JPH0238116B2 - - Google Patents
Info
- Publication number
- JPH0238116B2 JPH0238116B2 JP58107078A JP10707883A JPH0238116B2 JP H0238116 B2 JPH0238116 B2 JP H0238116B2 JP 58107078 A JP58107078 A JP 58107078A JP 10707883 A JP10707883 A JP 10707883A JP H0238116 B2 JPH0238116 B2 JP H0238116B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- storage material
- heat transfer
- latent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005338 heat storage Methods 0.000 claims description 68
- 239000011232 storage material Substances 0.000 claims description 51
- 239000000843 powder Substances 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 6
- 239000012071 phase Substances 0.000 description 6
- 239000012530 fluid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 229940087562 sodium acetate trihydrate Drugs 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QHFQAJHNDKBRBO-UHFFFAOYSA-L calcium chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ca+2] QHFQAJHNDKBRBO-UHFFFAOYSA-L 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- PODWXQQNRWNDGD-UHFFFAOYSA-L sodium thiosulfate pentahydrate Chemical compound O.O.O.O.O.[Na+].[Na+].[O-]S([S-])(=O)=O PODWXQQNRWNDGD-UHFFFAOYSA-L 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Description
【発明の詳細な説明】
産業上の利用分野
本発明は深夜電力や太陽エネルギー等を貯える
ための蓄熱槽に、また、ホツトカーラー等の一定
温度を必要とする蓄熱体に使用される蓄熱素子に
関するものである。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a heat storage element used in a heat storage tank for storing late-night electricity, solar energy, etc., and in a heat storage body that requires a constant temperature such as a hot curler. It is something.
従来例の構成とその問題点
従来、潜熱を利用した蓄熱材として無機塩類、
パラフイン等が用いられているが、いずれの場合
にも問題点の一つとして熱効換が迅速に行われな
いということである。すなわち溶融状態では対流
により蓄熱材中の温度はほゞ均一になつている
が、いつたん放熱し始めると固体の熱伝達が悪い
ため、伝熱面の蓄熱材温度は急激に低下する。こ
れは伝熱面から離れた部分の蓄熱材から熱の伝わ
つてくる速度よりも、伝熱面から熱が奪われる速
度の方が速いからである。したがつて伝熱面のご
く近傍の蓄熱材はその潜熱を放出し固化する。固
化すると熱伝導度が悪いため伝熱面より少し離れ
た所での蓄熱材は液相のまゝであり、この部分の
潜熱を有効に利用するのは困難である。Conventional structure and problems Conventionally, inorganic salts,
Paraffin and the like are used, but one of the problems in either case is that heat exchange is not carried out quickly. In other words, in the molten state, the temperature in the heat storage material is almost uniform due to convection, but once heat starts to be radiated, the temperature of the heat storage material on the heat transfer surface rapidly decreases due to poor heat transfer in the solid state. This is because the rate at which heat is removed from the heat transfer surface is faster than the rate at which heat is transferred from the heat storage material in the portion away from the heat transfer surface. Therefore, the heat storage material in the immediate vicinity of the heat transfer surface releases its latent heat and solidifies. Once solidified, the thermal conductivity is poor, so the heat storage material at a distance from the heat transfer surface remains in a liquid phase, making it difficult to effectively utilize the latent heat in this area.
例えば、第1図aにおいて蓄熱素子1は金属あ
るいはプラスチツク等からなる容器2に蓄熱材3
を封入したものである。伝熱面より熱放出すると
第1図bのごとく潜熱を放出し固化した蓄熱材4
が伝熱面に付着する。この固化した蓄熱材は熱伝
導が良くないため、溶融状態にある蓄熱材3の熱
エネルギーを伝熱面に伝えにくい。すなわち比較
的短時間に蓄熱素子1の熱を取り出し有効に使用
することおよび一定温度の熱を長時間にわたつて
得ることは困難である。 For example, in FIG. 1a, a heat storage element 1 is placed in a container 2 made of metal or plastic, and a heat storage material 3 is placed in a container 2 made of metal or plastic.
It is enclosed. When heat is released from the heat transfer surface, the heat storage material 4 releases latent heat and solidifies as shown in Figure 1b.
adheres to the heat transfer surface. Since this solidified heat storage material has poor thermal conductivity, it is difficult to transfer the thermal energy of the heat storage material 3 in a molten state to the heat transfer surface. That is, it is difficult to extract and effectively use the heat of the heat storage element 1 in a relatively short period of time and to obtain heat at a constant temperature for a long period of time.
発明の目的
本発明は上記問題点を解決し、熱交換効率をよ
くした蓄熱素子を提供するものである。OBJECTS OF THE INVENTION The present invention solves the above problems and provides a heat storage element with improved heat exchange efficiency.
