[go: up one dir, main page]

JPH0235666B2 - - Google Patents

Info

Publication number
JPH0235666B2
JPH0235666B2 JP58085135A JP8513583A JPH0235666B2 JP H0235666 B2 JPH0235666 B2 JP H0235666B2 JP 58085135 A JP58085135 A JP 58085135A JP 8513583 A JP8513583 A JP 8513583A JP H0235666 B2 JPH0235666 B2 JP H0235666B2
Authority
JP
Japan
Prior art keywords
light
water
plate
intensity
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58085135A
Other languages
Japanese (ja)
Other versions
JPS59211830A (en
Inventor
Kenichi Aoki
Tomoya Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP58085135A priority Critical patent/JPS59211830A/en
Priority to US06/610,373 priority patent/US4580944A/en
Priority to EP84303282A priority patent/EP0126613B1/en
Priority to DE8484303282T priority patent/DE3479832D1/en
Publication of JPS59211830A publication Critical patent/JPS59211830A/en
Priority to US07/065,646 priority patent/US4737035A/en
Publication of JPH0235666B2 publication Critical patent/JPH0235666B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0054Devices for controlling dampening

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Rotary Presses (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は印刷機の湿し水計測方法に関し、特
にオフセツト印刷機の版胴に取り付けられた版面
への湿し水の塗布量の制御を行うために、版面上
の湿し水の量を光学的に計測する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for measuring dampening water in a printing press, and in particular to a method for controlling the amount of dampening water applied to a plate surface attached to a plate cylinder of an offset printing machine. The present invention relates to a method for optically measuring the amount of dampening water on a printing plate.

〔従来技術〕[Prior art]

従来、印刷機における版面上の湿し水の量を計
測する方法としては、版面上の湿し水の赤外線吸
収量を測定する方法、版面付近の湿度を測定する
方法、給水ローラ上の水膜の電気抵抗を測定する
方法等があるが、これらは現在いずれもいまだ実
用化に到つていない。また上記のようなものの他
に特開昭47−4338号公報に掲げられているよう
な、水の薄膜に平行光線を入射させた際、反射光
強度の反射角に対する特性が薄膜の厚さにより変
化することを利用して、版面に光を入射させ、版
面からの反射光を測定して湿し水を測定するよう
なものが知られている。
Conventionally, methods for measuring the amount of dampening water on the plate surface of a printing press include measuring the amount of infrared absorption of dampening water on the plate surface, measuring the humidity near the plate surface, and measuring the water film on the water supply roller. Although there are methods for measuring the electrical resistance of In addition to the above, when a parallel beam of light is incident on a thin film of water, the characteristics of the reflected light intensity with respect to the reflection angle depend on the thickness of the thin film, as described in Japanese Patent Application Laid-Open No. 47-4338. There is a known method that takes advantage of this change in dampening water by making light incident on the printing plate and measuring the reflected light from the printing plate.

〔当該発明が解決しようとする問題点〕[Problem to be solved by the invention]

しかし、前記の版面からの反射光を測定する方
法は、受光素子を鏡面反射角度位置よりも小さい
角度60゜〜80゜の位置に配置して、拡散光による測
定を行なつていたので、光の指向性が弱く、測定
誤差が大きい等の種々の問題を有していた。
However, in the method of measuring the reflected light from the printing plate, the light-receiving element was placed at a position at an angle of 60° to 80°, which is smaller than the specular reflection angle position, and the measurement was performed using diffused light. They had various problems such as weak directivity and large measurement errors.

〔前記問題点を解決するための手段〕[Means for solving the above problems]

この発明は、レーザ発生装置から発射されるレ
ーザ光線を印刷機の版面に平行入射させ、干渉フ
イルタを介して版面から反射光の強度を測定する
ことによつて、版面上の湿し水の量を計測する印
刷機の湿し水の計測方法であつて、版面からの鏡
面反射光を受光する第1受光器により鏡面反射光
の強度を検出し、さらに版面からの拡散光を受光
する第2受光器により拡散光の強度を検出し、前
記鏡面反射光強度を拡散光強度で除算することに
よつて、版面上の湿し水の量を計測することを特
徴とする。
This invention makes a laser beam emitted from a laser generator parallel to the plate surface of a printing press, and measures the intensity of the reflected light from the plate surface through an interference filter to measure the amount of dampening water on the plate surface. A method for measuring dampening water in a printing press, in which the intensity of specularly reflected light is detected by a first receiver that receives specularly reflected light from the printing plate, and a second receiver that receives diffused light from the printing plate. The method is characterized in that the intensity of the diffused light is detected by a light receiver, and the amount of dampening water on the printing plate is measured by dividing the intensity of the specularly reflected light by the intensity of the diffused light.

