[go: up one dir, main page]

JPH0234420A - Automatic temperature control device with warm water flow adjustment - Google Patents

Automatic temperature control device with warm water flow adjustment

Info

Publication number
JPH0234420A
JPH0234420A JP18282388A JP18282388A JPH0234420A JP H0234420 A JPH0234420 A JP H0234420A JP 18282388 A JP18282388 A JP 18282388A JP 18282388 A JP18282388 A JP 18282388A JP H0234420 A JPH0234420 A JP H0234420A
Authority
JP
Japan
Prior art keywords
heater core
hot water
water valve
section
adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18282388A
Other languages
Japanese (ja)
Inventor
Yujiro Nozaki
野崎 祐二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP18282388A priority Critical patent/JPH0234420A/en
Publication of JPH0234420A publication Critical patent/JPH0234420A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide precise fine heating adjustment with an automatic temp. control device, in which any air mix damper to be otherwise installed between an evaporator and a heater core is eliminated, by furnishing in series a valve for adjustment of the rate of flow and a valve opened and closed freely on the forward path for warm water to the heater core. CONSTITUTION:An evaporator 1 is provided so that cold wind through it all passes a heater core 2, and No.1 solenoid valve 7 is furnished on the forward path 5 for supplying warm water into the heater core 2, and No.2 solenoid valve 8 is arranged so as to adjust the amount of warm water on the flow-in side. The opening and closing timing of No.1 solenoid valve 7 is controlled by No.1 control part on the basis of specified temp. adjustment condition. The degree of opening of No.2 solenoid valve 8 is controlled by No.2 control part alike on the basis of the abovementioned temp. adjustment condition, wherein the degree of opening is lessened compared with other temp. adjustment condition as long as the temp. adjustment condition is in fine heating adjustment mode.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエアミックスダンパを用いないニアコンディシ
ョナユニットの温水流量調整式温度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hot water flow rate adjustable temperature control device for a near conditioner unit that does not use an air mix damper.

[従来の技術] 従来のエアミックスダンパ付き温水流量調整式ニアコン
ディショナユニットにおけるヒータ吹き出し空気温度は
、第7図(a)、 (b)に示すように、エバポレータ
1とヒータコア2との間に設けられたエアミックスダン
パ3の開度状態と、ヒータコア2内を循環する温水の供
給タイミングとを制御するエアミックスダンパ付き温水
流量調整式エアミックスダンパ方式が採られていた。
[Prior Art] As shown in FIGS. 7(a) and 7(b), the temperature of the air blown out from the heater in a conventional near conditioner unit with a hot water flow rate adjustment type equipped with an air mix damper is determined by the temperature between the evaporator 1 and the heater core 2. An air mix damper system with an air mix damper and a hot water flow rate adjustment type that controls the opening state of the provided air mix damper 3 and the supply timing of hot water circulating in the heater core 2 has been adopted.

係るエアミックスダンパ方式では、まず、ダンパ3の開
度を全開又は半開に調整して、エバポレータ1から送風
された冷風の全てをヒータコア2を通過させるか、半分
だけ通過させるかにより、ヒータコア2を通過して加熱
された温風量を調整している。このダンパ3の開度状態
は、エバセンサ4等から検出された複数の検出信号から
なる制御要素に基づき選択される温度調整状態により、
全開又は半開のどちらかに決定される。
In this air mix damper method, first, the opening degree of the damper 3 is adjusted to be fully open or half open, and the heater core 2 is controlled by whether all or only half of the cold air blown from the evaporator 1 passes through the heater core 2. It regulates the amount of hot air that passes through and is heated. The opening state of the damper 3 is determined by the temperature adjustment state selected based on a control element consisting of a plurality of detection signals detected from the evaporator sensor 4, etc.
It is determined whether it is fully open or half open.

一方、ヒータコア2には、ヒータコア内に温水を供給す
るための往路部5と、温水を排出させるための帰路部6
とが接続され、冷風を加熱するための温水がヒータコア
2内を循環している。ヒータコア2内を循環する温水の
流れは、往路部5に設けられた開閉自在な電磁弁からな
るウォータバルブ7により調整され、その開閉タイミン
グは、選択された温度調整状態に応じて決定される。
On the other hand, the heater core 2 includes an outgoing path section 5 for supplying hot water into the heater core, and a return path section 6 for discharging hot water.
are connected to each other, and hot water for heating the cold air is circulated within the heater core 2. The flow of hot water circulating within the heater core 2 is regulated by a water valve 7, which is an electromagnetic valve that can be opened and closed, provided in the outgoing section 5, and its opening and closing timing is determined according to the selected temperature adjustment state.

今、温度調整状態に基づいて制御されるウォタバルブ7
の開閉タイミングとダンパ3の開度状態とを第8図(a
L (bL (c)及び第9図(a)、fb)に示す。
Now, the water valve 7 is controlled based on the temperature adjustment state.
The opening/closing timing of the damper 3 and the opening state of the damper 3 are shown in Fig. 8 (a).
L (bL (c) and FIG. 9(a), fb).

