JPH023446B2 - - Google Patents
Info
- Publication number
- JPH023446B2 JPH023446B2 JP5341382A JP5341382A JPH023446B2 JP H023446 B2 JPH023446 B2 JP H023446B2 JP 5341382 A JP5341382 A JP 5341382A JP 5341382 A JP5341382 A JP 5341382A JP H023446 B2 JPH023446 B2 JP H023446B2
- Authority
- JP
- Japan
- Prior art keywords
- deformed
- dimensional object
- image
- shape
- distortion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の詳細な説明】
本発明は三次元物体表面に格子を投影し物体表
面の凹凸に応じて変形をうけた変形格子像を基本
入力データとして物体表面の勾配を測定する方
法、および二次元物体の表面に格子の焼付け物体
の変形に応じて変形をうけた変形格子像を基本入
力データとして、物体の歪みを測定する方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for measuring the slope of a two-dimensional object surface using a deformed grating image obtained by projecting a grating onto the surface of a three-dimensional object and deforming it according to the unevenness of the object surface as basic input data; This invention relates to a method of measuring the distortion of an object using a deformed lattice image, which has been deformed in accordance with the deformation of the object by printing a lattice on the surface of the object, as basic input data.
モアレトポグラフイによつて三次元物体の勾配
(形状の微分)を測定する場合、一般に入力デー
タとしてはモアレ縞等高線画像を用い、これから
一たん立体形状データを得、そしてそれを数値的
に微分して求めていた。 When measuring the slope (differentiation of shape) of a three-dimensional object using moire topography, generally a moire fringe contour image is used as input data, three-dimensional shape data is obtained from this, and then it is numerically differentiated. That's what I was looking for.
このモアレ縞等高線画像は三次元物体の表面形
状にしたがつて変形をうけた変形格子像と、基準
格子像とを重ね合せて得られるものである。 This moire fringe contour image is obtained by superimposing a deformed lattice image deformed according to the surface shape of a three-dimensional object and a reference lattice image.
立体形状データを数値微分することも厄介であ
るがさらに、モアレ等高線画像から立体形状デー
タを抽出する作業は大変な労力を要する。 Numerical differentiation of 3D shape data is troublesome, and furthermore, extracting 3D shape data from a moiré contour image requires a great deal of effort.
当然のことながら、これらモアレ等高線画像の
自動解析・処理法が種々試みられた。ところが、
このモアレ等高線画像の解析を完全自動化するこ
とは極めて困難であることがわかつた。つまり、
モアレ等高線画像のみからでは、物体の凹凸方向
を識別することができないため、これを人間が判
断してその情報を処理装置に伝える必要があるた
めである。 Naturally, various automatic analysis and processing methods for these moiré contour images have been attempted. However,
It has been found that it is extremely difficult to completely automate the analysis of moiré contour images. In other words,
This is because the direction of the unevenness of the object cannot be identified from only the moire contour image, so it is necessary for a human being to determine this and convey that information to the processing device.
このような背景から、物体表面の三次元形状解
析のための基本入力情報として、モアレ等高線画
像に代え、変形格子像を用いることが提案され
た。例えば、特開昭52−116263号公報で示されて
いるような方式である。 Against this background, it has been proposed to use deformed grid images instead of moiré contour images as basic input information for three-dimensional shape analysis of object surfaces. For example, there is a method as shown in Japanese Patent Application Laid-Open No. 116263/1983.
また、モアレ法による二次元物体の歪みを測定
する場合も上記モアレトポグラフイの状況と類似
のことが言える。つまり、モアレ法による二次元
物体歪みの測定法では、変形前の物体の基準格子
を焼付け、それを写真などに記録し、その物体に
変形を与えた後、変形でゆがめられたいわゆる変
形格子を再度写真などに記録し、変形前に記録さ
れた基準格子像と変形後に記録された変形格子像
とを重ね合せて、モアレ等変位線パターンを作
る。そして、このモアレ等変位線パターンを微分
して歪みパターンを求める。 Furthermore, when measuring the distortion of a two-dimensional object using the moire method, the situation similar to the above-mentioned moire topography can be said. In other words, in the method of measuring two-dimensional object distortion using the Moiré method, the reference grid of the object before deformation is printed, it is recorded on a photograph, etc., the object is deformed, and then the so-called deformed grid distorted by the deformation is recorded. The reference grid image recorded before deformation and the deformed grid image recorded after deformation are again recorded on a photograph or the like and superimposed to form a moiré equidisplacement line pattern. Then, the distortion pattern is obtained by differentiating this moiré constant displacement line pattern.