〔実施例〕〔Example〕

次に、この発明の構成の説明を行う前に、版面
上の水の量と反射光の指向性との関係を説明す
る。
Next, before explaining the configuration of the present invention, the relationship between the amount of water on the printing plate and the directivity of reflected light will be explained.

第1図は水の量と反射光の強度の指向性との関
係を示すものであつて、図中破線aは光iが入射
角θで版面hに入射した際、水が多い場合の反射
光の指向性を、破線bは水が中程度の場合の反射
光の指向性を、破線cは水が少ない場合の反射光
の指向性を示すものである。そして矢印Aは鏡面
反射光の方向を、矢印B,Cはそれぞれ異なる2
つの拡散光の方向を示すものである。この第1図
から分るように、版面からの反射光は水の量が少
ない時は拡散光が強く、水の量が多くなるに従つ
て弱くなり、鏡面反射に近づくことが分る。
Figure 1 shows the relationship between the amount of water and the directionality of the intensity of reflected light. The broken line a in the figure shows the reflection when there is a lot of water when light i is incident on plate h at an incident angle θ. The broken line b shows the directionality of reflected light when there is a medium amount of water, and the broken line c shows the directionality of reflected light when there is little water. Arrow A indicates the direction of the specularly reflected light, and arrows B and C indicate the direction of the specularly reflected light.
This shows the direction of the two diffused lights. As can be seen from FIG. 1, when the amount of water is small, the reflected light from the printing plate is a strong diffused light, and as the amount of water increases, it becomes weaker and approaches specular reflection.

第2図は第1図の矢印A,B,Cの方向の反射
光の強度(受光器の出力)と水元ローラ回転数
(版への水の供給量)との関係を示すグラフであ
る。この第2図から分るように、A方向の反射光
(鏡面反射光)の強度は版上の水の量が多い時に
飽和する。
Figure 2 is a graph showing the relationship between the intensity of reflected light in the directions of arrows A, B, and C in Figure 1 (receiver output) and the water source roller rotation speed (amount of water supplied to the plate). . As can be seen from FIG. 2, the intensity of the reflected light in the A direction (specular reflected light) is saturated when the amount of water on the plate is large.

B方向の反射光は鏡面反射に近い角度での拡散
光であり、初め版面上の水の量の増加と共に増加
し、ピークに達した後減少する。前述の従来の方
法がこの場合に相当する。この場合には版上の水
の量に対する受光量は二価関数となる。
The reflected light in the B direction is diffused light at an angle close to specular reflection, and initially increases as the amount of water on the printing plate increases, reaches a peak, and then decreases. The conventional method described above corresponds to this case. In this case, the amount of light received relative to the amount of water on the plate becomes a bivalent function.

C方向の反射光は鏡面反射から離れた角度での
拡散光であり、版面上の水の量の増加と共に減少
する。
The reflected light in the C direction is diffused light at an angle away from specular reflection, and decreases as the amount of water on the plate increases.

以上のことから、計測装置の感度を高め計測誤
差を少なくするためには、鏡面反射光の強度を計
測するのが良いと考えられる。また入射角、版の
凹凸、測定範囲の関係は以下のように考えられ
る。
From the above, it is considered that in order to increase the sensitivity of the measuring device and reduce measurement errors, it is better to measure the intensity of specularly reflected light. Furthermore, the relationship among the angle of incidence, unevenness of the plate, and measurement range can be considered as follows.

第3図は版面上の砂目の1つに平行光を当てた
時の様子を示す。Rは受光素子であり版面からの
鏡面反射光を受ける位置におかれている。
Figure 3 shows what happens when parallel light is applied to one of the grains on the plate. R is a light-receiving element placed at a position to receive specularly reflected light from the printing plate.