第8図(a)、 (b)、 (C)は、それぞれ、微加
熱状態暖房小状態及び暖房大状態を選択した場合に於け
る1周期当たりのウォータバルブ7の開時間tをパルス
幅で表したものである。第8図(a)は、微加熱状態に
おけるダンパ3の開度状態を示し、この場合は、半開状
態となっている。第8図(b)、 (C)は、暖房小状
態及び暖房大状態に対応しており、ダンパ3は全開状態
を示している。なお、パルス高さは、辷−タコアコ内に
供給される温水の水量を示すものであり、選択される温
度調整状態に関わらず一定である。
Figures 8(a), (b), and (C) show the opening time t of the water valve 7 per cycle in terms of pulse width when the slight heating state, small heating state, and large heating state are selected, respectively. It is expressed. FIG. 8(a) shows the opening state of the damper 3 in a slightly heated state, and in this case, it is in a half-open state. FIGS. 8(b) and 8(C) correspond to a small heating state and a large heating state, and show the damper 3 in a fully open state. Note that the pulse height indicates the amount of hot water supplied into the armpit and is constant regardless of the selected temperature adjustment state.

[発明が解決しようとする課題] しかしながら、従来のエアミックスダンパをもうけられ
ない温水流量調整方式における微加熱状態では、ウォー
タバルブの開時間tを小さくするに止まるに過ぎないた
め、第10図に示すように、バルブの一周期間の開時間
tに対するし−タ吹き出し空気温度Tは、開時間tが0
の時から微少時間経過した時、そのヒータ吹き出し空気
温度Tに著しい格差を生じてしまい、その結果、正確で
きめの細かい微過熱調整が困籠であるという問題があっ
た。
[Problems to be Solved by the Invention] However, in the slight heating state in the hot water flow rate adjustment method in which the conventional air mix damper cannot be provided, the opening time t of the water valve can only be reduced. As shown, the temperature T of the outlet air for the opening time t during one period of the valve is 0 when the opening time t is 0.
When a small amount of time has passed since then, a significant difference occurs in the temperature T of the air blown out from the heater, and as a result, there is a problem in that accurate and fine-grained slight superheating adjustment is difficult.

特に、車両用ニアコンディショナユニットでは、車両エ
ンジンの回転数の増大に伴って、ヒータコアに供給され
る温水の水量も増加する関係にあることから、上記した
微少時間経過時におけるし−タ吹き出し空気温度Tの格
差も更に大きくなるという欠点が有り、たとえ、−周期
当りのバルブの開示間tを更に短縮したとしても、流体
における反応特性は遅いため、その時間制御には限界が
あり、微過熱調整はほとんど不可能であるというのが現
状であった。
In particular, in vehicle near conditioner units, as the number of revolutions of the vehicle engine increases, the amount of hot water supplied to the heater core also increases. The disadvantage is that the difference in temperature T becomes even larger, and even if the opening interval t of the valve per cycle is further shortened, there is a limit to the time control due to the slow reaction characteristics of the fluid, and slight overheating may occur. The current situation was that adjustment was almost impossible.

しかも、車両用のニアコンディショナユニットでは、そ
の設置スペースに制限があることから、比較的大きなス
ペースを必要とするエアミックスダンパを収容すること
ができず、係るエアミックスダンパ付き温水流量調整方
式を取ること自体が不可能であると言う根源的な問題も
あった。
Moreover, because the near conditioner unit for vehicles has a limited installation space, it is not possible to accommodate an air mix damper, which requires a relatively large space. There was also the fundamental problem that it was impossible to take it.

そこで、本発明の技術的課題は、上記欠点に鑑み、微加
熱調整をエアミックスダンパ付き温水流量調整方式より
も、より確実精密に行うことができると共に、エアミッ
クスダンパを必要としない車両用の省スペースの要請に
も合致した温水流量調整式自動温度制御装置を提供する
ことである。
Therefore, in view of the above drawbacks, the technical problem of the present invention is to be able to perform fine heating adjustment more reliably and precisely than the hot water flow rate adjustment method with an air mix damper, and to provide a system for vehicles that does not require an air mix damper. An object of the present invention is to provide an automatic temperature control device that can adjust the flow rate of hot water and meets the demand for space saving.