このモアレ等変位線パターンの自動解析におい
でも人力りよる解析はきわめて厄介であり自動化
が必要とされている。しかし、自動化にあたつて
は、変形の符号(圧縮か引張りか)を人間が判定
して自動解析装置に知らせる必要があつて、まだ
完全自動解析装置は実用化されていない。 Even in the automatic analysis of this moiré constant displacement line pattern, manual analysis is extremely troublesome, and automation is required. However, for automation, it is necessary for humans to determine the sign of deformation (compression or tension) and inform the automatic analysis device, and fully automatic analysis devices have not yet been put into practical use.
この場合にも、解析処理の対象を、モアレ等変
位パターンに代え、変形格子そのものを基本入力
データとして処理する方法が考えられる。これ
ら、三次元物体表面の勾配や二次元物体の歪みを
求める操作はいずれも雑音に弱い微分演算を含む
もので、信頼性のあるデータを得るには解析点を
多くとり空間平均化などの厄介な手続きを必要と
した。 In this case as well, a method may be considered in which the subject of analysis processing is replaced with a displacement pattern such as moiré, and the deformed grid itself is processed as basic input data. These operations for determining the slope of the surface of a three-dimensional object or the distortion of a two-dimensional object all involve differential operations that are sensitive to noise, and in order to obtain reliable data, a large number of analysis points and spatial averaging are required. required a procedure.
本発明の目的は上記の変形格子像の全自動解析
を行ない、直接三次元物体表面の勾配又は二次元
物体の歪を求める方法に関するものである。この
目的は、変形格子像を円環状に配列された光検出
素子群によつて検出し、この検出信号のピーク位
置および間隔を測定することによつて達成され
る。 An object of the present invention is to perform a fully automatic analysis of the deformed lattice image as described above, and to directly determine the slope of the surface of a three-dimensional object or the distortion of a two-dimensional object. This objective is achieved by detecting the deformed grating image with a group of photodetecting elements arranged in an annular manner and measuring the peak position and interval of the detected signal.
以下本発明の原理を添付図面に従つて詳述す
る。 The principle of the present invention will be explained in detail below with reference to the accompanying drawings.
第1図は、モアレトポグラフイ法による変形格
子像を投影により得るための代表的な装置の一例
を示す概略図である。 FIG. 1 is a schematic diagram showing an example of a typical apparatus for obtaining a deformed lattice image by projection using the moiré topography method.
第1図においてSは光源であり、集光レンズを
介して投影基準格子Gの像を投影レンズL1によ
り計測すべき物体表面に投影する。 In FIG. 1, S is a light source which projects an image of a projection reference grating G through a condenser lens onto the surface of an object to be measured by a projection lens L1 .
投影された格子像をその投影光軸と異なる方向
から観測すると物体表面形状にしたがつた変形格
子像が得られる。 When the projected lattice image is observed from a direction different from the projection optical axis, a deformed lattice image that conforms to the object surface shape is obtained.
結像レンズL2はその変形格子像を例えば、ス
クリーン、ピントガラス、写真感光材料など、適
宜の結像面に結像させる。 The imaging lens L2 forms the deformed lattice image on a suitable imaging surface, such as a screen, focusing glass, or photosensitive material.
この変形格子像はミラーM1,M2、ハーフミラ
ーBによつてモニタ用のTVカメラT、検出部1
の所定の結像面へともたらされる。なお、検出部
1は駆動機構2によつて所定の位置に移動させら
れる。検出部1の所定の結像面には、例えば第2
図のような変形格子像が結像される。 This deformed lattice image is transmitted to a TV camera T for monitoring and a detection unit 1 by mirrors M 1 , M 2 and a half mirror B.
is brought to a predetermined imaging plane. Note that the detection unit 1 is moved to a predetermined position by a drive mechanism 2. For example, a second
A deformed lattice image as shown in the figure is formed.
本発明に従つて、この変形格子像の格子線の間
隔(ピツチ)から任意個所の傾き(ピツチの逆
数)とその傾きが最大となる方向とを求め、この
ようにして求めた傾きの大きさと方向とを有する
勾配を基にして三次元物体表面の形状又は二次元
物体の歪みを自動測定することができる。 According to the present invention, the slope (reciprocal of the pitch) at an arbitrary location and the direction in which the slope is maximum are determined from the spacing (pitch) of the grid lines of this deformed grid image, and the magnitude of the slope thus determined is calculated. The shape of the surface of a three-dimensional object or the distortion of a two-dimensional object can be automatically measured based on the gradient having a direction.
