starts to change sharply, or when the number n, sedimentation velocity S or supernatant water turbidity τ starts to change slowly. Appropriate injection rate of flocculant W A1
Determine W A1 * and output as desired.
この根拠を更に具体的に説明する。すなわちた
とえば1の真水に25mgのカオリンを添加したカ
オリン懸濁液を使用して、上述の測定ならびに演
算を反復するごとに、凝集体すなわちフロツク1
7の径d、数n、体積Vおよび有効密度ρを算出
し、凝集剤の注入率WA1に対してプロツトしたと
ころ、第3図が得られた。 The basis for this will be explained in more detail. That is, for example, using a kaolin suspension prepared by adding 25 mg of kaolin to 1 volume of fresh water, each time the above-mentioned measurements and calculations are repeated, the aggregates, i.e., flocs.
When the diameter d, number n, volume V and effective density ρ of 7 were calculated and plotted against the flocculant injection rate W A1 , Figure 3 was obtained.
同様に、前記カオン懸濁液を使用して、上述の
測定ならびに演算を反復するごとに凝集体すなわ
ちフロツク17の有効密度ρおよび沈降速度Sと
上澄水濁度τとを算出し、凝集剤の注入率WA1に
対してプロツトしたところ、第4図が得られた。 Similarly, using the above-mentioned kaon suspension, the effective density ρ, sedimentation rate S, and supernatant water turbidity τ of the flocs 17 are calculated each time the above-mentioned measurements and calculations are repeated. When plotted against the injection rate W A1 , Figure 4 was obtained.
第3図および第4図から明らかなように、凝集
剤の注入率WA1の変化に伴なつて、凝集体すなわ
ちフロツク17の径d、数n、体積V、有効密度
ρおよび沈降速度Sと上澄水濁度τとが変化して
いる。詳述すれば凝集剤の注入率WA1が所定値
WA1 *(ここでは30mg/)以上になると、凝集
体すなわちフロツク17の数nがあまり変化しな
いが、その径dおよび体積Vが比較的に大きくな
つて有効密度ρが低下しており、不安定な凝集体
すなわちフロツク17が形成されているものと判
断できる。また凝集剤の注入率WA1がその所定値
WA1 *以上になると、凝集体すなわちフロツク1
7の沈降速度Sあるいは凝集体すなわちフロツク
17の沈降後の上澄水濁度τがあまり変化しな
い。ひいては凝集剤の注入率WA1がその所定値
WA1 *以上となつても、凝集剤の注入量が増大す
るに比し凝集体すなわちフロツク17の凝集沈澱
量を増加できないものと判断でき、好ましくな
い。 As is clear from FIGS. 3 and 4, as the flocculant injection rate W A1 changes, the diameter d, number n, volume V, effective density ρ, and sedimentation velocity S of the flocs 17 change. The supernatant water turbidity τ is changing. To be more specific, the injection rate W A1 of the flocculant is a predetermined value.
When the amount exceeds W A1 * (in this case, 30 mg/), the number n of aggregates, that is, flocs 17, does not change much, but the diameter d and volume V become relatively large, and the effective density ρ decreases. It can be concluded that stable aggregates, ie, flocs 17, are formed. In addition, the flocculant injection rate W A1 is the specified value.
When W A1 * or more, aggregates or flocs 1
The sedimentation velocity S of No. 7 or the supernatant water turbidity τ after the flocs 17 have settled do not change much. Therefore, the injection rate W A1 of the coagulant is the predetermined value.
Even if it exceeds W A1 * , it can be judged that the amount of coagulation and sedimentation of the flocs 17 cannot be increased compared to the increase in the amount of coagulant injected, which is not preferable.
これに対し凝集剤の注入率WA1がその所定値
WA1 *よりも大幅に小さくなると、凝集体すなわ
ちフロツク17の数nが極端に大きくなり、その
径dおよび体積Vも極端に小さくなつて有効密度
ρが増大しており、比較的に安定な凝集体すなわ
ちフロツク17が形成されているものと判断でき
る。しかしながらこのときは、凝集体すなわちフ
ロツク17の沈降速度Sが小さく、凝集体すなわ
ちフロツク17の沈降後の上澄水濁度τが大き
い。ひいては凝集剤の注入率WA1がそのの所定値
WA1 *よりも大幅に小さくなると、凝集剤の注入
量を削減することはできても凝集体すなわちフロ
ツク17を効率良く沈澱除去できないものと判断
でき、好ましくない。 On the other hand, the flocculant injection rate W A1 is the predetermined value.
When W A1 * becomes significantly smaller, the number n of aggregates, that is, flocs 17, becomes extremely large, and their diameter d and volume V also become extremely small, resulting in an increase in effective density ρ, which results in a relatively stable It can be determined that aggregates, or flocs 17, are formed. However, at this time, the settling velocity S of the flocs 17 is low, and the turbidity τ of the supernatant water after the flocs 17 has settled is high. Consequently, the injection rate W A1 of the flocculant is the predetermined value.