[課題を解決するための手段] 本発明によれば、エバポレータを通過した空気を加熱す
るためのヒータコアと、ヒータコア内に温水を供給する
ための往路部と、ヒータコア内に供給された温水を排出
させるための帰路部と、前記往路部に設けられた開閉自
在な第1のウォータバルブと、該第1のウォータバルブ
の開閉タイミングを、所定の温度調整状態に基づいて制
御する第1の制御部とを有するダブルバルブ直列型温水
流量調整式自動温度制御装置であって、前記往路部に取
付けられた開度調整自在な第2のウォータバルブと、該
第2のウォータバルブの開度を、前記温度調整状態に基
づいて制御する第2の制御部とを設け、該第2の制御部
は、前記温度調整状態が微加熱調整時である場合には、
他の温度調整状態に比べて、前記第2のウォータバルブ
の開度をより小さくし、微加熱調整時における前記ヒー
タコアへの前記温水の供給量を相対的に減少させること
を特徴とするダブルバルブ直列型温水流量調整式自動温
度制御装置が得られる。
[Means for Solving the Problems] According to the present invention, there is provided a heater core for heating air that has passed through an evaporator, an outgoing path section for supplying hot water into the heater core, and a discharge portion for discharging the hot water supplied into the heater core. a first water valve that is provided in the outgoing path and can be opened and closed; and a first control unit that controls opening and closing timing of the first water valve based on a predetermined temperature adjustment state. A double-valve series type hot water flow rate adjustment type automatic temperature control device comprising: a second water valve whose opening degree can be freely adjusted and which is attached to the outgoing path section; A second control section that controls based on the temperature adjustment state is provided, and the second control section is configured to:
A double valve characterized in that the opening degree of the second water valve is made smaller compared to other temperature adjustment states, and the amount of hot water supplied to the heater core during slight heating adjustment is relatively reduced. A serial hot water flow rate adjustable automatic temperature control device is obtained.

また、本発明によれば、エバポレータを通過した空気を
加熱するためのヒータコアと、ヒータコア内に温水を供
給するための往路部と、ヒータコア内に供給された温水
を排出させるための帰路部と、前記往路部に設けられた
開閉自在な第1のウォータバルブと、該第1のウォータ
バルブの開閉タイミングを、所定の温度調整状態に基づ
いて制御する第1の制御部とを有するバイパス型温水流
量mM式自動温度制御装置であって、前記往路部のうち
の前記第1のウォータバルブ及び前記ヒータコア間に位
置する往路部を前記帰路部に接続するバイパス路と、該
バイパス路に設けられた開度調整自在な第2のウォータ
バルブと、該第2のウォータバルブの開度を、前記温度
調整状態に基づいて制御する第2の制御部とを設け、該
第2の制御部は、前記温度調整状態が微加熱調整時であ
る場合には、他の温度調整状態に比べて、前記第2のウ
ォータバルブの開度をより大きくし、微加熱調整時にお
ける前記ヒータコアへの前記温水の供給量を相対的に減
少させることを特徴とするバイパス型温水流量調整式自
動温度制御装置が得られる。
Further, according to the present invention, a heater core for heating the air that has passed through the evaporator, an outgoing path section for supplying hot water into the heater core, and a return path section for discharging the hot water supplied into the heater core, A bypass type hot water flow rate comprising: a first water valve provided in the outgoing path section that can be opened and closed; and a first control section that controls the opening and closing timing of the first water valve based on a predetermined temperature adjustment state. The mm type automatic temperature control device includes a bypass path that connects an outgoing path portion of the outgoing path portion located between the first water valve and the heater core to the return path portion, and an opening provided in the bypass path. a second water valve whose temperature can be freely adjusted; and a second control section that controls the opening degree of the second water valve based on the temperature adjustment state; When the adjustment state is fine heating adjustment, the opening degree of the second water valve is made larger than in other temperature adjustment states, and the amount of hot water supplied to the heater core during fine heating adjustment is adjusted. A bypass type hot water flow rate adjustable automatic temperature control device is obtained, which is characterized by relatively decreasing the temperature.

さらに、本発明によれば、エバポレータを通過した空気
を加熱するための第1及び第2のヒータコアと、第1及
び第2のヒータコア内に温水を各々供給するための第1
及び第2の往路部と、第1及び第2のヒータコア内に供
給された温水を各々排出させるための第1及び第2の帰
路部と、前記第1の往路部に設けられた開閉自在な第1
のウォータバルブと、該第1のウォータバルブの開閉タ
イミングを、所定の温度調整状態に基づいて制御する第
1の制御部と、前記第2の往路部に設けられた開度調整
自在な第2のつす、−タバルブと、該第2のウォータバ
ルブの開度を、前記温度調整状態に基づいて制御する第
2の制御部とを有し、該第2の制御部は、前記温度調整
状態が微加熱調整時である場合には、他の温度調整状態
に比べて、前記第2のウォータバルブの開度をより小さ
くし、微加熱調整時における前記ヒータコアへの前記温
水の供給量を相対的に減少させることを特徴とするヒー
タコア2分割型温水流1調整式温度制御装置が得られる
Further, according to the present invention, first and second heater cores are provided for heating the air that has passed through the evaporator, and a first heater core is provided for supplying hot water into the first and second heater cores, respectively.
and a second outgoing path section, first and second return path sections for discharging the hot water supplied into the first and second heater cores, respectively, and a freely openable and closable section provided in the first outgoing path section. 1st
a water valve, a first control section that controls the opening/closing timing of the first water valve based on a predetermined temperature adjustment state, and a second control section that is provided in the second outward path section and whose opening degree can be freely adjusted. a water valve, and a second control section that controls the opening degree of the second water valve based on the temperature adjustment state, and the second control section controls the opening degree of the second water valve based on the temperature adjustment state. When this is the time of fine heating adjustment, the opening degree of the second water valve is made smaller than in other temperature adjustment states, and the amount of hot water supplied to the heater core during fine heating adjustment is made relatively. A two-part heater core type hot water flow one-adjustable temperature control device is obtained.