入射光中Rに受光される光は砂目の山に当る光
δと水面の谷に当る光α,β,γである。水面は
表面張力により球面の一部に近い形をし、その表
面は比較的なだらかなのに対し、砂目の山は突出
している。そのため受光する光は殆んど谷の部分
の水面からのものと考えられる。この谷の部分で
反射され、受光される光は第3図ではXの範囲に
入射する光である。Xの大きさは水面の曲率半径
が大きくなると広くなる。このため版面の湿し水
量が増すと水面の凹凸は小さくなり、水面の曲率
半径が大きくなりXが増加し受光量が増すと考え
られる。以上の推定から入射角θを大きくし過ぎ
ると版の凹凸が領域Xの端に当る光αおよびγを
さえぎり測定範囲が狭くなると考えられる。また
水面でのエネルギー反射率は入射角を大きくする
と大きくなり、受光エネルギーが大きくとれるの
で入射角θは版の凹凸の影響を受けない範囲で適
当に大きくとるのが良い。
Among the incident lights, the light received by R is light δ that hits the crests of the grain, and lights α, β, and γ that hit the valleys of the water surface. The surface of the water has a shape similar to that of a sphere due to surface tension, and while the surface is relatively smooth, the ridges of grain are prominent. Therefore, it is thought that most of the light received comes from the water surface in the valley. The light reflected and received by this valley portion is the light incident on the range X in FIG. The size of X increases as the radius of curvature of the water surface increases. For this reason, it is thought that when the amount of dampening water on the printing plate increases, the unevenness of the water surface becomes smaller, the radius of curvature of the water surface becomes larger, X increases, and the amount of light received increases. From the above estimation, it is considered that if the incident angle θ is made too large, the unevenness of the plate blocks the light α and γ hitting the edge of the area X, and the measurement range becomes narrower. In addition, the energy reflectance on the water surface increases as the incident angle increases, and since a large amount of received light energy can be obtained, the incident angle θ is preferably set appropriately large within a range that is not affected by the unevenness of the plate.

この発明の実施に使用される湿し水計測装置
は、センサ部、処理部より構成されるものであつ
て、センサ部は版面の反射指向性を測定する部分
であり、光源と受光器を含むセンサ本体からなつ
ている。光源には例えば高輝度で単色に近い光が
得られるレーザ装置が好適で、平行光線が版面上
に入射されるようになつている。また受光器は、
シリコンフオトダイオード等の光電変換素子およ
び光電変換回路から成り、鏡面反射光受光用の第
1受光器と、拡散光受光用の第2受光器とがある
が、拡散光受光用のものは、光源の出力変動の影
響を補償するために付設したものである。
The dampening water measuring device used to carry out the present invention is composed of a sensor section and a processing section, and the sensor section is a section that measures the reflection directivity of the printing plate, and includes a light source and a light receiver. It consists of the sensor body. For example, a laser device that can provide high-intensity, nearly monochromatic light is suitable as the light source, and parallel light rays are made to be incident on the printing plate. In addition, the receiver is
It consists of a photoelectric conversion element such as a silicon photodiode and a photoelectric conversion circuit, and there is a first receiver for receiving specularly reflected light and a second receiver for receiving diffused light. This was added to compensate for the effects of output fluctuations.

処理部は、センサ部からの信号によつて、版面
上の水の量に相当する値を算出する部分である。
The processing section is a section that calculates a value corresponding to the amount of water on the printing plate based on the signal from the sensor section.

以下この発明を、第4図および第5図の図面に
示す実施例に基づいて説明する。
The present invention will be explained below based on the embodiments shown in the drawings of FIGS. 4 and 5.

第4図において、まずセンサ部を説明すると、
出力0.5mWのヘリウムネオンレーザ装置1から
の放射光は光フアイバ2を通つて、版胴10の外
周面上方を図示しない駆動装置によつて軸線方向
に往復動されるようになつているセンサ29に取
り付けられたコリメータ3に導かれ、版面の法線
に対し角度θが約75度となるような入射角で版面
で入射されるようになつている。
In Fig. 4, the sensor section will be explained first.
The emitted light from the helium-neon laser device 1 with an output of 0.5 mW passes through the optical fiber 2 and is reciprocated in the axial direction above the outer peripheral surface of the plate cylinder 10 by a drive device (not shown). The light is guided to a collimator 3 attached to the plate, and is made incident on the plate at an incident angle θ of about 75 degrees with respect to the normal to the plate.

