JPH0237977B2 - - Google Patents
Info
- Publication number
- JPH0237977B2 JPH0237977B2 JP58049923A JP4992383A JPH0237977B2 JP H0237977 B2 JPH0237977 B2 JP H0237977B2 JP 58049923 A JP58049923 A JP 58049923A JP 4992383 A JP4992383 A JP 4992383A JP H0237977 B2 JPH0237977 B2 JP H0237977B2
- Authority
- JP
- Japan
- Prior art keywords
- particle size
- measured
- scattering angle
- intensity distribution
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4711—Multiangle measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4711—Multiangle measurement
- G01N2021/4716—Using a ring of sensors, or a combination of diaphragm and sensors; Annular sensor
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、微小な粒子の径を測定する粒径測定
装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a particle size measuring device for measuring the diameter of minute particles.
従来、光の散乱を利用して粒径を測定するよう
にした装置が知られている。この粒径測定装置
は、たとえば第1図に示すように構成されてい
る。すなわち、レーザ装置1から出たレーザビー
ムをコリメータレンズ3に通して平行ビームに変
換した後、被測定粒子群4に照射している。被測
定粒子群4の後方で、上記被測定粒子群4によつ
て上記レーザビーム2が散乱される散乱角内に複
数の光フアイバ5−1,5−2,……5−nの光
導入端6を被測定粒子群4内に設定された点Pを
中心とする円上に光軸を上記点Pに向けて互いの
間に等しい角度差を保つて位置させ、これら光フ
アイバの光導出端7に各光フアイバで導かれた光
を検出するフオトデイテクタ8−1,8−2,…
…8−nを設けている。そして、各フオトデイテ
クタ8−1,8−2,……8−nの出力をそれぞ
れ増幅器9−1,9−2,……9−nを介して電
子計算機を主体とする変換装置10に導入し、こ
の変換装置10の出力をデイスプレイ11に表示
させるようにしている。すなわち、この装置は、
被測定粒子群4により散乱された光の散乱角
(θ)方向の散乱光強度分布I(θ)を測定し、こ
の散乱光強度分布I(θ)から(1)式の関係を利用
して粒径分布n(D)へ変換するようにしている。
BACKGROUND ART Devices that measure particle size using light scattering are conventionally known. This particle size measuring device is constructed, for example, as shown in FIG. That is, the laser beam emitted from the laser device 1 is passed through the collimator lens 3 to be converted into a parallel beam, and then irradiated onto the particle group 4 to be measured. Behind the particle group 4 to be measured, a plurality of optical fibers 5-1, 5-2, ... 5-n introduce light within a scattering angle at which the laser beam 2 is scattered by the particle group 4 to be measured. The ends 6 are positioned on a circle centered on a point P set within the particle group 4 to be measured, with the optical axis directed toward the point P, and an equal angular difference maintained between them, and the light of these optical fibers is guided. Photodetectors 8-1, 8-2, . . . detect the light guided by each optical fiber at the end 7.
...8-n is provided. Then, the outputs of the photodetectors 8-1, 8-2, . , the output of this conversion device 10 is displayed on a display 11. In other words, this device:
The scattered light intensity distribution I(θ) in the direction of the scattering angle (θ) of the light scattered by the particle group 4 to be measured is measured, and from this scattered light intensity distribution I(θ), using the relationship of equation (1), It is converted into a particle size distribution n(D).
I(θ)=∫i(D、θ)n(D)dD ……(1)
ここで、i(D、θ)は散乱理論に基いて計算
した1粒子による散乱光である。 I(θ)=∫i(D, θ)n(D)dD (1) Here, i(D, θ) is the scattered light by one particle calculated based on scattering theory.