[実施例] 次に、本発明に係わる一実施例を図面を参照して説明す
る。
[Example] Next, an example according to the present invention will be described with reference to the drawings.

但し、第7図と同じ符号のものは、同様の機能を表すも
のとして説明を省略する。
However, the same reference numerals as in FIG. 7 represent the same functions, and a description thereof will be omitted.

−第1実施例− 第1図fa)、 (b)に、本実施例に係わるダブルバ
ルブ直列型温水流量調整式自動温度制御装置を示す。エ
バポレータ1とヒータコア2との間には、第7図に示す
エアミックスダンパ3は設けられておらず、エバポレー
タ1を通過した冷風は、全てヒータコア2を直接通る。
-First Embodiment- Figures 1fa) and 1(b) show a double valve series hot water flow rate adjustable automatic temperature control device according to this embodiment. The air mix damper 3 shown in FIG. 7 is not provided between the evaporator 1 and the heater core 2, and all the cold air that has passed through the evaporator 1 passes directly through the heater core 2.

ヒータコア2内に温水を供給するための往路部5には、
開閉自在な第1の電磁弁7が設けられている。第1の電
磁弁7の開閉タイミングは、第1図(b)のATCアン
プ内の第1の制御部(図示せず)により決定される。
The outgoing path portion 5 for supplying hot water into the heater core 2 includes:
A first solenoid valve 7 that can be opened and closed is provided. The opening/closing timing of the first electromagnetic valve 7 is determined by a first control section (not shown) in the ATC amplifier shown in FIG. 1(b).

第1の制御部は、種々のセンサ(エバセンサ、水温セン
サ、輻射センサ、外気センサ、内気センサ等)から検出
される複数の検出信号に基づいて温度調整状態を選択し
、その選択された温度調整状態に対応した第1の電磁弁
7の開閉タイミングを決定するものである。
The first control unit selects a temperature adjustment state based on a plurality of detection signals detected from various sensors (evaporative sensor, water temperature sensor, radiation sensor, outside air sensor, inside air sensor, etc.), and controls the selected temperature adjustment state. The opening/closing timing of the first electromagnetic valve 7 is determined according to the state.

一方、開度調整自在な第2の電磁弁8が、第1の電磁弁
7を通る温水の水量を調整するために、第1の電磁弁7
の流入側に位置する往路部5に設けられている。第2の
電磁弁8の開度は、第1図(b)のATCアンプ内の第
2の制御部(図示せず)により調整される。第2の制御
部は、第1の制御部により選択された温度調整状態に従
って、その開度を調整するものであり、温度調整状態が
微加熱調整時である場合にのみ、他の温度調整状態(暖
房小状態及び暖房大状態)に比べて、第2の電磁弁8の
開度をより小さくする0例えば、その開度を半開として
、微加熱調整時におけるヒータコア2への温水の供給量
を相対的に減少させる方向に働く。
On the other hand, a second solenoid valve 8 whose opening degree can be freely adjusted is connected to the first solenoid valve 7 in order to adjust the amount of hot water passing through the first solenoid valve 7.
It is provided in the outgoing path section 5 located on the inflow side of. The opening degree of the second solenoid valve 8 is adjusted by a second control section (not shown) in the ATC amplifier shown in FIG. 1(b). The second control section adjusts its opening according to the temperature adjustment state selected by the first control section, and only when the temperature adjustment state is fine heating adjustment, the second control section adjusts the opening degree in accordance with the temperature adjustment state selected by the first control section. For example, if the opening degree of the second solenoid valve 8 is set to be half open, the amount of hot water supplied to the heater core 2 during fine heating adjustment is set to be smaller than the opening degree of the second electromagnetic valve 8 (low heating state and large heating state). It works in the direction of relative decrease.

ここで、第2図(a)、 (b)、 (C)において、
それぞれ、微加熱状態、暖房小状態及び暖房大状態を選
択した場合に於ける1周期当たりの第2の電磁弁8の開
時間tをパルス幅で示し、ヒータコア2への温水の供給
量をパルス高さで示した。
Here, in FIGS. 2(a), (b), and (C),
The opening time t of the second electromagnetic valve 8 per cycle when the slight heating state, small heating state, and large heating state are selected is indicated by the pulse width, and the amount of hot water supplied to the heater core 2 is indicated by the pulse width. Shown in height.

