JPH0235458A - Pattern forming method - Google Patents
Pattern forming methodInfo
- Publication number
- JPH0235458A JPH0235458A JP18462788A JP18462788A JPH0235458A JP H0235458 A JPH0235458 A JP H0235458A JP 18462788 A JP18462788 A JP 18462788A JP 18462788 A JP18462788 A JP 18462788A JP H0235458 A JPH0235458 A JP H0235458A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- radiation
- gas
- irradiated
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000005855 radiation Effects 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 40
- 239000010409 thin film Substances 0.000 claims abstract description 34
- 239000003960 organic solvent Substances 0.000 claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims description 10
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 230000007261 regionalization Effects 0.000 claims description 2
- 239000010408 film Substances 0.000 abstract description 13
- 239000007788 liquid Substances 0.000 abstract 2
- 238000004090 dissolution Methods 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000010587 phase diagram Methods 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Landscapes
- Photosensitive Polymer And Photoresist Processing (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、基板上に放射線感応性有機薄膜のパターンを
精度良く、かつ高密度に形成する方法に関するものであ
り、高性能の半導体装置の製造に極めて効果の大きいパ
ターン形成方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for forming a radiation-sensitive organic thin film pattern on a substrate with high precision and high density, and is applicable to high-performance semiconductor devices. This invention relates to a pattern forming method that is extremely effective in manufacturing.
(従来の技術)
従来、基板上への放射線感応性有機薄膜のパターン形成
は、基板上に放射線感応性有機薄膜を形成する工程と、
前記放射線感応性有機薄膜の一部に放射線を照射する工
程と、前記基板に現像液を接触させる工程とにより行わ
れていた。第5図は、基板1に現像液10を接触させる
工程における基板1の部分拡大断面図である。従来の方
法では、放射線感応性有機薄膜としてポジレジストを用
いた場合、基板1上に塗布された放射線感応性有機簿膜
のうち放射線を照射された有機薄膜30のみ現像液10
に溶解するため、結果として基板1上には放射線を照射
されなかった有機薄膜31のパターンが形成される。(Prior Art) Conventionally, pattern formation of a radiation-sensitive organic thin film on a substrate involves the steps of forming a radiation-sensitive organic thin film on the substrate;
This method has been performed by irradiating a portion of the radiation-sensitive organic thin film with radiation and bringing a developer into contact with the substrate. FIG. 5 is a partially enlarged sectional view of the substrate 1 in the step of bringing the developer 10 into contact with the substrate 1. In the conventional method, when a positive resist is used as the radiation-sensitive organic thin film, only the organic thin film 30 irradiated with radiation out of the radiation-sensitive organic film coated on the substrate 1 is exposed to the developer 10.
As a result, a pattern of the organic thin film 31 that has not been irradiated with radiation is formed on the substrate 1.
(発明が解決しようとする課題)
従来の方法では、放射線を照射された有機薄膜30を現
像液10に溶解させて除去する。放射線を照射された有
機薄膜30の面積密度は部分的に異なり、現像液10中
に溶解した有機物濃度が局所的に違ってくる。現像液1
0中に溶解した有機物濃度が違うと放射線を照射された
有機薄膜30の溶解速度も異なり、溶解速度が局所的に
不均一になる。よフて、放射線を照射された有機薄膜3
0のパターン精度が低下し、所望のパターン幅が得られ
ない、基板1と接触している現像液10を効率良く置換
すれば、現像液10の放射線を照射された有機薄膜30
に対する溶解能力を均一にすることができるが、現像液
10の粘性が高いため、置換を効率良く行うことができ
ない。(Problems to be Solved by the Invention) In the conventional method, the organic thin film 30 irradiated with radiation is dissolved in the developer 10 and removed. The area density of the organic thin film 30 irradiated with radiation varies locally, and the concentration of organic matter dissolved in the developer 10 varies locally. developer 1
If the concentration of organic matter dissolved in the organic material differs, the rate of dissolution of the organic thin film 30 irradiated with radiation will also differ, and the rate of dissolution will be locally non-uniform. Then, the organic thin film 3 irradiated with radiation
If the developing solution 10 in contact with the substrate 1 is efficiently replaced, the organic thin film 30 irradiated with the radiation of the developing solution 10 can be removed.