センサ29には受光器4,4′が設置されそれ
ぞれ鏡面反射光θの方向および反射角0度の拡散
光の方向に反射する光が検出される。受光器4,
4′は第5図に示すように、レーザの波長約633mm
付近の光のみを通す干渉フイルタ(例えば、日本
真空光学社製IFW型干渉フイルタ)5と直径20
mmのシリコンフオトダイオード6からなる光源部
9,9′と入力バイアス電流の小さなMOS FET
入力の演算増幅器7による光電変換回路8,8′
から成つている。
The sensor 29 is equipped with light receivers 4 and 4', which detect the light reflected in the direction of the specularly reflected light θ and the direction of the diffused light with a reflection angle of 0 degrees, respectively. Receiver 4,
4' is the laser wavelength of approximately 633mm, as shown in Figure 5.
Interference filter that passes only nearby light (for example, IFW type interference filter manufactured by Nippon Vacuum Optical Co., Ltd.) 5 and diameter 20
The light source section 9, 9' consists of a silicon photodiode 6 of mm and a MOS FET with a small input bias current.
Photoelectric conversion circuit 8, 8' using operational amplifier 7 as input
It consists of

同期信号発生部は、版胴10に取り付けられた
エンコーダ11および検出位置レジスタ12から
比較器13に検出信号が入力され、比較器13か
ら処理部14に同期信号を出力するようになつて
いる。15は検出位置設定スイツチである。
In the synchronization signal generation section, a detection signal is inputted to a comparator 13 from an encoder 11 and a detection position register 12 attached to the plate cylinder 10, and a synchronization signal is output from the comparator 13 to a processing section 14. 15 is a detection position setting switch.

処理部14は、除算回路16とサンプルアンド
ホールド回路17から成り、(鏡面反射光強
度)/(拡散光強度)の計算を除算回路16で行
い、同期信号に従つて除算の結果をサンプルする
ようになつているものである。このように鏡面反
射光強度と拡散光強度の比を計算してサンプルす
るのは、この比の変動が版面上の水量の変動のみ
によつて起り、光源の光強度の変動による反射光
強度の変動が相殺されて、外乱による影響を受け
ることがないためである。
The processing unit 14 consists of a division circuit 16 and a sample-and-hold circuit 17, and the division circuit 16 calculates (specular reflection light intensity)/(diffuse light intensity), and samples the result of division according to the synchronization signal. It is something that has become popular. The reason for calculating and sampling the ratio of the specularly reflected light intensity and the diffused light intensity in this way is that fluctuations in this ratio occur only due to changes in the amount of water on the printing plate, and changes in the reflected light intensity due to changes in the light intensity of the light source. This is because the fluctuations are canceled out and there is no influence from external disturbances.

第6図は第4図の湿し水計測装置を使用した湿
し水制御系の構成例を示したものであつて、計測
装置の作動と共に説明すると、図中10は版胴、
22はゴム胴、23は水付ローラ、24はインキ
付ローラである。湿し水21は水元ローラ25か
ら水供給用ローラ26,27および水付ローラ2
3を介して版面上に塗布され、水元ローラ25は
水供給用モータ28により回転されるようになつ
ている。
FIG. 6 shows an example of the configuration of a dampening water control system using the dampening water measuring device shown in FIG.
22 is a rubber cylinder, 23 is a water roller, and 24 is an ink roller. The dampening water 21 is supplied from the water source roller 25 to the water supply rollers 26, 27 and the water roller 2.
The water source roller 25 is rotated by a water supply motor 28.

センサ29は、第7図で示すように、版胴10
の軸線に沿つて往復動されるようになつている。
The sensor 29 is connected to the plate cylinder 10 as shown in FIG.
It is designed to be reciprocated along the axis of the

処理部14は同期信号発生部18を介して版胴
10に取り付けられた位置検出用エンコーダ11
からの信号を入力され、またセンサ9からの信号
を入力されて、計測値を差動増幅器30および表
示器37に出力するようになつている。
The processing unit 14 is connected to a position detection encoder 11 attached to the plate cylinder 10 via a synchronization signal generation unit 18.
The sensor 9 receives signals from the sensor 9, and outputs measured values to the differential amplifier 30 and the display 37.