第2図(a)に示す微加熱状態では、第2の電磁弁8は
半開状態となるため、パルスの高さは、第7図(a)に
示す従来のパルス高に比べて減じている。第2図(b)
、 (c)は、暖房小状態及び暖房大状態に対応してお
り、第2の電磁弁8は全開状態を示している。なお、開
閉タイミング及びパルス幅は、従来と同様である。
In the slight heating state shown in FIG. 2(a), the second solenoid valve 8 is in a half-open state, so the pulse height is reduced compared to the conventional pulse height shown in FIG. 7(a). . Figure 2(b)
, (c) corresponds to a small heating state and a large heating state, and the second electromagnetic valve 8 is in a fully open state. Note that the opening/closing timing and pulse width are the same as in the conventional case.

よって、微過熱調整時においては、第2の電磁弁8の開
度を小さくする方向に制御され、ヒータコア2に供給さ
れる温水の水量を減少させることができるから、開時間
tが0の時から微少時間経過した時におけるヒータ吹き
出し空気温度Tの格差を低減することができた。
Therefore, during slight superheat adjustment, the opening degree of the second solenoid valve 8 is controlled to be smaller, and the amount of hot water supplied to the heater core 2 can be reduced, so that when the opening time t is 0, It was possible to reduce the difference in the temperature T of the air blown out from the heater after a short period of time had passed since then.

一第2実施例− 第3図(a)、 (b)に、本実施例に係わるバイパス
型温水流量調整式自動温度制御装置を示す、なお、第2
図fa)と同様の符号は同様の機能を有することから、
その説明は省略する。
1. Second Embodiment - Figures 3(a) and 3(b) show a bypass type automatic temperature control device with hot water flow rate adjustment according to this embodiment.
Since the same symbols as in Figure fa) have the same functions,
The explanation will be omitted.

まず、本実施例においては、往路部5のうちの第1の電
磁弁7及びヒータコア2間に位置する往路部5を、帰路
部6に接続するバイパス路9が設けられると共に、その
バイパス8@9には、開度調整自在な第2の電磁弁8が
設けられている。第2の電磁弁8の開度は、第3図(b
)のATCアンプ内の第2の制御部(図示せず)により
調整される。
First, in this embodiment, a bypass path 9 is provided that connects the outgoing path section 5 located between the first solenoid valve 7 and the heater core 2 of the outgoing path section 5 to the return path section 6, and the bypass path 8@ 9 is provided with a second solenoid valve 8 whose opening degree can be freely adjusted. The opening degree of the second solenoid valve 8 is shown in FIG.
) is adjusted by a second control section (not shown) in the ATC amplifier.

第2の制御部は、第1実施例において説明した第1の制
御部により選択された温度調整状態に従って、温度調整
状態が微加熱調整時である場合にのみ、他の温度調整状
態(暖房率状態及び暖房入状態)に比べて、第2の電磁
弁8の開度をより大きくして、例えば半開とし、往路部
5から直接帰路部6へ温水をバイパスさせることにより
、微加熱調整時におけるヒータコア2への温水の供給量
を相対的に減少させる方向に面<。
In accordance with the temperature adjustment state selected by the first control unit described in the first embodiment, the second control unit changes the temperature adjustment state (heating rate By increasing the opening degree of the second solenoid valve 8, for example, half-open, and bypassing the hot water directly from the outgoing section 5 to the returning section 6, the opening degree of the second electromagnetic valve 8 can be increased compared to the heating state and the heating ON state. The surface < in the direction of relatively decreasing the amount of hot water supplied to the heater core 2.

ここで、第4図(a)に示す微加熱状態では、第2の電
磁弁8は半開状態となるため、パルスの高さは、第7図
(a)に示す従来のパルス高に比べて減じている。第2
図(b)、 (c)は、暖房率状態及び暖房入状態に対
応しており、第2の電磁弁8は全閉状態を示している。
Here, in the slight heating state shown in FIG. 4(a), the second solenoid valve 8 is in a half-open state, so the pulse height is lower than the conventional pulse height shown in FIG. 7(a). It is decreasing. Second
Figures (b) and (c) correspond to the heating rate state and the heating on state, and show the second solenoid valve 8 in the fully closed state.

よって、微過熱調整時においては、第2の電磁弁8の開
度を大きくする方向に制御され、ヒータコア2に供給さ
れる温水の水量を減少させることができるから、開時間
tが0の時から微少時間経過した時におけるし−タ吹き
出し空気温度Tの格差を低減することができた。
Therefore, during slight superheat adjustment, the opening degree of the second solenoid valve 8 is controlled in the direction of increasing, and the amount of hot water supplied to the heater core 2 can be reduced, so that when the opening time t is 0, It was possible to reduce the disparity in the temperature T of the air blown out from the shutter after a short period of time had elapsed since then.

一第3実施例− 第5図(a)’、(b)に、本実施例に係わるヒータコ
ア2分割型温水流M調整式自動温度制御装置を示す、な
お、第2図(a)と同様の符号は同様の機能を有するこ
とから、その説明は省略する。
- Third Embodiment - Figures 5(a)' and 5(b) show a two-part heater core type hot water flow M adjustable automatic temperature control device according to this embodiment, which is similar to Figure 2(a). Since the reference numerals have similar functions, their explanations will be omitted.