However, since the viscosity of the developer 10 is high, replacement cannot be performed efficiently.
また、ウェハ上に深い溝が存在する場合、溝内の現像液
10が効率良く置換されないため溝内の放射線を照射さ
れた有機薄膜30の現像速度が低下し、深い溝内の放射
線を照射された有機薄膜30を除去するのに長時間を要
するなど、従来の技術には種々の問題があった。Furthermore, when deep grooves exist on the wafer, the developer 10 in the grooves is not replaced efficiently, so the development speed of the organic thin film 30 irradiated with radiation in the grooves decreases. The conventional techniques have various problems, such as the long time it takes to remove the organic thin film 30.
本発明は、これらの問題点を鑑みてなされたもので、精
度が良く、かつ密度の高いパターンを得ることができる
パターン形成方法を提供することを目的とする。The present invention has been made in view of these problems, and an object of the present invention is to provide a pattern forming method capable of obtaining a highly accurate and dense pattern.
(課題を解決するための手段)
以上のような目的を達成するために、本発明のパターン
形成方法は、基板上に放射線感応性有機薄膜を形成する
工程と、前記放射線感応性有機薄膜の一部に放射線を照
射する工程と5前記基板を液化ガス又は超臨界ガスと接
触させる工程とからなる。(Means for Solving the Problems) In order to achieve the above objects, the pattern forming method of the present invention includes a step of forming a radiation-sensitive organic thin film on a substrate, and a step of forming a radiation-sensitive organic thin film on a substrate. and (5) the step of bringing the substrate into contact with liquefied gas or supercritical gas.
(作 用)
基板上に放射線感応性有機薄膜を形成し、前記放射線感
応性有機薄膜の一部に放射線を照射する。(Function) A radiation-sensitive organic thin film is formed on a substrate, and a portion of the radiation-sensitive organic thin film is irradiated with radiation.
この時、前記放射線感応性有機薄膜の放射線を照射され
た領域と放射線を照射されていない領域の分子量の差が
大きくなる0次に、適当な条件を選んで基板を液化ガス
又は超臨界ガスと接触させる。At this time, the difference in molecular weight between the radiation-irradiated region and the non-radiation-irradiated region of the radiation-sensitive organic thin film becomes large.Then, by selecting appropriate conditions, the substrate is exposed to liquefied gas or supercritical gas. bring into contact.
ここで液化ガスとは、圧力−温度の状態図において、飽
和蒸気圧以上の圧力状態にあり、大気圧下。Here, liquefied gas is in a pressure state equal to or higher than saturated vapor pressure in the pressure-temperature phase diagram, and is under atmospheric pressure.