差動増幅器30は水量設定値出力回路31から
入力された設定値と処理部14から入力された計
測値とを比較し、設定値と計測値との差をモータ
回転数算出回路32に出力する。モータ回転数算
出回路32は差動増幅器30からの入力に基づい
て、サーボ増幅器33を介して水供給用モータ2
8に作動信号を出力し、モータ28を作動させ
る。34は速度フイードバツク用タコジエネレー
タである。
The differential amplifier 30 compares the set value inputted from the water volume set value output circuit 31 and the measured value inputted from the processing unit 14, and outputs the difference between the set value and the measured value to the motor rotation speed calculation circuit 32. . Based on the input from the differential amplifier 30, the motor rotation speed calculation circuit 32 controls the water supply motor 2 via the servo amplifier 33.
8 to operate the motor 28. 34 is a tachometer generator for speed feedback.

版面上の水の量を計測する際には、センサ29
を第7図のレール40上に沿つて移動させ、版胴
10上の刷版の非画線部に対向させる。そして非
画線部における計測位置が決つたらセンサ29を
固定し、検出位置記憶スイツチ15により版の天
地方向での検出位置を検出位置レジスタ12に記
憶する。計測動作中は、比較器13によりエンコ
ーダ11の出力すなわち版胴の位置検出位置レジ
スタ12の値を比較し、両者が一致したとき、す
なわち版が検出位置にきたとき同期信号を処理部
14の中のサンプルアンドホールド17に送る。
サンプルアンドホールド17は次の同期信号がく
るまで除算回路の出力を保持する。
When measuring the amount of water on the plate, the sensor 29
is moved along the rail 40 in FIG. 7 to face the non-image area of the printing plate on the plate cylinder 10. Once the measurement position in the non-print area is determined, the sensor 29 is fixed, and the detection position storage switch 15 stores the detection position in the vertical direction of the plate in the detection position register 12. During the measurement operation, the comparator 13 compares the output of the encoder 11, that is, the value of the plate cylinder position detection position register 12, and when the two match, that is, when the plate has reached the detection position, a synchronization signal is sent to the processing unit 14. sample and hold 17.
The sample and hold 17 holds the output of the division circuit until the next synchronization signal arrives.

そして水の量の測定値およびあらかじめ規定さ
れた基準値に基づいて、水供給用モータ28の回
転数を制御することにより、版面上の水の量を調
整するのである。なお、水の量の測定および制御
は、本印刷または試し刷りのいずれにおいても常
時行うようになつているものである。なお、上記
実施例においては受光器4に破長選択性のあるフ
イルタ5を入れることによりS/N比の向上を図
ることができ、さらに受光部が入射光の直径より
十分大きくなつていることにより、受光部上で光
軸が相対的に位置ずれを起しても、版とセンサの
位置関係にある程度の許容度を持たせることがで
きるものである。
The amount of water on the printing plate is adjusted by controlling the rotational speed of the water supply motor 28 based on the measured value of the amount of water and a predefined reference value. Note that the amount of water is measured and controlled at all times during both actual printing and test printing. In the above embodiment, it is possible to improve the S/N ratio by inserting a filter 5 with break length selectivity into the light receiver 4, and furthermore, the light receiving portion is sufficiently larger than the diameter of the incident light. Therefore, even if the optical axis is relatively misaligned on the light receiving section, a certain degree of tolerance can be given to the positional relationship between the plate and the sensor.