まず、本実施例においては、第1実施例に示したヒータ
コアを2分割した第1及び第2のヒータコア2′、2″
を、エバポレータ1から送られる冷風の流れ方向に対し
て直角方向に並べると共に、ヒータコア2′、2″に温
水を供給する各往路部5′、5″に、第1及び第2の電
磁弁7.8を設けである。第2の電磁弁8の開度は、第
5図(b)のATCアンプ内の第2の制御部(図示せず
)により調整される。第2の制御部は、第1実施例で説
明した第1の制御部により選択された温度調整状態に従
って、その開度を調整するものであり、温度調整状態が
微加熱調整時である場合にのみ、他の温度調整状態(暖
房率状態及び暖房入状態)に比べて、第2の電磁弁8の
開度をより小さくする0例えば、その開度を半開〜全閉
して、微加熱調整時におけるヒータコア2への温水の供
給量を相対的に減少させる方向に働く。
First, in this embodiment, first and second heater cores 2' and 2'' are obtained by dividing the heater core shown in the first embodiment into two.
are arranged in a direction perpendicular to the flow direction of cold air sent from the evaporator 1, and first and second solenoid valves 7 are installed in each outgoing path section 5', 5'' for supplying hot water to the heater cores 2', 2''. .8 is provided. The opening degree of the second electromagnetic valve 8 is adjusted by a second control section (not shown) in the ATC amplifier shown in FIG. 5(b). The second control section adjusts its opening degree according to the temperature adjustment state selected by the first control section described in the first embodiment, and when the temperature adjustment state is fine heating adjustment. For example, the opening degree of the second solenoid valve 8 is made smaller than in other temperature adjustment states (heating rate state and heating ON state). It works in the direction of relatively reducing the amount of hot water supplied to the heater core 2 at the time.

ここで、第6図(a)に示す微加熱状態では、第2の電
磁弁8は半開〜全閉状態となるため、第1及び第2のヒ
ータコア2′、2″への温水の総和水量を示すパルスの
高さは、第7図(a)に示す従来のパルス高に比べて減
じている。第2図(b)、 (c)は、暖房率状態及び
暖房入状態に対応しており、第2の電磁弁8は全開状態
を示している。
Here, in the slight heating state shown in FIG. 6(a), the second solenoid valve 8 is in a half-open to fully closed state, so the total amount of hot water to the first and second heater cores 2', 2'' is The height of the pulse indicating this is reduced compared to the conventional pulse height shown in Fig. 7(a). Figs. The second electromagnetic valve 8 is in a fully open state.

よって、微過熱調整時においては、第2の電磁弁8の開
度を小さくする方向に制御され、ヒータコア2′、2″
に供給される温水の総和水量を減少させることができる
から、開時間tが0の時から微少時間経過した時におけ
るヒータ吹き出し空気温度Tの格差を低減することがで
きた。
Therefore, during slight superheat adjustment, the opening degree of the second solenoid valve 8 is controlled to be small, and the heater cores 2', 2''
Since the total amount of hot water supplied to the heater can be reduced, it is possible to reduce the difference in the heater blown air temperature T when a small amount of time has elapsed since the opening time t was 0.

[発明の効果] 以上の説明の通り、本発明によれば、微加熱調整を、よ
り確実正確に行うことができると共に、エアミックスダ
ンパを必要としない車両用の省スペースの要請にも合致
した温水流量調整式自動温度制御装置を提供することが
できる。
[Effects of the Invention] As explained above, according to the present invention, fine heating adjustment can be performed more reliably and accurately, and it also meets the demand for space saving for vehicles that do not require an air mix damper. An automatic temperature control device with adjustable hot water flow rate can be provided.