常温ではガス状であるものをいう。超臨界ガスとは、圧
力−温度の状態図において、臨界温度以上、かつ、臨界
圧力以上の状態にあるものを言う。液化ガス又は超臨界
ガスは、気体状態に比べて有機物に対する溶解度が高い
。また、適当な条件下では有機物の分子量によって溶解
速度を制御することができる。よって、適当な条件下で
基板を液化ガス又は超臨界ガスと接触させると、前記放
射線感応性有機薄膜の放射線を照射された領域と放射線
を照射されていない領域のうち1分子量の大きい領域の
みをすばやく溶解し、放射線を照射された領域を基板上
から除去することができる。液化ガス又は超臨界ガスの
粘性は低く、基板と接触している液化ガス又は超臨界ガ
スを効率良く置換することができ、基板上の放射線感応
性有機薄膜の溶解速度を均一に制御することができる。A substance that is gaseous at room temperature. A supercritical gas refers to a gas that is in a state of a critical temperature or higher and a critical pressure in a pressure-temperature phase diagram. Liquefied gas or supercritical gas has a higher solubility for organic substances than gaseous gas. Further, under appropriate conditions, the dissolution rate can be controlled by the molecular weight of the organic substance. Therefore, when the substrate is brought into contact with liquefied gas or supercritical gas under appropriate conditions, only one of the regions of the radiation-sensitive organic thin film that has been irradiated with radiation and the region that has not been irradiated with radiation has a larger molecular weight. It dissolves quickly and the irradiated area can be removed from the substrate. The viscosity of the liquefied gas or supercritical gas is low, and the liquefied gas or supercritical gas in contact with the substrate can be efficiently replaced, and the dissolution rate of the radiation-sensitive organic thin film on the substrate can be uniformly controlled. can.
これにより、基板上に放射線感応性有機薄膜のパターン
を精度良くかつ高密度に形成することができる。Thereby, a radiation-sensitive organic thin film pattern can be formed on the substrate with high precision and high density.
また、液化ガス又は超臨界ガスは放射線感応性有機薄膜
に対する溶解度が大きくかつ粘性が低いため、基板上に
深い溝が存在する場合でも深い溝内の放射線感応性有機
薄膜を短時間で除去することができる。In addition, since liquefied gas or supercritical gas has high solubility and low viscosity for radiation-sensitive organic thin films, even if deep grooves exist on the substrate, the radiation-sensitive organic thin films in the deep grooves can be removed in a short time. Can be done.
液化ガス又は超臨界ガス中に有機溶剤を含有させると、
放射線感応性有機薄膜の分子量による溶解速度の違いが
大きくなる。When an organic solvent is included in liquefied gas or supercritical gas,
The dissolution rate varies greatly depending on the molecular weight of the radiation-sensitive organic thin film.
よって、液化ガス又は超臨界ガス中に有機溶剤を含有さ
せることにより、基板上の放射線感応性有機薄膜パター
ンをさらに精度良くかつ高密度に形成することができる
。Therefore, by incorporating an organic solvent into the liquefied gas or supercritical gas, it is possible to form a radiation-sensitive organic thin film pattern on the substrate with higher accuracy and higher density.
(実施例)
以下、第1図ないし第4図に基づいて本発明について更
に詳しく説明する。(Example) Hereinafter, the present invention will be explained in more detail based on FIGS. 1 to 4.
第1図ないし第4図は1本発明にかかるパターン形成方
法を用いた一実施例の工程を示す部分拡大断面図である
。1 to 4 are partially enlarged sectional views showing steps of an embodiment using the pattern forming method according to the present invention.
第2図において、半導体基板1上にポジレジスト膜2を
回転塗布により形成する。本発明の実施例においては基
板1として半導体を用いたが、絶縁体を用いてもよい。In FIG. 2, a positive resist film 2 is formed on a semiconductor substrate 1 by spin coating. Although a semiconductor is used as the substrate 1 in the embodiment of the present invention, an insulator may also be used.
また、基板上にはシリコン酸化膜やシリコン窒化膜、ア
ルミニウム膜など各種の膜が形成されていてもよい。放
射線感応性有機薄膜材料としてはポジレジストを用いた
が、放射線に感応するものであれば何を用いてもよい。Furthermore, various films such as a silicon oxide film, a silicon nitride film, and an aluminum film may be formed on the substrate. Although a positive resist was used as the radiation-sensitive organic thin film material, any material may be used as long as it is sensitive to radiation.
膜の形成方法として回転塗布のかわりにラングミュア・
ブロジェット膜形成のように吸着法を用いてもよい。Langmuir coating is used instead of spin coating as a film formation method.
Adsorption methods such as Blodgett film formation may also be used.