If it becomes significantly smaller than W A1 * , it can be judged that the flocs 17 cannot be efficiently precipitated and removed even if the amount of coagulant injected can be reduced, which is not preferable.
したがつてこのときの所定値WA1 *を凝集剤の
注入率とすれば、凝集剤の注入量を削減しかつ懸
濁液中の浮遊物の凝集沈澱量を比較的に大きな値
に維持できるので、懸濁液中の浮遊物を効率良く
凝集沈澱せしめ除去できる。 Therefore, if the predetermined value W A1 * at this time is used as the flocculant injection rate, the amount of flocculant injection can be reduced and the amount of flocculation and sedimentation of suspended matter in the suspension can be maintained at a relatively large value. Therefore, floating matter in the suspension can be efficiently flocculated and precipitated and removed.
そのために演算装置38では、上述のように
WA1 *を凝集剤の適正注入率と決定している。 For this purpose, the arithmetic unit 38 operates as described above.
W A1 * has been determined as the appropriate injection rate of coagulant.
以上により本発明では、懸濁液に対する凝集剤
の注入率が適正注入率となるように管理してい
る。 As described above, in the present invention, the injection rate of the flocculant into the suspension is controlled to be an appropriate injection rate.
(変形例)
上述では撹拌槽10が1つだけ包有された管理
装置について説明したが、これでは凝集状態の検
知に多大の時間を必要とするので、第5図に示す
ように複数(ここでは4つ)の撹拌槽を並置して
もよい。(Modified Example) In the above description, a management device including only one stirring tank 10 has been described, but since this requires a large amount of time to detect the agglomeration state, multiple (hereinafter referred to as In this case, four stirring tanks may be arranged in parallel.
第5図の管理装置は、懸濁液の供給源(図示せ
ず)、凝集剤供給源28および演算装置38が共
通化されていることを除き、構成および作用は、
第1図の管理装置と実質的に同一であるので、各
部材に対し第1図の管理装置において付した参照
番号と同一の参照番号を付し、その詳細な説明を
省略する。参照番号には、並置された撹拌槽を区
別するためにA,B,C,Dの符号が加えられて
いる。開閉弁27A,〜,27Dは、互いに異な
る時間だけ開放されており、撹拌槽10A,〜,
10D中の混合液11A,〜,11Dに対する凝
集剤の注入率を調節している。 The management device shown in FIG. 5 has the following configuration and operation, except that the suspension liquid supply source (not shown), flocculant supply source 28, and calculation device 38 are common.
Since it is substantially the same as the management device of FIG. 1, the same reference numerals as in the management device of FIG. 1 are given to each member, and detailed explanation thereof will be omitted. The letters A, B, C, and D are added to the reference numbers to distinguish between the juxtaposed stirring vessels. The on-off valves 27A, -, 27D are open for different times, and the stirring tanks 10A, -, 27D are open for different times.
The injection rate of the flocculant to the mixed liquids 11A to 11D in 10D is adjusted.
(懸濁液処理装置への適用)
第6図および第7図参照しつつ、本発明の凝集
剤の注入管理方法を、更に十分に理解するため
に、実際の懸濁液処理装置に適用した場合につい
て説明する。(Application to suspension processing equipment) Referring to Figures 6 and 7, in order to more fully understand the flocculant injection management method of the present invention, the method was applied to an actual suspension processing equipment. Let me explain the case.
102は着水井で、供給管104を介して適宜
の懸濁液供給源(図示せず)から懸濁液が供給さ
れている。106は着水井102に対し供給管1
08を介して連通された凝集剤の混和池で、駆動
手段たとえば電動モータ109によつて急速回転
される撹拌羽根110が配設されている。112
は混和池106に対し供給管114を介して連通
された凝集体形成池で、3つの領域112A,
〜,112Cに区分されており、それぞれ駆動手
段たとえば電動モータ115A,〜,115Cに
よつて緩速回転される撹拌羽根116A,〜11
6Cが配設されている。混和池106で形成され
かつ供給管114によつて凝集体形成池112に
供給された凝集剤と懸濁液との混合液は、まず凝
集体形成池112のうちの第1の領域112Aに
おいて撹拌羽根116Aにより所定時間にわたつ
て緩速撹拌され、そののち第2の領域112Bへ
移行されて撹拌羽根116Bにより所定時間にわ
たつて緩速撹拌され、更に第3の領域112Cへ
移行されて撹拌羽根116Cにより所定時間にわ
たつて緩速撹拌される。118は凝集体形成池1
12に連設された沈澱池で、凝集体形成池112
の第3の領域112Cから供給されかつ凝集体す
なわちフロツクが十分に形成されかつ懸濁液と凝
集剤との混合液を静置せしめ、その凝集体すなわ
ちフロツクを沈澱せしめて除去している。120
は供給管122を介して沈澱池118の放流口に
連通された過池で、沈澱池118で除去できな
かつた微小な凝集体すなわちフロツクを過によ
り除去したのち処理水として処理水管124を介
し後続の適宜の設備へ送出している。 Reference numeral 102 denotes a landing well, into which a suspension is supplied via a supply pipe 104 from an appropriate suspension supply source (not shown). 106 is the supply pipe 1 for the landing well 102
A stirring blade 110 that is rapidly rotated by a driving means, such as an electric motor 109, is disposed in the coagulant mixing basin communicated through a coagulant 08. 112
is an aggregate formation pond that is connected to the mixing pond 106 via a supply pipe 114, and has three areas 112A,
stirring blades 116A, 116A, 112C, which are divided into stirring blades 116A, 112C, which are rotated slowly by driving means such as electric motors 115A, 115C, respectively.