第3図は、本発明に従つて第1図の検出部1に
設置される円環状に配置された光検出素子群(例
えば、N=0〜N=35)の一例であり、この検出
素子群から検出された変形格子像の濃度分布の例
を第4図に示す。第3図において変形格子像の局
所的なピツチをPで示し、変形格子像の間隔をそ
れぞれP1〜P10で示す。光検出器の検出出力は変
形格子線に近い位置で強く、格子線から遠ざかる
位置では弱く現れる。従つて、格子線の真上にあ
る光検出器は、最大の濃度を検出し、像と像の中
間では最も弱い濃度を示すことになり、第4図に
示すように出力信号のピークは間隔P′1〜P′10を
置いて現われる。ピーク間隔P′1〜P′10の中で最
も間隔の狭いものP′3とP′8の部分について説明す
れば、変形格子像のこの部分での最大の傾きの大
きさは1/Pであり、その方向は破線で示す向き
となる。このようにして各隣接格子線について最
大の傾きの大きさと、方向とを求める。上記の部
分での勾配の方向決定について具体的に説明する
と第4図の最小のピーク間隔P′3とP′8が、第3図
の光検出器の位置と対応するN=8と10、および
N=25と27を決定する。そこでこのピーク間隔が
最小の光検出器間N=9とN=26で直線を引い
て、この直線に直行する方向を勾配の方向とす
る。この勾配の方向は、上向きか下向きかの絶対
的方向を示しているものではない。 FIG. 3 shows an example of a group of photodetecting elements (for example, N=0 to N=35) arranged in an annular shape installed in the detection unit 1 of FIG. 1 according to the present invention. FIG. 4 shows an example of the density distribution of the deformed lattice images detected from the group. In FIG. 3, the local pitch of the deformed lattice images is indicated by P, and the intervals of the deformed lattice images are respectively indicated by P 1 to P 10 . The detection output of the photodetector appears strong at positions close to the deformed grid lines, and weakly appears at positions away from the grid lines. Therefore, the photodetector directly above the grid lines will detect the maximum density, and the area between the images will show the weakest density, and the peaks of the output signal will be spaced apart, as shown in Figure 4. It appears after P′ 1 to P′ 10 . If we explain the part P' 3 and P' 8 , which have the narrowest interval among the peak intervals P' 1 to P' 10 , the maximum slope in this part of the deformed lattice image is 1/P. The direction is shown by the broken line. In this way, the magnitude and direction of the maximum slope are determined for each adjacent grid line. To specifically explain the direction determination of the gradient in the above part, the minimum peak spacing P' 3 and P' 8 in FIG. 4 correspond to the position of the photodetector in FIG. and determine N=25 and 27. Therefore, a straight line is drawn between the photodetectors N=9 and N=26 where the peak interval is the minimum, and the direction perpendicular to this straight line is defined as the direction of the gradient. The direction of this gradient does not indicate an absolute upward or downward direction.
物体の全面にわたる勾配の大きさと方向を知る
には、検出素子群を観測面で移動して逐次検出す
ればよい。 In order to know the magnitude and direction of the gradient over the entire surface of the object, it is sufficient to move the detection element group on the observation plane and detect it one by one.
第5a図は、上記の方法で検出された観測面の
各点における物体の一断面の勾配とその方向をベ
クトル的に表示したものであり、同図b〜dはこ
のベクトルデータから物体の断面形状を求める方
法を示している。一般に、被測定断面に直交する
方向に形状変化が少ないと、本発明によつて得ら
れるベクトルの方向は、同図aのようにほぼ一定
である。各ベクトルの長さは、物体の勾配の大き
さを対応しているが、この勾配は、格子投影方向
を基準にしているのでバイアス成分(同図aの破
線)が重畳されている。被測定断面における物体
表面の勾配分布を求めるには、これらベクトルの
被測定断面方向の成分を抽出し、これを同図bの
ようにベクトル長を縦軸にプロツトすればよい。
この勾配分布曲線には、やはりバイアス成分が加
わつているので、これを減算すると、同図cのよ
うに一定の傾き成分が除かれた勾配分布が得られ
る。これは、観測方向に直交する向きに対する傾
き量分布を示しており、これを積分すると、同図
dの断面形状が得られる。 Figure 5a shows the gradient and direction of a cross section of the object at each point on the observation plane detected by the above method in vector form, and Figures b to d show the cross section of the object from this vector data. It shows how to find the shape. Generally, if there is little change in shape in the direction perpendicular to the cross section to be measured, the direction of the vector obtained by the present invention will be approximately constant as shown in FIG. The length of each vector corresponds to the magnitude of the gradient of the object, but since this gradient is based on the grid projection direction, a bias component (dashed line in FIG. 3A) is superimposed on the gradient. In order to obtain the gradient distribution of the surface of the object in the cross-section to be measured, it is sufficient to extract the components of these vectors in the direction of the cross-section to be measured, and plot the vector length on the vertical axis as shown in FIG.