第3図において、フォトマスク3を用いて半導体基板1
上に紫外線4を照射する。本発明の実施例においては、
放射線として紫外線4を用いたが、電子線を用いてもよ
い。また、フォトマスクを用いる代わりに直接描画を行
ってもよい。In FIG. 3, a semiconductor substrate 1 is
Irradiate the top with ultraviolet light 4. In an embodiment of the invention,
Although ultraviolet rays 4 were used as the radiation, electron beams may also be used. Further, direct drawing may be performed instead of using a photomask.
紫外線照射後ポジレジスト膜2は、紫外線4を照射され
たポジレジスト20の領域と紫外N&4を照射されてい
ないポジレジスト21の領域との二つに分かれる。After UV irradiation, the positive resist film 2 is divided into two regions: a region of the positive resist 20 that has been irradiated with the UV 4 and a region of the positive resist 21 that has not been irradiated with the UV N&4.
第1図において半1体基板1をベッセル5内に設置し、
液化ガス又は超臨界ガス6を導入する。In FIG. 1, a half-unit board 1 is installed in a vessel 5,
A liquefied gas or supercritical gas 6 is introduced.
適当な条件下において、液化ガス又は超臨界ガス6は紫
外線4を照射されたポジレジスト20を溶解するが、紫
外線4を照射されていないポジレジスト21は溶解しな
い、よって、紫外線4を照射されたポジレジスト20の
みを半導体基板1上から除去することができる。液化ガ
ス又は超臨界ガス6の粘性は低く、半導体基板1と接触
している液化ガス又は超臨界ガス6を効率良く置換する
ことができ、紫外線4を照射されたポジレジスト20の
溶解速度を均一に制御することができる。これにより。Under appropriate conditions, the liquefied gas or supercritical gas 6 dissolves the positive resist 20 that has been irradiated with the ultraviolet 4 rays, but does not dissolve the positive resist 21 that has not been irradiated with the ultraviolet 4 rays. Only the positive resist 20 can be removed from the semiconductor substrate 1. The liquefied gas or supercritical gas 6 has a low viscosity and can efficiently replace the liquefied gas or supercritical gas 6 in contact with the semiconductor substrate 1, thereby uniformizing the dissolution rate of the positive resist 20 irradiated with the ultraviolet rays 4. can be controlled. Due to this.
半導体基板1上に紫外線4を照射されていないポジレジ
スト21のパターンを精度良くかつ高密度に形成するこ
とができる(第4図)。また、液化ガス又は超臨界ガス
6は紫外線4を照射されたボジレジス1−20に対する
溶解度が大きくかつ粘性が低いため、半導体基板1上に
深い溝が存在する場合でも深い溝内の紫外線4を照射さ
れたポジレジスト20を短時間で除去することができる
。A pattern of the positive resist 21 which is not irradiated with ultraviolet rays 4 can be formed on the semiconductor substrate 1 with high accuracy and high density (FIG. 4). In addition, since the liquefied gas or supercritical gas 6 has high solubility and low viscosity in the body resist 1-20 irradiated with ultraviolet rays 4, even if a deep groove exists on the semiconductor substrate 1, the ultraviolet ray 4 in the deep groove is irradiated. The applied positive resist 20 can be removed in a short time.
本発明の実施例においては、液化ガス又は超臨界ガス6
として超臨界状態の二酸化炭素を用いたが、紫外線4を
照射されたポジレジスト20を溶解し、紫外線4を照射
されていないポジレジスト21を溶解しないガスならば
何を用いてもよい。In an embodiment of the invention, liquefied gas or supercritical gas 6
Although carbon dioxide in a supercritical state is used as the gas, any gas may be used as long as it dissolves the positive resist 20 irradiated with the ultraviolet rays 4 and does not dissolve the positive resist 21 that is not irradiated with the ultraviolet rays 4.