6C is installed. The mixed liquid of the flocculant and the suspension formed in the mixing pond 106 and supplied to the flocculation basin 112 through the supply pipe 114 is first stirred in the first region 112A of the flocculation basin 112. It is slowly stirred by the blade 116A for a predetermined time, then transferred to the second area 112B, slowly stirred by the stirring blade 116B for a predetermined time, and further transferred to the third area 112C, where the stirring blade 116C for a predetermined period of time. 118 is aggregate formation pond 1
A sedimentation tank connected to 12, and a flocculation tank 112
The flocculant is supplied from the third region 112C in which the aggregates or flocs are sufficiently formed and the mixture of suspension and flocculant is allowed to stand, and the aggregates or flocs are settled and removed. 120
is a filter tank connected to the outlet of the sedimentation tank 118 via a supply pipe 122, in which fine aggregates, or flocs, that could not be removed in the sedimentation tank 118 are removed by filtration, and then treated water is passed through the treated water pipe 124 to the subsequent water. It is sent to the appropriate equipment.
130は第1図もしくは第5図に示した本発明
の凝集剤の注入管理方法を実行するための管理装
置で、供給管24の他端部がポンプ132を介し
て着水井102中の懸濁液中に浸漬されており、
また排水管30の他端部が混和池106あるいは
凝集体形成池112などに開放されている。13
4は乗算器で、供給管108に配置された流量計
136と管理装置130とに接続されており、流
量計136で検知した懸濁液の流量すなわち混和
池106への供給量Qと管理装置130によつて
算出した凝集剤の適正注入率WA1 *との積を求め
て凝集剤の適正注入量R*を算出する。138は
凝集剤供給装置で、乗算器134で算出された適
正注入量R*に応じた量の凝集剤を供給管140
を介して混和池106に供給し、懸濁液に対して
注入している。 Reference numeral 130 denotes a management device for carrying out the flocculant injection management method of the present invention shown in FIG. 1 or FIG. immersed in liquid,
The other end of the drain pipe 30 is open to a mixing pond 106 or an aggregate formation pond 112. 13
A multiplier 4 is connected to a flow meter 136 disposed in the supply pipe 108 and the management device 130, and is used to calculate the flow rate of the suspension detected by the flow meter 136, that is, the amount Q supplied to the mixing pond 106, and the management device 130, and the appropriate injection rate W A1 * of the flocculant is calculated to calculate the appropriate injection amount R * of the flocculant. 138 is a flocculant supply device, which supplies an amount of flocculant to a pipe 140 according to the appropriate injection amount R * calculated by the multiplier 134.
The suspension is supplied to the mixing pond 106 via the mixing pond 106 and injected into the suspension.
しかしてポンプ132および供給管24を介し
て着水井102から懸濁液を採取し、本発明にか
かる管理装置130において、上述にしたがい凝
集剤の適正注入率WA1 *算出する。この適正注入
率WA1 *と流量計136によつて検知された流量
Qとを乗算器134で乗算し、凝集剤の適正注入
量R*を算出する。適正注入量R*に応じ凝集剤供
給装置138から凝集剤が混和池106に供給さ
れ、懸濁液に対し注入される。 The suspension is then collected from the landing well 102 via the pump 132 and the supply pipe 24, and the management device 130 according to the present invention calculates the appropriate injection rate W A1 * of the flocculant according to the above-mentioned method. This appropriate injection rate W A1 * is multiplied by the flow rate Q detected by the flow meter 136 in a multiplier 134 to calculate the appropriate injection amount R * of the flocculant. A flocculant is supplied from the flocculant supply device 138 to the mixing pond 106 according to the appropriate injection amount R * , and is injected into the suspension.
上述の動作を間歇的に反復することにより、懸
濁液処理装置における凝集剤の注入率を適正注入
率WA1 *に維持でき、ひいては懸濁液の処理時間
を短縮でき、併せて凝集剤の無用の注入を回避で
きる。 By repeating the above operation intermittently, the flocculant injection rate in the suspension processing device can be maintained at the appropriate injection rate W A1 * , which in turn shortens the suspension processing time, and at the same time reduces the flocculant injection rate. Unnecessary injections can be avoided.