またレーザ装置1から十分な平行光が得られる
場合には、コリメータ3を省略することも可能で
ある。
Further, if sufficient parallel light can be obtained from the laser device 1, the collimator 3 can be omitted.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明はレーザ発生装置から
発射されるレーザ光線を印刷機の版面に平行入射
させ、干渉フイルタを介して版面からの反射光の
強度を測定することによつて、版面上の湿し水の
量を計測する印刷機の湿し水の計測方法であつ
て、版面からの鏡面反射光を受光する第1受光器
により鏡面反射光の強度を検出し、さらに版面か
らの拡散光を受光する第2受光器により拡散光の
強度を検出し、前記鏡面反射光強度を拡散光強度
で除算することによつて、版面上の湿し水の量を
計測するので、計測範囲を広くとることができる
とともに、測定誤差を小くすることができ、また
除算の結果をサンプリングするので、外乱による
影響を防止することができる。さらに、前記に際
して白色光に比べて高輝度な単色光としてのレー
ザ光線を用い、このレーザ光線を版面の単位面積
当りに照射する光量をできるだけ上げるために平
行入射させるので、第1、第2受光器による検出
値の感度を著しく高めることができるという優れ
た効果を有するものである。
As described above, the present invention makes the laser beam emitted from the laser generator parallel to the plate surface of the printing press, and measures the intensity of the reflected light from the plate surface through an interference filter. A method of measuring dampening water in a printing press that measures the amount of dampening water, in which the intensity of the specularly reflected light is detected by a first receiver that receives specularly reflected light from the printing plate, and then the intensity of the specularly reflected light from the printing plate is detected. The intensity of the diffused light is detected by the second light receiver that receives the light, and the amount of dampening water on the printing plate is measured by dividing the intensity of the specularly reflected light by the intensity of the diffused light, which widens the measurement range. In addition, the measurement error can be reduced, and since the result of division is sampled, the influence of disturbance can be prevented. Furthermore, in the above process, a laser beam as a monochromatic light with higher brightness than white light is used, and since this laser beam is made parallel to the plate in order to increase the amount of light irradiated per unit area of the printing plate as much as possible, the first and second light receiving This has the excellent effect of significantly increasing the sensitivity of the detected value by the instrument.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、版面の水の量と反射光の指向性との
関係を示す説明図、第2図は水の量と反射光の受
光量との関係を示す説明、第3図は版の部分拡大
断面説明図、第4図はこの発明の一実施例を示す
概略図、第5図は同実施例の受光器の回路図、第
6図はこの発明による湿し水計測装置を使用した
湿し水の制御系を示すブロツク図、第7図は同詳
細ブロツク図である。 1……レーザ装置、4,4′……受光器、10
……版胴、14……処理部、16……除算回路、
17……サンプルアンドホールド回路、25……
水元ローラ、29……センサ。
Figure 1 is an explanatory diagram showing the relationship between the amount of water on the plate and the directivity of reflected light, Figure 2 is an explanatory diagram showing the relationship between the amount of water and the amount of reflected light received, and Figure 3 is an explanatory diagram showing the relationship between the amount of water on the plate and the directionality of reflected light. 4 is a schematic diagram showing an embodiment of the present invention, FIG. 5 is a circuit diagram of a light receiver of the same embodiment, and FIG. 6 is a diagram showing a dampening water measuring device according to the present invention. A block diagram showing the dampening water control system, and FIG. 7 is a detailed block diagram of the same. 1... Laser device, 4, 4'... Light receiver, 10
... plate cylinder, 14 ... processing section, 16 ... division circuit,
17... Sample and hold circuit, 25...
Mizumoto roller, 29...sensor.

Claims (1)

【特許請求の範囲】 1 レーザ発生装置から発射されるレーザ光線を
印刷機の版面に平行入射させ、干渉フイルタを介
して版面からの反射光の強度を測定することによ
つて、版面上の湿し水の量を計測する印刷機の湿
し水の計測方法であつて、 版面からの鏡面反射光を受光する第1受光器に
より鏡面反射光の強度を検出し、さらに版面から
の拡散光を受光する第2受光器により拡散光の強
度を検出し、前記鏡面反射光強度を拡散光強度で
除算することによつて、版面上の湿し水の量を計
測することを特徴とする印刷機の湿し水の計測方
法。
[Claims] 1. A laser beam emitted from a laser generator is made parallel to the plate surface of a printing press, and the intensity of the reflected light from the plate surface is measured through an interference filter, thereby determining the moisture content on the plate surface. This is a method for measuring the amount of dampening water in a printing press, in which the intensity of the specularly reflected light is detected by a first receiver that receives the specularly reflected light from the printing plate, and then the diffused light from the printing plate is detected. A printing machine characterized by measuring the amount of dampening water on the printing plate by detecting the intensity of the diffused light using a second light receiver that receives the light, and dividing the intensity of the specularly reflected light by the intensity of the diffused light. How to measure dampening water.
JP58085135A 1983-05-17 1983-05-17 Apparatus for measuring dampening water of printer Granted JPS59211830A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58085135A JPS59211830A (en) 1983-05-17 1983-05-17 Apparatus for measuring dampening water of printer
US06/610,373 US4580944A (en) 1983-05-17 1984-05-15 Aerodynamic flexible fairing
EP84303282A EP0126613B1 (en) 1983-05-17 1984-05-15 Method of an apparatus for measuring dampening water for printing machine
DE8484303282T DE3479832D1 (en) 1983-05-17 1984-05-15 Method of an apparatus for measuring dampening water for printing machine
US07/065,646 US4737035A (en) 1983-05-17 1987-06-24 Method of and apparatus for measuring dampening water for printing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58085135A JPS59211830A (en) 1983-05-17 1983-05-17 Apparatus for measuring dampening water of printer