しかしながら、このように構成された装置にあ
つては、たとえば光フアイバ5−1,5−2,…
…5−nの光導入端6を1゜間隔に設定した場合を
例にとると、各粒径に対する散乱光強度分布が第
2図に示すようになるため、特に、変化周期の短
かい20μmφ以上の粒子による散乱光強度分布を
正しく測定できない問題があつた。また、粒径が
1μmφ以下の粒子の場合には散乱光強度分布が
第3図に示すようになるため、0.5μmφの粒子の
場合と、1.0μmφの粒子の場合とを確実に区別さ
せるには測定散乱角範囲をたとえば0〜30゜と広
く設定する必要がある。このように広範囲に亘つ
て高い分解能で、散乱光を測定するには、必然的
に多数の光フアイバを必要とするばかりか得られ
た光信号を処理する処理系が非常に大掛りとなる
問題があつた。 However, in the device configured in this way, for example, the optical fibers 5-1, 5-2, . . .
...For example, when the light introduction ends 6 of 5-n are set at 1° intervals, the scattered light intensity distribution for each particle size becomes as shown in Figure 2. There was a problem in which the intensity distribution of scattered light due to the above particles could not be measured correctly. In addition, the particle size
In the case of particles with a diameter of 1 μm or less, the scattered light intensity distribution becomes as shown in Figure 3. Therefore, in order to reliably distinguish between the cases of particles with a diameter of 0.5 μm and those with a diameter of 1.0 μm, it is necessary to change the measurement scattering angle range. For example, it is necessary to set the angle widely, such as 0 to 30 degrees. Measuring scattered light over such a wide range and with high resolution inevitably requires a large number of optical fibers, and the processing system that processes the obtained optical signals is extremely large-scale. It was hot.
本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、数少ない光フア
イバ、すなわち、装置全体の大掛り化を招くこと
なく、広い粒径範囲に亘つて良好に測定できる粒
径測定装置を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to provide a method for measuring a wide particle size range using only a few optical fibers, without increasing the size of the entire device. The objective is to provide a particle size measuring device that can
本発明は、第4図に示すように小さい散乱角範
囲では、光フアイバQの光導入端間の角度Δθ1が
小さく、また大きい散乱角範囲では光導入端間の
角度Δθ2,Δθ3が大きくなくなるように各光フア
イバQの光導入端を分布配置したことを特徴とし
ている。
As shown in FIG. 4, in a small scattering angle range, the angle Δθ 1 between the light introduction ends of the optical fiber Q is small, and in a large scattering angle range, the angles Δθ 2 and Δθ 3 between the light introduction ends are small. It is characterized in that the light introduction ends of each optical fiber Q are arranged in a distributed manner so as not to be large.
上記のように各光フアイバの光導入端間の角度
を設定しておけば、光フアイバの数を増加させる
ことなく、つまり装置全体の大掛り化を招くこと
なく、広範囲の粒径を測定できる。すなわち、粒
径と散乱光強度分布曲線の変化周期との間には第
2図および第3図に示す関係がある。したがつ
て、たとえば10μmφ以上の粒径の場合には上述
した特徴ある変化周期が正確に測定できればよ
く、広い散乱角に亘つて散乱光強度分布を測定す
る必要はない。一方、1.0μmφ以下の粒径の場合
には、上述した変化周期よりも広い散乱角の範囲
に亘つて散乱光強度分布全体の傾きが測定できれ
ばよい。したがつて、本発明のように各光フアイ
バの光導入端を前述した関係に配置しておけば、
格別、光フアイバの数を増すことなしに、光導入
端間の角度が小さい範囲で測定された散乱光強度
分布から比較的大きい粒径範囲の粒径を測定で
き、また光導入端間の角度が大きい範囲で測定さ
れた散乱光強度分布から小さい粒径範囲の粒径を
測定できることになる。
By setting the angle between the light introduction ends of each optical fiber as described above, it is possible to measure a wide range of particle sizes without increasing the number of optical fibers, that is, without increasing the size of the entire device. . That is, there is a relationship between the particle size and the period of change of the scattered light intensity distribution curve as shown in FIGS. 2 and 3. Therefore, for example, in the case of a particle size of 10 μm or more, it is only necessary to accurately measure the above-mentioned characteristic change period, and there is no need to measure the scattered light intensity distribution over a wide scattering angle. On the other hand, in the case of a particle size of 1.0 μm or less, it is sufficient if the slope of the entire scattered light intensity distribution can be measured over a range of scattering angles wider than the above-mentioned change period. Therefore, if the light introduction ends of each optical fiber are arranged in the above-mentioned relationship as in the present invention,
In particular, without increasing the number of optical fibers, it is possible to measure the particle size in a relatively large particle size range from the scattered light intensity distribution measured in a range where the angle between the light introduction ends is small, and the angle between the light introduction ends can be measured. The particle size in a small particle size range can be measured from the scattered light intensity distribution measured in a large range.