以下余白Margin below

【図面の簡単な説明】 第1図(a)、 (b)は本発明に係わる第1実施例の
概念図及びコントロール系のブロック図、第2図(a)
、 (b)、 (C)は、微加熱状態、暖房小状態及び
暖房入状態を選択した場合に於ける第1の電磁弁の開閉
タイミングとヒータコアへの温水の供給量とをパルスで
示す概念図、第3図(a)、 (b)は本発明に係わる
第2実施例の概念図及びコントロール系のブロック図、
第4図(a)、 (b)、 (C)は、微加熱状態、暖
房小状態及び暖房入状態を選択した場合に於ける第1の
電磁弁の開閉タイミングとヒータコアへの温水の供給量
とをパルスで示す概念図、第5図(a)、 (b)は本
発明に係わる第3実施例の概念図及びコントロール系の
ブロック図、第6図(a)。 (b)、 (C)は、微加熱状態、暖房小状態及び暖房
入状態を選択した場合に於ける第1の電磁弁の開閉タイ
ミングとヒータコアへの温水の供給量とをパルスで示す
概念図、第7図(a)、 (b)は従来例の概念図及び
コントロール系のブロック図、第8図(a)、 (b)
、 (c)は、微加熱状態、暖房小状態及び暖房大状態
を選択した場合に於ける第1の電磁弁の開閉タイミング
とヒータコアへの温水の供給量とをパルスで示す概念図
、第9図(a)、 (b)は第8図に示した微加熱状態
及び暖房小状態、暖房大状態を選択した場合に於けるエ
アミックスダンパの開度と冷風の流れとの関係を示す概
念図、第10図は第8図に示した従来例におけるバルブ
の一周期間の開時間tに対するヒータ吹き出し空気温度
Tとの相関図である。 1・・・エバポレータ、2・・・ヒータコア、3・・・
エアミックスダンパ、4・・・エバセンサ、5・・・往
路部、6・・・・帰路部、7・・・第1の電磁弁、8・
・・第2の電磁弁、9・・・バイパス路。 第1図 (CL’) (b) 一一−を荒   −m−冷媒 ==つ空気   −一一−バキューム =蜂木    −−リ!4砺l!結 コ〉トロール (a−) 第3図 (b) ″も 几 ;=か空気 一睦木 一一一冷は 一−−−バキューム 一→−一種掩的達絽 コントO−ル 第5図 一’I 気 ==0空 気 #吟木 一一一一冷 に 一−−−バキューム 一一一一機械的連綿 第7図 (b) 一一争e@、凪   −一◆冷媒 ===〉六5   −一一ノ嘗ユーム エ アt ===〉水       −祷一一攪械的運結コントロ
ール
[Brief Description of the Drawings] Figures 1(a) and 1(b) are conceptual diagrams and a block diagram of a control system of the first embodiment of the present invention, and Figure 2(a) is a block diagram of the control system.
, (b), and (C) are concepts that show the opening/closing timing of the first solenoid valve and the amount of hot water supplied to the heater core in pulses when the slight heating state, small heating state, and heating on state are selected. 3(a) and 3(b) are conceptual diagrams and block diagrams of the control system of the second embodiment of the present invention,
Figures 4 (a), (b), and (C) show the opening/closing timing of the first solenoid valve and the amount of hot water supplied to the heater core when the slight heating state, small heating state, and heating on state are selected. FIGS. 5(a) and 5(b) are conceptual diagrams showing the pulses in pulses, and FIG. 6(a) is a conceptual diagram of a third embodiment of the present invention and a block diagram of the control system. (b) and (C) are conceptual diagrams showing the opening/closing timing of the first solenoid valve and the amount of hot water supplied to the heater core in pulses when the slight heating state, small heating state, and heating on state are selected. , Figures 7(a) and (b) are conceptual diagrams and control system block diagrams of the conventional example, and Figures 8(a) and (b).
, (c) is a conceptual diagram showing in pulses the opening/closing timing of the first solenoid valve and the amount of hot water supplied to the heater core when the slight heating state, small heating state, and large heating state are selected; Figures (a) and (b) are conceptual diagrams showing the relationship between the opening degree of the air mix damper and the flow of cold air when the slight heating state, small heating state, and large heating state shown in Fig. 8 are selected. , FIG. 10 is a correlation diagram of the heater blown air temperature T versus the opening time t during one cycle of the valve in the conventional example shown in FIG. 1... Evaporator, 2... Heater core, 3...
Air mix damper, 4... Eva sensor, 5... Outgoing path section, 6... Return path section, 7... First solenoid valve, 8.
...Second solenoid valve, 9...Bypass path. Figure 1 (CL') (b) Roughing the 11- -m-refrigerant==air -11-vacuum=Hachiki--ri! 4th line! Yuko〉Troll (a-) Figure 3 (b) ``also 几;=or air, Mutsuki, 11, cooling is 1 --- Vacuum 1 → - kind of covert control O-le Figure 5 1 'I Qi==0 Air #Ginki 1111 Refrigerant 2---Vacuum 1111 Mechanical connection Figure 7 (b) 11 battle e@, Nagi -1◆Refrigerant===> 65 -11 no Yumue at ===〉Water -11 mechanical movement control

Claims (3)