Since a bias component is also added to this gradient distribution curve, by subtracting this, a gradient distribution from which a certain gradient component has been removed is obtained as shown in FIG. This shows the tilt amount distribution in the direction orthogonal to the observation direction, and by integrating this, the cross-sectional shape shown in the figure d is obtained.
第6図はこの断面形状を物体全面にわたつて求
め透視図表示した例である。 FIG. 6 is an example in which this cross-sectional shape is obtained over the entire surface of the object and displayed in a perspective view.
第7図を参照して二次元物体の歪みを測定する
本発明の方法を説明する。二次元物体の歪みにつ
れて格子も変形するよう物体表面に格子を固定す
る。第7図は物体表面に焼付けられた基準格子を
変形させて得られた変形格子の一例を示してい
る。これを前述の円環状に配列された光検出器群
で検出すると、第8図のような変形格子の濃淡分
布の検出信号が得られる。この信号の最小ピーク
間隔Pを読みとることにより物体の歪み量に比例
した数値が得られ、さらに、その最小ピーク間隔
の位置が歪の方向である。 The method of the present invention for measuring distortion of a two-dimensional object will be explained with reference to FIG. A lattice is fixed to the object surface so that the lattice deforms as the two-dimensional object is distorted. FIG. 7 shows an example of a deformed grating obtained by deforming a reference grating printed on the surface of an object. When this is detected by the aforementioned group of photodetectors arranged in an annular shape, a detection signal of the density distribution of the deformed grating as shown in FIG. 8 is obtained. By reading the minimum peak interval P of this signal, a numerical value proportional to the amount of distortion of the object can be obtained, and furthermore, the position of the minimum peak interval is the direction of distortion.
三次元物体の勾配、二次元物体の歪を求めるた
めには従来法では物体の立体形状分布、変形分布
を求めこのデータを数値的に微分していたが本発
明では直接三次元物体の勾配や二次元物体の歪を
自動的に検出できる。従来法では微分操作を行な
うため雑音の影響がうけやすく信頼性のあるデー
タを得るには、きわめて沢山のデータ点について
形状又は変形量を求める必要があつたがこれらの
困難が本発明により解消された。 In order to determine the slope of a three-dimensional object or the distortion of a two-dimensional object, conventional methods require the three-dimensional shape distribution and deformation distribution of the object and numerically differentiate this data. Distortion of two-dimensional objects can be automatically detected. In the conventional method, because a differential operation is performed, it is susceptible to the influence of noise, and in order to obtain reliable data, it was necessary to determine the shape or amount of deformation for an extremely large number of data points, but these difficulties have been overcome by the present invention. Ta.
第1図はモアレトポグラフイ法による変形格子
像を得るための装置の一例を示す概略図、第2図
は変形格子像の一例を示す平面図、第3図は円環
状に配置された光検出素子群の一例を示す平面
図、第4図は光検出素子群によつて検出された変
形格子像の濃度分布の一例を示す。第5a図は光
検出素子群によつて検出された観測面の各点にお
ける物体の一断面の勾配の大きさとその方向をベ
クトル表示した平面図、第5b〜d図は同図aの
ベクトルデータから物体の断面形状を求める説明
図、第6図は断面形状を物体全面にわたつて求め
透視図表示した一例を示す。第7図は物体表面に
焼付けられた基準格子を変形して得られた変形格
子の一例を示す平面図、第8図は第7図の変形格
子を円環状に配列された光検出素子群によつて検
出される信号の一例を示すグラフである。
図中の符号:S……光源、G……基準格子、
L1,L2……レンズ、T……TVカメラ、P……間
隔、1……検出部。
Fig. 1 is a schematic diagram showing an example of a device for obtaining a deformed lattice image using the moire topography method, Fig. 2 is a plan view showing an example of a deformed lattice image, and Fig. 3 is a photodetector arranged in an annular shape. FIG. 4, a plan view showing an example of the element group, shows an example of the concentration distribution of a deformed lattice image detected by the photodetecting element group. Figure 5a is a plan view showing the magnitude and direction of the slope of one cross section of the object at each point on the observation plane detected by the photodetection element group, and Figures 5b to 5d are the vector data of figure a. FIG. 6 is an explanatory diagram for determining the cross-sectional shape of an object from the object. FIG. 6 shows an example in which the cross-sectional shape is determined over the entire surface of the object and is displayed in a perspective view. Fig. 7 is a plan view showing an example of a deformed grating obtained by deforming a reference grating printed on the surface of an object, and Fig. 8 is a plan view showing an example of a deformed grating obtained by deforming a reference grating printed on the surface of an object. 3 is a graph showing an example of a signal detected as a result. Symbols in the figure: S...light source, G...reference grating,
L1 , L2 ...lens, T...TV camera, P...interval, 1...detection section.