更に具体的な数値を挙げて説明すると、懸濁液
の濁度τが第7図aの如く変化したとき、本発明
の注入管理方法によれば凝集剤の注入率WA1を第
7図bの如く懸濁液の濁度τの変化に応じて比較
例よりも適切に管理でき、これによつて沈澱池1
18から放流される処理水の濁度τを第7図cの
如く比較例に比し改善できる。 To explain with more specific numerical values, when the turbidity τ of the suspension changes as shown in Figure 7a, according to the injection control method of the present invention, the injection rate W A1 of the flocculant changes as shown in Figure 7b. According to the change in the turbidity τ of the suspension, it can be managed more appropriately than in the comparative example.
The turbidity τ of the treated water discharged from 18 can be improved compared to the comparative example as shown in FIG. 7c.
(3) 発明の効果
上述より明らかなように本発明にかかる凝集剤
の注入管理方法は、
(a) 懸濁液を撹拌する第1の工程と、
(b) 撹拌中の懸濁液に対し凝集剤を注入する第2
の工程と、
(c) 凝集剤の注入ののち第1の工程よりも低下さ
れた撹拌速度で懸濁液と凝集剤との混合液を撹
拌する第3の工程と、
(d) 少なくとも第3の工程に際して前記混合液を
介して発光装置より受光装置に与えられた受光
光量を測定する第4の工程と、
(e) 第4の工程で測定された受光光量が平坦化し
たときの受光光量から前記混合液の凝集状態を
検知する第5の工程と、
(f) 第5の工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第6の工程と
を備えてなるので、
(i) 試験者の目視観察ならびに経験を排除できる
効果
を有し、ひいては
(ii) 検知結果を指標化できる凝集剤の注入率を適
正化できる効果
を有する。(3) Effects of the invention As is clear from the above, the flocculant injection control method according to the present invention includes: (a) the first step of stirring the suspension; and (b) the injection control method for the suspension during stirring. The second to inject the flocculant
(c) a third step of stirring the suspension and flocculant mixture at a lower stirring speed than in the first step after the injection of the flocculant; and (d) at least a third step. a fourth step of measuring the amount of light received from the light emitting device to the light receiving device through the mixed liquid during the step; (e) the amount of light received when the amount of light received measured in the fourth step is flattened; (f) a sixth step of determining an appropriate injection rate of the flocculant according to the agglomeration state detected in the fifth step. Therefore, (i) it has the effect of eliminating the visual observation and experience of the tester, and (ii) it has the effect of optimizing the injection rate of the coagulant so that the detection results can be converted into an index.
また本発明にかかる他の凝集剤の注入管理方法
は、
(a) 懸濁液を撹拌する第1の工程と、
(b) 撹拌中の懸濁液に対し凝集剤を注入する第2
の工程と、
(c) 凝集剤の注入ののち第1の工程よりも低下さ
れた撹拌速度で懸濁液と凝集剤との混合液を撹
拌する第3の工程と、
(d) 少なくとも第3の工程に際して前記混合液を
介して発光装置より受光装置に与えられた受光
光量を測定する第4の工程と、
(e) 第4の工程で測定された受光光量が平坦化し
たのち、前記混合液の撹拌を停止する第5の工
程と、
(f) 第5の工程に際して前記混合液を介して発光
装置より受光装置に与えられた受光光量を測定
する第6の工程と、
(g) 第4の工程および第6の工程で測定された受
光光量から前記混合液の凝集状態を検知する第
7の工程と、
(h) 第7の工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第8の工程と
を備えてなるので、上記(i),(ii)の効果に加え
(iii) 検知項目を増加して検知結果の精度を向上で
き、凝集剤の注入率の適正化精度を向上できる
効果
を有する。 Another flocculant injection management method according to the present invention includes (a) a first step of stirring a suspension, and (b) a second step of injecting a flocculant into the suspension being stirred.
(c) a third step of stirring the suspension and flocculant mixture at a lower stirring speed than in the first step after the injection of the flocculant; and (d) at least a third step. (e) after the amount of received light measured in the fourth step is flattened, the mixing (f) a sixth step of measuring the amount of light received from the light emitting device to the light receiving device through the mixed liquid during the fifth step; (g) a fifth step of stopping stirring of the liquid; (h) determining the appropriateness of the flocculant according to the aggregation state detected in the seventh step; In addition to the effects (i) and (ii) above, (iii) the detection items can be increased to improve the accuracy of the detection results, and the injection rate of the flocculant can be increased. This has the effect of improving the optimization accuracy of.