発明の構成
本発明は容器内に潜熱蓄熱材と、前記潜熱蓄熱
材と非反応性で熱吸収時に液体から気体に、熱放
出時に気体から液体に変化する伝熱媒体と、前記
潜熱蓄熱材および前記伝熱媒体と非反応性の粉体
とを共に封入したものである。Structure of the Invention The present invention includes a latent heat storage material in a container, a heat transfer medium that is non-reactive with the latent heat storage material and changes from liquid to gas when absorbing heat and from gas to liquid when heat is released, and the latent heat storage material and The heat transfer medium and non-reactive powder are both encapsulated.
実施例の説明
第2図aにおいて蓄熱素子1は金属またはプラ
スチツク等からなる容器2に塩化カルシウム6水
塩、チオ硫酸ナトリウム5水塩、酢酸ナトリウム
3水塩のごとき潜熱蓄熱材3と前記潜熱蓄熱材3
より熱を奪い蒸発し、伝熱面で潜熱を放出し凝縮
する物質、例えばフロン類やアルコール類のごと
き伝熱媒体5と金属、カーボン、セラミツク等か
らなる粉体6とより構成されている。DESCRIPTION OF THE EMBODIMENTS In FIG. 2a, a heat storage element 1 includes a container 2 made of metal or plastic, and a latent heat storage material 3 such as calcium chloride hexahydrate, sodium thiosulfate pentahydrate, or sodium acetate trihydrate, and the latent heat storage material 3. material 3
It is composed of a heat transfer medium 5 such as a material that absorbs more heat, evaporates, releases latent heat on a heat transfer surface, and condenses, such as fluorocarbons or alcohol, and a powder 6 made of metal, carbon, ceramic, or the like.
蓄熱材3が溶融状態(蓄熱状態)にある時、容
器2内は主に蓄熱材3(蓄熱材充填部)と蓄熱材
の溶融温度にほゞ等しい作動液の蒸気圧で平衡状
態にある蒸気7(気相部)より成つている。放熱
が開始すると気相部では伝熱媒体の蒸気は伝熱面
を介してその熱を放出し凝縮液化8する。凝縮液
化すると気相部の蒸気圧は低下する。これは蓄熱
材中に含まれている伝熱媒体5が蒸発し、これは
気泡9となつて蓄熱材中を上昇し上記圧力低下を
補うことになる。また、凝縮した伝熱媒体は滴下
し蓄熱材中に戻る。この場合、伝熱媒体の密度
が、溶融状態における蓄熱材3の密度より大きい
と、熱凝縮液8は蓄熱材3の下部まで降下するの
で後述する効果がより顕著になり伝熱は良くな
る。すなわち、凝縮液が蓄熱材3中を降下する
時、一時は蓄熱材3より熱を奪い再び気化し、そ
の蒸気は気泡9となつて上昇する。他の一部は容
器底面に沈降し周囲より熱を奪い再び気化する。
このように作動液が蒸発−凝縮を繰返えす過程に
おいて、潜熱蓄熱材をはげしく撹拌する。 When the heat storage material 3 is in a molten state (heat storage state), the inside of the container 2 is mainly filled with steam that is in equilibrium with the vapor pressure of the heat storage material 3 (heat storage material filling part) and the working fluid, which is approximately equal to the melting temperature of the heat storage material. It consists of 7 (gas phase part). When heat radiation starts, the vapor of the heat transfer medium in the gas phase releases its heat through the heat transfer surface and condenses and liquefies 8. When condensed and liquefied, the vapor pressure of the gas phase decreases. This causes the heat transfer medium 5 contained in the heat storage material to evaporate, which becomes bubbles 9 and rises in the heat storage material to compensate for the pressure drop. Further, the condensed heat transfer medium drips back into the heat storage material. In this case, if the density of the heat transfer medium is higher than the density of the heat storage material 3 in the molten state, the heat condensate 8 will fall to the lower part of the heat storage material 3, so the effect described later will be more pronounced and the heat transfer will be improved. That is, when the condensed liquid descends in the heat storage material 3, it temporarily absorbs heat from the heat storage material 3 and vaporizes again, and the vapor becomes bubbles 9 and rises. The other part settles to the bottom of the container and absorbs heat from the surroundings and vaporizes again.
In this process of repeating evaporation and condensation of the working fluid, the latent heat storage material is vigorously stirred.