Publications (2)

Publication Number Publication Date
JPS59211830A JPS59211830A (en) 1984-11-30
JPH0235666B2 true JPH0235666B2 (en) 1990-08-13

Family

ID=13850203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58085135A Granted JPS59211830A (en) 1983-05-17 1983-05-17 Apparatus for measuring dampening water of printer

Country Status (1)

Country Link
JP (1) JPS59211830A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189047A (en) * 1984-10-08 1986-05-07 Dainippon Printing Co Ltd Damping water amount detecting method of offset plate face and measuring apparatus therefor
JPH0611538B2 (en) * 1985-06-11 1994-02-16 大日本印刷株式会社 Method for measuring the amount of dampening water on the offset plate
JP4671851B2 (en) 2005-12-08 2011-04-20 大日本スクリーン製造株式会社 Image recording device
JP6677075B2 (en) * 2016-05-19 2020-04-08 富士通株式会社 Water level measuring device, method and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2534974B1 (en) * 1975-08-05 1976-05-26 Siemens Ag ULTRASONIC IMAGE DEVICE WORKING IN ACCORDANCE WITH THE PULSE ECHO PROCESS
DE2736663C3 (en) * 1977-08-13 1985-05-15 Heidelberger Druckmaschinen Ag, 6900 Heidelberg Device for determining the moisture and color balance in offset printing units
JPS57182622A (en) * 1981-05-08 1982-11-10 Toyo Ink Mfg Co Ltd Method and device for measuring volume of damping water of plate surface of lithographic printing machine

Also Published As

Publication number Publication date
JPS59211830A (en) 1984-11-30

Similar Documents

Publication Publication Date Title
US4737035A (en) Method of and apparatus for measuring dampening water for printing machine
US4456829A (en) Non-contact sensor, system and method with particular utility for measurement of road profile
US3631526A (en) Apparatus and methods for eliminating interference effect errors in dual-beam infrared measurements
US4878754A (en) Method of and apparatus for measuring irregularities of road surface
US4937449A (en) Device for the inspection of coated and uncoated films
JPH0220930B2 (en)
JPH01121711A (en) Sensor
US3960077A (en) Printing with blanket having recessed portion
JPH0235666B2 (en)
US4787238A (en) Method and device for measuring the quantity of water dampening the face of an offset printing plate
US4171160A (en) Distance measuring instrument
US4124803A (en) Surface finish monitor
CS257783B2 (en) Device for testing of materials' translucent strips
CN108775968A (en) A kind of non-contact temperature sensor
JPS622113A (en) Surface roughness meter using reflected light
US4592650A (en) Apparatus for projecting a pattern on a semiconductor substrate
JPH0411804B2 (en)
JP3064308B2 (en) Liquid film thickness measuring device
JPS60199657A (en) Damping water measurement for printing machine
JPH1048228A (en) Method and apparatus for measuring bullet rotation speed
JPS5750606A (en) Solar sensor
JPS6229019B2 (en)
JP2001221660A (en) Rotation angle detection device and detection method
JP3061280B2 (en) Object hole position detection method
JPS6225238A (en) Method and instrument for measuring amount of damping water for plate surface of lithographic printing machine