第1図は本発明の凝集剤の注入管理方法の一実
施例を実行するための管理装置を示す断面図、第
2図は第1図の管理装置によつて本発明の一実施
例を実行した場合の受光光量の時間的変化を示
すグラフ図、第3図は第2図のグラフ図より求め
た凝集体の径d、数n、体積Vおよび有効密度ρ
と凝集剤の注入率WA1との間の関係を示すグラフ
図、第4図は第2図のグラフ図より求めた上澄水
濁度τ、凝集体の沈降速度Sおよび有効密度ρと
凝集剤の注入率WA1との間の関係を示すグラフ
図、第5図は第1図の管理装置を4つ並置した管
理装置を示す断面図、第6図は第1図の管理装置
あるいは第5図の管理装置を配置した実際の懸濁
液処理装置を示す断面図、第7図a〜cは、第6
図の懸濁液処理装置において本発明の一実施例に
より凝集剤の注入率を管理した結果を示すグラフ
図である。
10……撹拌槽、11……混合液、12……撹
拌羽根、14……駆動手段、16……出力軸、1
8……発光装置、20……受光装置、22……測
定装置、24……供給管、25,27……開閉
弁、26……凝集剤供給管、28……凝集剤供給
源、30……排水管、32……開閉弁、34……
暗箱、36,38……演算装置。
FIG. 1 is a sectional view showing a management device for implementing an embodiment of the coagulant injection management method of the present invention, and FIG. 2 is a cross-sectional view showing an embodiment of the present invention using the management device shown in FIG. Figure 3 is a graph showing the temporal change in the amount of received light when
Figure 4 shows the relationship between the supernatant water turbidity τ, flocculation velocity S, effective density ρ, and flocculant obtained from the graph in Figure 2 . 5 is a cross-sectional view showing a management device in which four of the management devices shown in FIG . 1 are arranged side by side, and FIG. 7a to 7c are cross-sectional views showing an actual suspension processing apparatus in which the management device shown in the figure is arranged.
FIG. 2 is a graph diagram showing the results of controlling the injection rate of a flocculant according to an embodiment of the present invention in the suspension processing apparatus shown in the figure. 10... Stirring tank, 11... Mixed liquid, 12... Stirring blade, 14... Drive means, 16... Output shaft, 1
8... Light emitting device, 20... Light receiving device, 22... Measuring device, 24... Supply pipe, 25, 27... Opening/closing valve, 26... Flocculant supply pipe, 28... Flocculant supply source, 30... ...Drain pipe, 32...Opening/closing valve, 34...
Dark box, 36, 38...Arithmetic device.
Claims (1)
の工程と、 (c) 凝集剤の注入ののち第1の工程よりも低下さ
れた攪拌速度で懸濁液と凝集剤との混合液を攪
拌する第3の工程と、 (d) 少なくとも第3の工程に際して前記混合液を
介して発光装置より受光装置に与えられた受光
光量を測定する第4の工程と、 (e) 第4の工程で測定された受光光量が平坦化し
たときの受光光量から前記混合液の凝集状態を
検知する第5の工程と、 (f) 第5の工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第6の工程と を備えてなることを特徴とする凝集剤の注入管理
方法。 2 (i) 第5の工程において、受光光量が平坦化
したときの変動周期および第3の工程における
攪拌速度から凝集体の数を算出することによ
り、混合液の凝集状態を検知し、かつ (ii) 第6の工程において、前記凝集体の数の変化
が緩慢となり始めるときに対応した凝集剤の注
入率を適正注入率と決定し てなることを特徴とする特許請求の範囲第1項記
載の凝集剤の注入管理方法。 3 (i) 第5の工程において、受光光量が平坦化
したときの変動幅から凝集体の径を算出するこ
とにより混合液の凝集状態を検知し、かつ (ii) 第6の工程において、前記凝集体の径の変化
が急峻となり始めるときに対応した凝集剤の注