伝熱媒体の密度が蓄熱材の密度より小さい場合
は、蓄熱材3中を降下する距離は少なくなるが、
本実施例においては、前記粉体6が凝縮液表面に
付着し、実質上の密度が高くなり、前記場合と同
様に凝縮液は蓄熱材充填部下方まで、降下するよ
うになる。これは、凝縮液が蓄熱材表面より蒸発
するのを防ぐことになるので、気液界面における
蓄熱材表面の温度低下を防ぎ、気液界面に蓄熱材
固形物が生成し、伝熱媒体の気相部への蒸発を防
げるのをふせぐことになる。 If the density of the heat transfer medium is smaller than the density of the heat storage material, the distance it descends through the heat storage material 3 will be smaller, but
In this embodiment, the powder 6 adheres to the surface of the condensate, increasing its substantial density, and as in the case described above, the condensate falls below the heat storage material filling. This prevents the condensate from evaporating from the surface of the heat storage material, which prevents the temperature of the surface of the heat storage material from decreasing at the gas-liquid interface. This will prevent evaporation into the phase.
一方、蓄熱材充填部では、蓄熱材は容器側面を
介してその潜熱を放出し固化する。この場合、蓄
熱材全体が上記作動液によりはげしく撹拌されて
いるために、潜熱を放出した蓄熱材固形物が伝熱
面に付着しにくくなる。また付着しても固形物の
厚みはあまり成長しないしまた蓄熱材3固形物に
は前記粉体6が混入されているため(これ等粉末
は蓄熱材よりも熱伝達が一般には良い。)従来の
ような大巾な熱伝達低下現象はみられない。ま
た、蓄熱材固形物はその比重が溶液状態にある時
よりも大きいので下方に沈降していく。したがつ
て潜熱を相当放出した段階においても気相部にお
いては初期と同一の放熱が行われている。 On the other hand, in the heat storage material filling section, the heat storage material releases its latent heat through the side surface of the container and solidifies. In this case, since the entire heat storage material is vigorously stirred by the working fluid, the solid matter of the heat storage material that has released latent heat becomes difficult to adhere to the heat transfer surface. Furthermore, even if the solid material adheres, the thickness of the solid material does not grow much, and since the powder 6 is mixed in the heat storage material 3 solid material (these powders generally have better heat transfer than the heat storage material), conventional No significant reduction in heat transfer was observed. Furthermore, since the specific gravity of the solid heat storage material is greater than when it is in a solution state, it settles downward. Therefore, even at the stage where a considerable amount of latent heat is released, the same heat radiation as in the initial stage is performed in the gas phase.
以下、具体的な実施例を示す。 Specific examples will be shown below.
塩化ビニールよりなる内容積約50c.c.の容器に蓄
熱材として酢酸ナトリウム3水塩45g、伝熱媒体
としてフロンR−113を5gおよび粉体としてカ
ーボン微粉末3gを挿入し密閉し蓄熱素子とし
た。この蓄熱素子多数を蓄熱槽に挿入し蓄熱とし
た。この蓄熱槽より熱を取り出したところ、酢酸
ナトリウム3水塩の融点58℃近くの50℃以上の温
水で全放熱量の80%を得ることができた。前記粉
体を挿入せず、同一条件で温水を取り出した場
合、50℃以上の温水は30%であり、40℃以上でも
70%であつたのに比し、放熱効率が著しく良くな
つていることがわかる。 Into a container made of vinyl chloride with an internal volume of approximately 50 c.c., 45 g of sodium acetate trihydrate as a heat storage material, 5 g of Freon R-113 as a heat transfer medium, and 3 g of fine carbon powder as a powder were inserted and sealed to form a heat storage element. did. A large number of these heat storage elements were inserted into a heat storage tank to store heat. When heat was extracted from this heat storage tank, 80% of the total heat dissipated was obtained from hot water of 50°C or higher, which is close to the melting point of sodium acetate trihydrate, 58°C. When the hot water is taken out under the same conditions without inserting the powder, the hot water above 50℃ is 30%, and even above 40℃
It can be seen that the heat dissipation efficiency is significantly improved compared to 70%.
発明の効果 本発明によると下記のごとき効果がある。Effect of the invention According to the present invention, there are the following effects.
熱交換の一部が気相で行われるため、伝熱面
周囲に熱伝達の悪い固相部分を生じず熱交換が
容易にかつ迅速に行われる。 Since a part of the heat exchange is performed in the gas phase, heat exchange can be performed easily and quickly without creating a solid phase portion with poor heat transfer around the heat transfer surface.
蓄熱材中を作動液の蒸気が気泡となつて通過
するため、蓄熱材がこの気泡により撹拌され、
液相部での熱交換において、
(イ) 伝熱面に蓄熱材固形物が付着しにくく、常
に実質的に伝熱面と溶液とが接している。 As the vapor of the working fluid passes through the heat storage material in the form of bubbles, the heat storage material is agitated by the bubbles.