Claims (1)
従つて変形した格子像を円環状に配列した光検出
素子群によつて検出し、格子像の格子線間隔から
最大の傾きの大きさと、最大の傾きの大きさの向
きとを決定して三次元物体表面の勾配を測定する
方法。 2 二次元物体上に固定され、物体の変形に従つ
て変形する格子像を円環状に配列した光検出素子
群によつて検出し、格子像の格子線間隔から最大
の傾きの大きさと、最大の傾きの大きさの向きと
を決定して二次元物体の歪みを測定する方法。[Claims] 1. A grating image projected onto a three-dimensional object and deformed according to the shape of the object surface is detected by a group of photodetecting elements arranged in an annular manner, and the maximum A method of measuring the slope of a three-dimensional object surface by determining the magnitude of the tilt and the direction of the maximum tilt. 2 A grating image that is fixed on a two-dimensional object and deforms as the object deforms is detected by a group of photodetecting elements arranged in an annular manner, and the magnitude of the maximum inclination and the maximum A method to measure the distortion of a two-dimensional object by determining the magnitude and direction of its inclination.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5341382A JPS58169010A (en) | 1982-03-31 | 1982-03-31 | Method for measuring inclination and strain of surface of body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5341382A JPS58169010A (en) | 1982-03-31 | 1982-03-31 | Method for measuring inclination and strain of surface of body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58169010A JPS58169010A (en) | 1983-10-05 |
JPH023446B2 true JPH023446B2 (en) | 1990-01-23 |
Family
ID=12942140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5341382A Granted JPS58169010A (en) | 1982-03-31 | 1982-03-31 | Method for measuring inclination and strain of surface of body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58169010A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016061602A (en) * | 2014-09-16 | 2016-04-25 | 国立研究開発法人物質・材料研究機構 | Deformation measuring device of structure and deformation measuring method |
CN111504192B (en) * | 2020-05-07 | 2021-08-27 | 东华大学 | Compressor appearance detection method based on machine vision |
-
1982
- 1982-03-31 JP JP5341382A patent/JPS58169010A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58169010A (en) | 1983-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE39978E1 (en) | Scanning phase measuring method and system for an object at a vision station | |
US4842411A (en) | Method of automatically measuring the shape of a continuous surface | |
JP2696044B2 (en) | Focus detection method, non-contact displacement measuring method and apparatus using the same | |
US4776692A (en) | Testing light transmitting articles | |
GB2051349A (en) | Automatic defecting inspection apparatus | |
JPS62226009A (en) | Photogrammetric detection method of subject by photoelectrictype solid plane sensor | |
US4169980A (en) | Method and apparatus for interference fringe center sensing | |
JP3686182B2 (en) | Surface shape measuring method and apparatus | |
JPH0921628A (en) | Method for detecting projecting/recessed defect of surface of cylindrical object | |
JPH023446B2 (en) | ||
JP2000121499A (en) | Method and apparatus for measuring internal refractive index distribution of optical fiber base material | |
JPH0376449B2 (en) | ||
JP2557650B2 (en) | Sample shape measuring device | |
JP2965370B2 (en) | Defect detection device | |
JP2723914B2 (en) | Lens barrel resolution inspection system | |
JPH0615236A (en) | Appearance quality evaluation device for melon | |
JP2521512B2 (en) | Detection method of charging material flow section in blast furnace | |
JPH05296728A (en) | Steel plate width measurement method | |
JP4484041B2 (en) | Edge position detection device | |
JPH04351928A (en) | Light beam diameter measurement device | |
JPH0756445B2 (en) | Optical measurement device for minute clearance | |
JPH03199946A (en) | Method and apparatus for measuring transmission distortion | |
JPS62192606A (en) | Line spacing measuring device | |
JPH0723789Y2 (en) | Depth tilt detector for optical system | |
JPH03205503A (en) | Image position detecting method for sheet light |