入率を適正注入率と決定し てなることを特徴とする特許請求の範囲第1項も
しくは第2項記載の凝集剤の注入管理方法。 4 (i) 第5の工程において、受光光量が平坦化
したときの変動周期および第3の工程における
攪拌速度から凝集体の数を算出し、かつ受光光
量が平坦化したときの変動幅から凝集体の径を
算出し、かつ前記凝集体の数および径から凝集
体の体積を算出することにより、混合液の凝集
状態を検知し、かつ (ii) 第6の工程において、前記凝集体の数の変化
が緩慢となり始め、かつ前記凝集体の径の変化
が急峻となり始め、かつ前記凝集体の体積の変
化が急峻となり始めるときに対応した凝集剤の
注入率を適正注入率と決定し てなることを特徴とする特許請求の範囲第1項記
載の凝集剤の注入管理方法。 5 (i) 第5の工程において、受光光量が平坦化
したときの変動周期および第3の工程における
攪拌速度から凝集体の数を算出し、かつ受光光
量が平坦化したときの変動幅から凝集体の径を
算出し、かつ前記凝集体の数および径と懸濁液
の浮遊物濃度と凝集剤の注入率とから凝集体の
有効密度を算出することにより、混合液の凝集
状態を検知し、かつ (ii) 第6の工程において、前記凝集体の数の変化
が緩慢となり始めかつ径および有効密度の変化
が急峻となり始めるときに対応した凝集剤の注
入率を適正注入率と決定し てなることを特徴とする特許請求の範囲第1項記
載の凝集剤の注入管理方法。 6 (a) 懸濁液を攪拌する第1の工程と、 (b) 攪拌中の懸濁液に対し凝集剤を注入する第2
の工程と、 (c) 凝集剤の注入ののち第1の工程よりも低下さ
れた攪拌速度で懸濁液と凝集剤との混合液を攪
拌する第3の工程と、 (d) 少なくとも第3の工程に際して前記混合液を
介して発光装置より受光装置に与えられた受光
光量を測定する第4の工程と、 (e) 第4の工程で測定された受光光量が平坦化し
たのち、前記混合液の攪拌を停止する第5の工
程と、 (f) 第5の工程に際して前記混合液を介して発光
装置より受光装置に与えられた受光光量を測定
する第6の工程と、 (g) 第4の工程および第6の工程で測定された受
光光量から前記混合液の凝集状態を検知する第
7の工程と、 (h) 第7の工程で検知された凝集状態に応じて凝
集剤の適正注入率を決定する第8の工程と を備えてなることを特徴とする凝集剤の注入管理
方法。 7 (i) 第7の工程において、第6の工程で測定
された受光光量が平坦化したときの受光光量か
ら凝集体が沈澱されたのちの上澄水濁度を算出
することにより、混合液の凝集状態を検知し、
かつ (ii) 第8の工程において、上澄水濁度の変化が緩
慢となり始めるときに対応した凝集剤の注入率
を適正注入率と決定し てなることを特徴とする特許請求の範囲第6項記
載の凝集剤の注入管理方法。 8 (i) 第7の工程において、第5の工程で攪拌
を停止したのち第6の工程で測定された受光光
量が平坦化するまでの時間から凝集体の沈降速
度を算出することにより、混合液の凝集状態を
検知し、かつ (ii) 第8の工程において、凝集体の沈降速度の変
化が緩慢となり始めるときに対応した凝集剤の
注入率を適正注入率と決定し てなることを特徴とする特許請求の範囲第6項も
しくは第7項記載の凝集剤の注入管理方法。 9 (i) 第7の工程において、第4の工程で測定
された受光光量が平坦化したときの変動周期お
よび第3の工程における攪拌速度から凝集体の
数を算出することにより、混合液の凝集状態を
検知し、かつ (ii) 第8の工程において、凝集体の数の変化が緩
慢となり始めるときに対応した凝集剤の注入率
を適正注入率と決定し てなることを特徴とする特許請求の範囲第6項な
いし第8項のいずれか一項記載の凝集剤の注入管
理方法。 10 (i) 第7の工程において、第4の工程で測
定された受光光量が平坦化したときの変動幅か
ら凝集体の径を算出することにより、混合液の
凝集状態を検知し、かつ (ii) 第8の工程において、凝集体の径の変化が急
峻となり始めるときに対応した凝集剤の注入率
を適正注入率と決定し てなることを特徴とする特許請求の範囲第6項な
いし第9項のいずれか一項記載の凝集剤の注入管
理方法。 11 (i) 第7の工程において、第4の工程で測
定された受光光量が平坦化したときの変動周期
および第3の工程における攪拌速度から凝集体
の数を算出し、かつ第4の工程で測定された受
光光量が平坦化したときの変動幅から凝集体の
径を算出し、かつ前記凝集体の数および径から
凝集体の体積を算出することにより、混合液の
凝集状態を検知し、かつ (ii) 第8の工程において、前記凝集体の数の変化
が緩慢となり始め、かつ前記凝集体の径の変化
が急峻となり始め、かつ前記凝集体の体積の変
化が急峻となり始めるときに対応した凝集剤の
注入率を適正注入率と決定し てなることを特徴とする特許請求の範囲第6項記
載の凝集剤の注入管理方法。 12 (i) 第7の工程において、第4の工程で測
定された受光光量が平坦化したときの変動周期
および第3の工程における攪拌速度から凝集体
の数を算出し、かつ第4の工程で測定された受
光光量が平坦化したときの変動幅から凝集体の
径を算出し、かつ前記凝集体の数および径と懸
濁液の浮遊物濃度と凝集剤の注入率とから凝集
体の有効密度を算出することにより、混合液の
凝集状態を検知し、かつ (ii) 第8の工程において、凝集体の数の変化が緩
慢となり始めかつ径および有効密度の変化が急
峻となり始めるときに対応した凝集剤の注入率
を適正注入率と決定し てなることを特徴とする特許請求の範囲第6項記
載の凝集剤の注入管理方法。[Claims] 1. (a) A first step of stirring the suspension; (b) A second step of injecting a flocculant into the suspension being stirred.