以下、本発明の実施例を図面を参照しながら説
明する。
Embodiments of the present invention will be described below with reference to the drawings.
第5図は本発明の一実施例に係る粒径測定装置
を示すもので、第1図と同一部分は同一符号で示
してある。したがつて、重複する部分の説明は省
略する。 FIG. 5 shows a particle size measuring device according to an embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.
この実施例では、光フアイバ5−1,5−2,
……5−nの光導入端6が被測定粒子群4内に設
定された点Pを中心とする円上に光軸を上記点P
に向けて次のように求心的に配置されている。す
なわち、散乱角が1〜5.5゜の範囲では互いの間に
Δθ1=0.5゜の間隔を保つて10本、散乱角が6〜20゜
の範囲では互いの間にΔθ2=1゜の間隔を保つて15
本、散乱角が20〜30゜の範囲では互いの間にΔθ3=
2゜の間隔を保つて5本配置されている。 In this embodiment, optical fibers 5-1, 5-2,
...The optical axis of the light introduction end 6 of 5-n is set on a circle centered on the point P set in the particle group 4 to be measured.
They are arranged centripetally toward the following. In other words, when the scattering angle is in the range of 1 to 5.5°, there are 10 wires with an interval of Δθ 1 = 0.5° between each other, and when the scattering angle is in the range of 6 to 20°, there are 10 wires with an interval of Δθ 2 = 1° between each other. keep 15
In the scattering angle range of 20~30°, there is a difference between Δθ 3 =
There are 5 pieces arranged at 2° intervals.
このように各光フアイバを配置して、10μm
φ1μmφ、0.5μmφの粒子の散乱光を測定すると
第6図に示す散乱光強度分布が測定される。この
図から判るように大きい粒子(10μmφ)の場合
には、その特徴である低次の回折光(0、1次)
の変動の様子を測定することができ、また小さい
粒子(0.5、1μmφ)の場合には広い範囲に亘つ
て両者の散乱光強度分布の違い(傾き)を測定で
きる。したがつて、広い粒径範囲に亘つて散乱光
強度分布の特徴を区別して測定できるので、結
局、装置の大掛り化を招くことなく広い粒径範囲
に亘つて粒径を測定することができる。 By arranging each optical fiber in this way,
When the scattered light of particles of φ1 μmφ and 0.5 μmφ is measured, the scattered light intensity distribution shown in FIG. 6 is measured. As can be seen from this figure, in the case of large particles (10 μmφ), the characteristic low-order diffracted light (0th and 1st order)
In the case of small particles (0.5, 1 μmφ), it is possible to measure the difference (inclination) in the scattered light intensity distribution between the two over a wide range. Therefore, since it is possible to distinguish and measure the characteristics of the scattered light intensity distribution over a wide particle size range, it is possible to measure particle sizes over a wide particle size range without increasing the size of the device. .