放射線感応性有機薄膜の種類によっては液化ガス又は超
臨界ガス6中に有機溶剤を含有させることも効果的であ
る。例えば本発明の実施例において、液化ガス又は超臨
界ガス6中にエタノールを含有させると、紫外線4を照
射されたポジレジスト20の溶解速度は増加し、紫外線
4を照射されていないポジレジスト21の溶解速度は増
加しない。Depending on the type of radiation-sensitive organic thin film, it may be effective to include an organic solvent in the liquefied gas or supercritical gas 6. For example, in the embodiment of the present invention, when ethanol is contained in the liquefied gas or supercritical gas 6, the dissolution rate of the positive resist 20 that has been irradiated with the ultraviolet rays 4 increases, and the dissolution rate of the positive resist 21 that has not been irradiated with the ultraviolet rays 4 increases. Dissolution rate is not increased.
これにより、更にパターンを精度良くかつ高密度に形成
することができる。Thereby, the pattern can be formed with higher accuracy and higher density.
(発明の効果)
以上説明したように1本発明を用いた方法によれば、液
化ガス又は超臨界ガスの粘性が低いため、基板と接触し
ている液化ガス又は超臨界ガスを効率良く置換すること
ができるので、基板上に放射線感応性有機薄膜のパター
ンを精度良くかつ高密度に形成することができ、その実
用的効果は太きい。(Effects of the Invention) As explained above, according to the method using the present invention, since the viscosity of the liquefied gas or supercritical gas is low, the liquefied gas or supercritical gas in contact with the substrate can be efficiently replaced. Therefore, a radiation-sensitive organic thin film pattern can be formed on a substrate with high precision and high density, and its practical effects are significant.
第1図ないし第4図は、本発明にかかるパターン形成方
法を用いた一実施例の工程を示す部分拡大断面図、第5
図は従来の方法によるパターン形成方法を用いたときの
工程を示す部分拡大断面図を示す。
1 ・・・半導体基板、 2・・・ポジレジスト膜、
3 ・・・フォトマスク、 4 ・・・紫外線、 5
・・・ベッセル、 6 ・・・液化ガス又は超臨界ガス
、 10・・・現像液、20・・・紫外線を照射され
たポジレジスト、21・・・紫外線を照射されていない
ポジレジスト。
特許出願人 松下電器産業株式会社
第
図
第
図
≦[本![−イA\λ())シ、
便籟r花力゛又
°官
ム(コ
図
1111NIII〜°8“71 to 4 are partially enlarged cross-sectional views showing the steps of an embodiment using the pattern forming method according to the present invention, and FIG.
The figure shows a partially enlarged sectional view showing a process when a conventional pattern forming method is used. 1... Semiconductor substrate, 2... Positive resist film,
3...Photomask, 4...Ultraviolet light, 5
... Vessel, 6... Liquefied gas or supercritical gas, 10... Developer, 20... Positive resist irradiated with ultraviolet rays, 21... Positive resist not irradiated with ultraviolet rays. Patent applicant Matsushita Electric Industrial Co., Ltd. Figure Figure ≦ [Book! [-IA\λ() shi, convenience r flower power ゛ and ° government (Fig. 1111NIII~°8"7
Claims (6)
、前記放射線感応性有機薄膜の一部に放射線を照射する
工程と、前記基板を液化ガス又は超臨界ガスと接触させ
る工程とを備えてなることを特徴とするパターン形成方
法。(1) A step of forming a radiation-sensitive organic thin film on a substrate, a step of irradiating a part of the radiation-sensitive organic thin film, and a step of bringing the substrate into contact with liquefied gas or supercritical gas. A pattern forming method characterized by the following:
請求項(1)記載のパターン形成方法。(2) The pattern forming method according to claim (1), characterized in that a semiconductor substrate is used as the substrate.
して光又は電子を用いることを特徴とする請求項(1)
記載のパターン形成方法。(3) Claim (1) characterized in that light or electrons are used as radiation to irradiate a part of the radiation-sensitive organic thin film.