(c) a third step of stirring the suspension and flocculant mixture at a lower stirring speed than in the first step after the injection of the flocculant; and (d) at least a third step. a fourth step of measuring the amount of light received from the light emitting device to the light receiving device through the mixed liquid during the step; (e) the amount of light received when the amount of light received measured in the fourth step is flattened; (f) a sixth step of determining an appropriate injection rate of the flocculant according to the agglomeration state detected in the fifth step. A coagulant injection management method characterized by: 2 (i) In the fifth step, the aggregation state of the mixed liquid is detected by calculating the number of aggregates from the fluctuation period when the amount of received light is flattened and the stirring speed in the third step, and ( ii) In the sixth step, the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down is determined as the appropriate injection rate. How to manage the injection of flocculant. 3 (i) In the fifth step, the aggregation state of the mixed liquid is detected by calculating the diameter of the aggregate from the fluctuation range when the amount of received light is flattened, and (ii) In the sixth step, the The injection of the flocculant according to claim 1 or 2, wherein the injection rate of the flocculant corresponding to when the change in the diameter of the aggregate starts to become steep is determined as the appropriate injection rate. Management method. 4 (i) In the fifth step, the number of aggregates is calculated from the fluctuation period when the amount of received light becomes flat and the stirring speed in the third step, and the number of aggregates is calculated from the fluctuation range when the amount of received light becomes flat. (ii) detecting the aggregation state of the liquid mixture by calculating the diameter of the aggregates and calculating the volume of the aggregates from the number and diameter of the aggregates, and (ii) in the sixth step, determining the number of the aggregates; The appropriate injection rate is determined to be the injection rate of the flocculant corresponding to when the change in the diameter of the aggregate starts to become slow, the change in the diameter of the aggregate starts to become steep, and the change in the volume of the aggregate starts to steepen. A method for managing injection of a flocculant according to claim 1, characterized in that: 5 (i) In the fifth step, calculate the number of aggregates from the fluctuation period when the amount of received light becomes flat and the stirring speed in the third step, and calculate the number of aggregates from the fluctuation range when the amount of received light becomes flat. The aggregation state of the mixed liquid is detected by calculating the diameter of the aggregates and calculating the effective density of the aggregates from the number and diameter of the aggregates, the suspended solids concentration of the suspension, and the injection rate of the flocculant. , and (ii) in the sixth step, the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down and the change in diameter and effective density starts to become steep is determined as the appropriate injection rate. A method for managing injection of a flocculant according to claim 1, characterized in that: 6 (a) A first step of stirring the suspension; (b) A second step of injecting a flocculant into the suspension being stirred.
(c) a third step of stirring the suspension and flocculant mixture at a lower stirring speed than in the first step after the injection of the flocculant; and (d) at least a third step. (e) after the amount of received light measured in the fourth step is flattened, the mixing (f) a sixth step of measuring the amount of light received from the light emitting device to the light receiving device through the mixed liquid during the fifth step; (g) a fifth step of stopping stirring of the liquid; (h) determining the appropriateness of the flocculant according to the aggregation state detected in the seventh step; and an eighth step of determining an injection rate. 7 (i) In the seventh step, the turbidity of the supernatant water after the aggregates have been precipitated is calculated from the amount of light received when the amount of light received measured in the sixth step is flattened. Detects the state of aggregation,
and (ii) in the eighth step, the injection rate of the flocculant corresponding to when the change in supernatant water turbidity starts to become slow is determined as the appropriate injection rate. The injection management method of the described flocculant. 8 (i) In the seventh step, the sedimentation rate of the aggregates is calculated from the time it takes for the amount of light received measured in the sixth step to flatten after the stirring is stopped in the fifth step. It is characterized by detecting the flocculating state of the liquid, and (ii) determining, in the eighth step, the injection rate of the flocculant that corresponds to when the change in the sedimentation rate of the aggregates starts to become slow as the appropriate injection rate. A method for managing the injection of a flocculant according to claim 6 or 7. 9 (i) In the seventh step, the number of aggregates is calculated from the fluctuation period when the amount of received light measured in the fourth step becomes flat and the stirring speed in the third step. A patent characterized in that the aggregation state is detected, and (ii) in the eighth step, the injection rate of the flocculant corresponding to when the change in the number of aggregates starts to slow down is determined as the appropriate injection rate. A method for managing injection of a flocculant according to any one of claims 6 to 8. 10 (i) In the seventh step, the agglomeration state of the mixed liquid is detected by calculating the diameter of the aggregate from the fluctuation range when the amount of received light measured in the fourth step is flattened, and ( ii) In the eighth step, the injection rate of the flocculant corresponding to when the change in the diameter of the aggregate starts to become steep is determined as the appropriate injection rate. 9. A method for managing injection of a flocculant according to any one of Item 9. 