なお、本発明は上述した実施例に限定されるも
のではない。すなわち、上述した実施例では、
0.5〜50μmφの範囲の粒子を測定するときの光フ
アイバの配置例を示しているが、0.5μmφ以下の
粒子をも測定する場合には、大きい散乱角範囲、
たとえば60゜近傍の近くまで、たとえばΔθ=
2゜or4゜の角度差を保つて光フアイバの光導入端を
配置し、また50μmφ以上の粒子をも測定する場
合には小さい散乱角範囲、たとえば0〜10゜の範
囲に互いの間にΔθ=0.1〜0.5゜の角度差を保つて
光フアイバの光導入端を配置すれば、これらの範
囲の粒径を測定することが可能となる。また、対
数スケール、たとえば、0.05゜、0.1゜、0.2゜、0.3゜
、
0.5゜、0.7゜、1.0゜、2.0゜、3.0゜、5.0゜、7.0゜、1
0.0゜、…
…の位置に光フアイバの光導入端を配置すること
によつて広い粒径範囲に亘つて粒子の径を測定で
きるようにしてもよい。また、光フアイバの光導
入端にマイクロレンズを配置し、上記光導入端の
光軸に平行な光のみを光フアイバ内に導くように
してもよい。 Note that the present invention is not limited to the embodiments described above. That is, in the embodiment described above,
An example of optical fiber arrangement is shown when measuring particles in the range of 0.5 to 50 μmφ, but when measuring particles with a diameter of 0.5 μm or less, a large scattering angle range,
For example, up to around 60°, for example, Δθ=
The light introduction ends of the optical fibers are arranged with an angular difference of 2° or 4°, and when measuring particles larger than 50 μmφ, a Δθ is set between them in a small scattering angle range, for example, in the range of 0 to 10°. If the light introduction ends of the optical fibers are arranged with an angular difference of 0.1 to 0.5 degrees, it is possible to measure particle sizes within these ranges. Also, logarithmic scales, e.g. 0.05°, 0.1°, 0.2°, 0.3°,
0.5°, 0.7°, 1.0°, 2.0°, 3.0°, 5.0°, 7.0°, 1
0.0゜,...
By arranging the light introduction end of the optical fiber at the position of ..., it may be possible to measure the diameter of particles over a wide range of particle diameters. Alternatively, a microlens may be arranged at the light introduction end of the optical fiber to guide only light parallel to the optical axis of the light introduction end into the optical fiber.
第1図は、この種の代表的な粒径測定装置の概
略構成図、第2図および第3図は粒径と散乱光強
度分布との関係を説明するための図、第4図は本
発明装置の特徴点を説明するための図、第5図は
本発明の一実施例に係る粒径測定装置の概略構成
図、第6図は同装置における散乱光検出系の検出
位置と散乱光強度分布との関係を説明するための
図である。
1……レーゲ装置、2……レーザビーム、4…
…被測定粒子群、5−1,5−2,……5−n…
…光フアイバ、6……光導入端、8−1,8−
2,……8−n……フオトデイテクタ、10……
変換装置、11……デイスプレイ。
Figure 1 is a schematic configuration diagram of a typical particle size measuring device of this type, Figures 2 and 3 are diagrams for explaining the relationship between particle size and scattered light intensity distribution, and Figure 4 is a diagram for explaining the relationship between particle size and scattered light intensity distribution. A diagram for explaining the features of the inventive device, FIG. 5 is a schematic configuration diagram of a particle size measuring device according to an embodiment of the present invention, and FIG. 6 is a diagram showing the detection position and scattered light of the scattered light detection system in the same device. FIG. 3 is a diagram for explaining the relationship with intensity distribution. 1...Rege device, 2...Laser beam, 4...
...Particle group to be measured, 5-1, 5-2, ...5-n...
...Optical fiber, 6... Light introduction end, 8-1, 8-
2,...8-n...photodetector, 10...
Conversion device, 11...display.