The pattern formation method described.
ジスト又はラングミュア・ブロジェットを用いることを
特徴とする請求項(1)記載のパターン形成方法。(4) The pattern forming method according to claim (1), wherein a positive or negative type resist or Langmuir-Blodgett is used as the radiation-sensitive organic thin film.
ることを特徴とする請求項(1)記載のパターン形成方
法。(5) The pattern forming method according to claim (1), wherein carbon dioxide is used as the liquefied gas or supercritical gas.
とを特徴とする請求項(1)記載のパターン形成方法。(6) The pattern forming method according to claim (1), wherein the liquefied gas or supercritical gas contains an organic solvent.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18462788A JPH0235458A (en) | 1988-07-26 | 1988-07-26 | Pattern forming method |
US07/689,730 US5185296A (en) | 1988-07-26 | 1991-04-24 | Method for forming a dielectric thin film or its pattern of high accuracy on a substrate |
US07/925,675 US5304515A (en) | 1988-07-26 | 1992-08-07 | Method for forming a dielectric thin film or its pattern of high accuracy on substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18462788A JPH0235458A (en) | 1988-07-26 | 1988-07-26 | Pattern forming method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0235458A true JPH0235458A (en) | 1990-02-06 |
Family
ID=16156541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18462788A Pending JPH0235458A (en) | 1988-07-26 | 1988-07-26 | Pattern forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0235458A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0383065A (en) * | 1989-08-28 | 1991-04-09 | Masaru Nishikawa | Method for forming pattern of resist, method for removing resist and method for washing substrate |
US7179000B2 (en) | 2002-11-19 | 2007-02-20 | Hitachi Science Systems, Ltd. | Method of developing a resist film and a resist development processor |
-
1988
- 1988-07-26 JP JP18462788A patent/JPH0235458A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0383065A (en) * | 1989-08-28 | 1991-04-09 | Masaru Nishikawa | Method for forming pattern of resist, method for removing resist and method for washing substrate |
US7179000B2 (en) | 2002-11-19 | 2007-02-20 | Hitachi Science Systems, Ltd. | Method of developing a resist film and a resist development processor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4443532A (en) | Induced crystallographic modification of aromatic compounds | |
JPH0542133B2 (en) | ||
KR940001294A (en) | Manufacturing Method of Semiconductor Device | |
Prentiss et al. | Demonstration of a nanolithographic technique using a self‐assembled monolayer resist for neutral atomic cesium | |
JP2883798B2 (en) | Semiconductor device patterning method | |
JPH0235458A (en) | Pattern forming method | |
KR900010941A (en) | Manufacturing Method of Semiconductor Device | |
US4555460A (en) | Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same | |
JPS6049630A (en) | Manufacturing method of semiconductor device | |
JPH04226462A (en) | Resist material and resist pattern formation method using the same | |
JPS6043824A (en) | Manufacture of semiconductor device | |
JPH04151668A (en) | Formation of pattern | |
JPS61203642A (en) | Dry etching method | |
Okada et al. | Mask Contamination Induced by X-Ray Exposure | |
Borzenko et al. | The effect of ion implantation on polymer mask resistance to ion beam etching | |
US20240004302A1 (en) | Method of manufacturing semiconductor device | |
Ogawa | Evaluation of LB films as quarter micron lithography resists using excimer laser, x-ray, and electron beam exposure | |
JPS6373522A (en) | Manufacture of semiconductor device | |
JPS5967634A (en) | Processing method for semiconductor device | |
JPS6386434A (en) | Formation of resist pattern | |
JP2005223118A (en) | Supercritical treatment method | |
JPS63307450A (en) | Method of forming resist pattern | |
Tochitsky et al. | Dry patterning through masks of organic materials | |
JPH0160551B2 (en) | ||
JPH08241853A (en) | Rinsing solution drying method and device |