11 (i) In the seventh step, calculate the number of aggregates from the fluctuation period when the amount of received light measured in the fourth step becomes flat and the stirring speed in the third step, and calculate the number of aggregates in the fourth step. The agglomeration state of the mixed liquid can be detected by calculating the diameter of the aggregate from the fluctuation range when the amount of light received is flattened, and by calculating the volume of the aggregate from the number and diameter of the aggregate. and (ii) in the eighth step, when the change in the number of the aggregates starts to slow down, the diameter of the aggregates starts to change steeply, and the volume of the aggregates starts to change steeply; 7. A flocculant injection management method according to claim 6, characterized in that a corresponding flocculant injection rate is determined as an appropriate injection rate. 12 (i) In the seventh step, calculate the number of aggregates from the fluctuation period when the amount of received light measured in the fourth step becomes flat and the stirring speed in the third step, and calculate the number of aggregates in the fourth step. The diameter of the aggregates is calculated from the range of variation when the amount of light received is flattened, and the diameter of the aggregates is calculated from the number and diameter of the aggregates, the suspended matter concentration of the suspension, and the injection rate of the flocculant. By calculating the effective density, the aggregation state of the mixed liquid is detected, and (ii) in the eighth step, when the change in the number of aggregates starts to slow and the changes in diameter and effective density start to become steep; 7. A flocculant injection management method according to claim 6, characterized in that a corresponding flocculant injection rate is determined as an appropriate injection rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8922587A JPS63256107A (en) | 1987-04-10 | 1987-04-10 | Method for controlling injection of flocculant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8922587A JPS63256107A (en) | 1987-04-10 | 1987-04-10 | Method for controlling injection of flocculant |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63256107A JPS63256107A (en) | 1988-10-24 |
JPH0238243B2 true JPH0238243B2 (en) | 1990-08-29 |
Family
ID=13964793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8922587A Granted JPS63256107A (en) | 1987-04-10 | 1987-04-10 | Method for controlling injection of flocculant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63256107A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0475734U (en) * | 1990-11-16 | 1992-07-02 | ||
JPH04116249U (en) * | 1991-03-29 | 1992-10-16 | スタンレー電気株式会社 | High mount stop lamp with dimming function |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IE71168B1 (en) * | 1988-09-30 | 1997-01-29 | Torpey Patrick | A method and an apparatus for extracting liquid from a sludge |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5396971A (en) * | 1977-02-01 | 1978-08-24 | Gst Regeltechnik Gmbh | Method and apparatus for aggregating or precipitating foreign liquids under control |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5690907U (en) * | 1979-12-17 | 1981-07-20 | ||
JPS60183010U (en) * | 1984-05-17 | 1985-12-04 | 丸富製紙株式会社 | Chemical injection control device in wastewater treatment equipment |
-
1987
- 1987-04-10 JP JP8922587A patent/JPS63256107A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5396971A (en) * | 1977-02-01 | 1978-08-24 | Gst Regeltechnik Gmbh | Method and apparatus for aggregating or precipitating foreign liquids under control |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0475734U (en) * | 1990-11-16 | 1992-07-02 | ||
JPH04116249U (en) * | 1991-03-29 | 1992-10-16 | スタンレー電気株式会社 | High mount stop lamp with dimming function |
Also Published As
Publication number | Publication date |
---|---|
JPS63256107A (en) | 1988-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4950908B2 (en) | Method and apparatus for determining coagulant injection rate in water treatment method for coagulation sedimentation treatment | |
US8303893B2 (en) | Apparatus for determining coagulant amount | |
JP3205450B2 (en) | Automatic injection rate determination device and automatic determination method | |
CN109661261B (en) | Coagulation sedimentation device | |
JP2008055299A (en) | Flocculating sedimentation treating equipment | |
JP2001137835A (en) | Facility control system | |
JPH0238243B2 (en) | ||
JP4244769B2 (en) | Aggregation apparatus and aggregation method | |
JP2005274250A (en) | Concentration detector and control device of rotary concentrator | |
JPH0418883B2 (en) | ||
KR100266545B1 (en) | Method of speed control and operation of a bridge travelling type sludge collector | |
JPH0351443B2 (en) | ||
JPH06327907A (en) | Flocculation controller | |
JPS63253236A (en) | Method for detecting flocculation condition of suspension | |
JP2004141773A (en) | Flocculation and precipitation equipment | |
JPH05240767A (en) | Floc measuring/controlling device | |
JPH0358761B2 (en) | ||
JP2020157248A (en) | Flocculating sedimentation treating equipment and operation method of flocculating sedimentation treating equipment | |
JP2019155285A (en) | Solid/liquid separation apparatus | |
JP4037615B2 (en) | Aggregation condition determination method | |
JP5579404B2 (en) | Apparatus and method for controlling flocculant injection rate | |
KR20080008050A (en) | Water treatment equipment and method | |
JP2002263700A (en) | Sludge concentrator and method for adjusting amount of flocculant | |
JPH07171307A (en) | Flocculation test of suspension and determination of injection amount of flocculant | |
NL2033129B1 (en) | Intelligent dosing system of flocculating agent in water plant based on equipment optimization and big data analysis |