In heat exchange in the liquid phase, (a) solid heat storage material is difficult to adhere to the heat transfer surface, and the heat transfer surface and the solution are always in substantial contact;
(ロ) 温度分布がほゞ一様となり、ある特定の箇
所より凝固が始まらない。 (b) Temperature distribution becomes almost uniform, and solidification does not start from a certain point.
(ハ) 凝固した蓄熱材はその溶融状態にある時よ
り、比重が大きいため沈降するが、この場合
蓄熱材中は気泡により撹拌されているので細
かい結晶となり蓄熱槽の下部に堆積してい
く。すなわち、潜熱を放出した蓄熱材は順次
下部に沈降する。したがつて蓄熱材全体の潜
熱を有効に利用することができる。 (c) The solidified heat storage material has a higher specific gravity than in its molten state, so it settles, but in this case, the heat storage material is agitated by air bubbles, so it becomes fine crystals and accumulates at the bottom of the heat storage tank. That is, the heat storage material that has released latent heat gradually sinks to the bottom. Therefore, the latent heat of the entire heat storage material can be effectively utilized.
したがつて、本発明によれば、蓄熱材の熱を迅
速に効率よく取り出すことができる。 Therefore, according to the present invention, heat from the heat storage material can be extracted quickly and efficiently.
第1図は従来の蓄熱素子の断面図、第2図は本
発明の一実施例の蓄熱素子の断面図である。
1……蓄熱素子、2……容器、3……蓄熱材、
5……伝熱媒体、6……粉体。
FIG. 1 is a sectional view of a conventional heat storage element, and FIG. 2 is a sectional view of a heat storage element according to an embodiment of the present invention. 1... Heat storage element, 2... Container, 3... Heat storage material,
5... Heat transfer medium, 6... Powder.
Claims (1)
反応性で熱吸収時に液体から気体に、熱放出時に
気体から液体に変化する伝熱媒体と、前記潜熱蓄
熱材および前記伝熱媒体と非反応性の粉体とを共
に封入した蓄熱素子。1 A latent heat storage material in a container, a heat transfer medium that is non-reactive with the latent heat storage material and changes from liquid to gas when absorbing heat and from gas to liquid when releasing heat, and the latent heat storage material and the heat transfer medium. A heat storage element encapsulated with non-reactive powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58107078A JPS59232165A (en) | 1983-06-15 | 1983-06-15 | heat storage element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58107078A JPS59232165A (en) | 1983-06-15 | 1983-06-15 | heat storage element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59232165A JPS59232165A (en) | 1984-12-26 |
JPH0238116B2 true JPH0238116B2 (en) | 1990-08-29 |
Family
ID=14449917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58107078A Granted JPS59232165A (en) | 1983-06-15 | 1983-06-15 | heat storage element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59232165A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100489935B1 (en) * | 2002-07-16 | 2005-05-17 | 허행조 | Thermic oil |
CA2673703C (en) * | 2009-07-23 | 2015-05-05 | Huazi Lin | Solar cooking appliances |
KR101499357B1 (en) * | 2013-11-13 | 2015-03-05 | 박성구 | Solar heat accumulation apparatus using fresnel lens complex and heatpipe |
CN104197758B (en) * | 2014-06-12 | 2017-01-04 | 余姚天超通风设备有限公司 | A kind of super heat-conductive pipe and heat transfer medium thereof |
-
1983
- 1983-06-15 JP JP58107078A patent/JPS59232165A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59232165A (en) | 1984-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0074612B1 (en) | Heat-storing apparatus | |
JPS5812992A (en) | Heat accumulating device | |
JPH0238116B2 (en) | ||
JPH0229960B2 (en) | ||
JPS6196397A (en) | Thermal energy recovery method | |
JPH0210358B2 (en) | ||
JPS6136696A (en) | Heat exchanger for steady heat generation | |
JPS64637B2 (en) | ||
JPS628716B2 (en) | ||
JPH0215598B2 (en) | ||
JPS58106393A (en) | Heat accumulator | |
JPS58117993A (en) | Heat accumulating device | |
JPS60147095A (en) | Heat energy recovering method | |
JPS6147190B2 (en) | ||
JPH01285793A (en) | Latent heat accumulating device | |
JPS5843394A (en) | Heat exchange method of latent heat type heat accumulator | |
JPH0347889A (en) | Latent heat-accumulating material | |
JPS6346392A (en) | Method and device for performing natural circulation type rapid storing heat and coolness | |
JPS59180289A (en) | Latent heat type heat accumulator | |
JPS6130069Y2 (en) | ||
JP2982409B2 (en) | Latent heat storage material | |
JPS5821942B2 (en) | Heat storage agent composition | |
JPH0151517B2 (en) | ||
JPS62272090A (en) | Cooling apparatus | |
JPS59125394A (en) | Heat accumulator |