Claims (1)
照射する光源装置と、上記被測定粒子群によつて
散乱する上記レーザビームの散乱角内で小さい散
乱角範囲には密に、大きい散乱角範囲には粗にそ
れぞれの光導入端を分布配置させた複数の光フア
イバと、これら光フアイバで導かれた光をそれぞ
れ検出する複数のフオトデイテクタと、これらフ
オトデイテクタで測定された散乱光強度分布を粒
径分布に変換する装置とを具備してなることを特
徴とする粒径測定装置。1. A light source device that irradiates a parallel laser beam toward a group of particles to be measured, and a scattering angle that is densely arranged in a small scattering angle range within the scattering angle of the laser beam scattered by the group of particles to be measured, and a large scattering angle range. There are a plurality of optical fibers whose light introduction ends are arranged in a roughly distributed manner, a plurality of photodetectors that respectively detect the light guided by these optical fibers, and the scattered light intensity distribution measured by these photodetectors is determined by the particle size. 1. A particle size measuring device comprising: a device for converting into a distribution;
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58049923A JPS59174737A (en) | 1983-03-25 | 1983-03-25 | Device for measuring diameter of particle |
US06/541,023 US4595291A (en) | 1982-10-15 | 1983-10-12 | Particle diameter measuring device |
EP83306227A EP0106684B1 (en) | 1982-10-15 | 1983-10-14 | Particle diameter measuring device |
DE8383306227T DE3381178D1 (en) | 1982-10-15 | 1983-10-14 | PARTICLE DIAMETER MEASURING DEVICE. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58049923A JPS59174737A (en) | 1983-03-25 | 1983-03-25 | Device for measuring diameter of particle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59174737A JPS59174737A (en) | 1984-10-03 |
JPH0237977B2 true JPH0237977B2 (en) | 1990-08-28 |
Family
ID=12844531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58049923A Granted JPS59174737A (en) | 1982-10-15 | 1983-03-25 | Device for measuring diameter of particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59174737A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61270639A (en) * | 1985-05-25 | 1986-11-29 | Japan Spectroscopic Co | Flow sight meter |
DD241643A1 (en) * | 1985-10-09 | 1986-12-17 | Narva Rosa Luxemburg K | MEASURING METHOD AND DEVICE FOR TOUCH-FREE DIAMETER DETERMINATION DUENNER WIRE |
US4781460A (en) * | 1986-01-08 | 1988-11-01 | Coulter Electronics Of New England, Inc. | System for measuring the size distribution of particles dispersed in a fluid |
JPH0643950B2 (en) * | 1989-09-29 | 1994-06-08 | 株式会社島津製作所 | Particle size distribution measuring device |
-
1983
- 1983-03-25 JP JP58049923A patent/JPS59174737A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59174737A (en) | 1984-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02196930A (en) | Polarization measurement method and apparatus | |
US4801205A (en) | Particle size measuring apparatus | |
US5526109A (en) | Multi-velocity component LDV | |
US5137353A (en) | Angular displacement measuring device | |
JPH0237977B2 (en) | ||
EP0332440B1 (en) | Arciform photo sensor asssembly | |
CA1241415A (en) | Laser direction of arrival detector | |
JPH04504019A (en) | Method for using optical fiber as a sensor | |
JPH09189653A (en) | Optical axis adjusting method for use in scattering type particle size distribution measuring device | |
JPH09126984A (en) | Particle size distribution measuring device | |
JPH0225448B2 (en) | ||
JPH0534259A (en) | Device for measuring particle size distribution | |
JPS6454304A (en) | Surface state inspection device | |
JPH0658314B2 (en) | Particle size distribution measuring device using laser light diffraction | |
JPH07260669A (en) | Grain size distribution measuring device | |
GB2181541A (en) | A method and apparatus for measuring the position of an object boundary | |
JPH02143139A (en) | Measuring method for particle size of particulate by interference pattern | |
JPH0786454B2 (en) | Scattered light detector of particle size distribution measuring device | |
JPS5833107A (en) | Device for measuring size of particle | |
SU877370A2 (en) | Photoelectric device for measuring torque | |
JPS59200965A (en) | Particle velocity measuring device using space filtering | |
CN111060175B (en) | Natural gas remote charging device and using method thereof | |
SU535485A1 (en) | Device for measuring the average Sauter diameter of aerosol particles | |
SU1149123A1 (en) | Optical electronic device for checking linear displacements | |
JP3258890B2 (en) | Scattering type particle size distribution analyzer |