【特許請求の範囲】[Claims]  1.エバポレータを通過した空気を加熱するためのヒ
ータコアと、ヒータコア内に温水を供給するための往路
部と、ヒータコア内に供給された温水を排出させるため
の帰路部と、前記往路部に設けられた開閉自在な第1の
ウォータバルブと、該第1のウォータバルブの開閉タイ
ミングを、所定の温度調整状態に基づいて制御する第1
の制御部とを有するダブルバルブ直列型温水流量調整式
自動温度制御装置であつて、 前記往路部に取付けられた開度調整自在な第2のウォー
タバルブと、該第2のウォータバルブの開度を、前記温
度調整状態に基づいて制御する第2の制御部とを設け、 該第2の制御部は、前記温度調整状態が微加熱調整時で
ある場合には、他の温度調整状態に比ベて、前記第2の
ウォータバルブの開度をより小さくし、微加熱調整時に
おける前記ヒータコアへの前記温水の供給量を相対的に
減少させることを特徴とするダブルバルブ直列型温水流
量調整式自動温度制御装置。
1. A heater core for heating the air that has passed through the evaporator, an outgoing path section for supplying hot water into the heater core, a return path section for discharging the hot water supplied into the heater core, and an opening/closing section provided in the outgoing path section. a first water valve that is freely adjustable; and a first water valve that controls opening and closing timing of the first water valve based on a predetermined temperature adjustment state.
A double-valve series hot water flow rate adjustment type automatic temperature control device having a control section, a second water valve whose opening degree can be freely adjusted and which is attached to the outgoing section, and an opening degree of the second water valve. and a second control section that controls the temperature adjustment state based on the temperature adjustment state, and when the temperature adjustment state is a slight heating adjustment time, the second control section controls the temperature adjustment state based on the temperature adjustment state. In addition, the opening degree of the second water valve is made smaller to relatively reduce the amount of hot water supplied to the heater core during fine heating adjustment. Automatic temperature control device.
 2.エバポレータを通過した空気を加熱するためのヒ
ータコアと、ヒータコア内に温水を供給するための往路
部と、ヒータコア内に供給された温水を排出させるため
の帰路部と、前記往路部に設けられた開閉自在な第1の
ウォータバルブと、該第1のウォータバルブの開閉タイ
ミングを、所定の温度調整状態に基づいて制御する第1
の制御部とを有するバイパス型温水流量調整式自動温度
制御装置であつて、 前記往路部のうちの前記第1のウォータバルブ及び前記
ヒータコア間に位置する往路部を、前記帰路部に接続す
るバイパス路と、該バイパス路に設けられた開度調整自
在な第2のウォータバルブと、該第2のウォータバルブ
の開度を、前記温度調整状態に基づいて制御する第2の
制御部とを設け、 該第2の制御部は、前記温度調整状態が微加熱調整時で
ある場合には、他の温度調整状態に比ベて、前記第2の
ウォータバルブの開度をより大きくし、微加熱調整時に
おける前記ヒータコアへの前記温水の供給量を相対的に
減少させることを特徴とするバイパス型温水流量調整式
自動温度制御装置。
2. A heater core for heating the air that has passed through the evaporator, an outgoing path section for supplying hot water into the heater core, a return path section for discharging the hot water supplied into the heater core, and an opening/closing section provided in the outgoing path section. a first water valve that is freely adjustable; and a first water valve that controls opening and closing timing of the first water valve based on a predetermined temperature adjustment state.
A bypass type hot water flow rate adjustment type automatic temperature control device having a control section, the bypass connecting an outgoing section of the outgoing section located between the first water valve and the heater core to the return section. a second water valve that is provided in the bypass passage and whose opening degree can be freely adjusted; and a second control unit that controls the opening degree of the second water valve based on the temperature adjustment state. , the second control unit increases the opening degree of the second water valve when the temperature adjustment state is a slight heating adjustment compared to other temperature adjustment states, and performs a slight heating adjustment. A bypass type hot water flow rate adjustment type automatic temperature control device, characterized in that the amount of hot water supplied to the heater core during adjustment is relatively reduced.
 3.エバポレータを通過した空気を加熱するための第
1及び第2のヒータコアと、第1及び第2のヒータコア
内に温水を各々供給するための第1及び第2の往路部と
、第1及び第2のヒータコア内に供給された温水を各々
排出させるための第1及び第2の帰路部と、前記第1の
往路部に設けられた開閉自在な第1のウォータバルブと
、該第1のウォータバルブの開閉タイミングを、所定の
温度調整状態に基づいて制御する第1の制御部と、前記
第2の往路部に設けられた開度調整自在な第2のウォー
タバルブと、該第2のウォータバルブの開度を、前記温
度調整状態に基づいて制御する第2の制御部とを有し、 該第2の制御部は、前記温度調整状態が微加熱調整時で
ある場合には、他の温度調整状態に比べて、前記第2の
ウォータバルブの開度をより小さくし、微加熱調整時に
おける前記ヒータコアへの前記温水の供給量を相対的に
減少させることを特徴とするヒータコア2分割型温水流
量調整式温度制御装置。
3. first and second heater cores for heating the air that has passed through the evaporator; first and second outward passage sections for supplying hot water into the first and second heater cores; first and second return passages for discharging hot water supplied into the heater core, respectively; a first water valve that is provided in the first outgoing passage and is openable and closable; and the first water valve. a first control section that controls the opening and closing timing of the opening and closing timing based on a predetermined temperature adjustment state; a second water valve that is provided in the second outward path section and whose opening degree can be freely adjusted; and the second water valve. and a second control unit that controls the opening degree of the temperature control unit based on the temperature adjustment state, and when the temperature adjustment state is the fine heating adjustment, the second control unit controls the opening degree of the other temperature. A two-part heater core hot water system, characterized in that the opening degree of the second water valve is made smaller compared to the adjusted state, and the amount of hot water supplied to the heater core during fine heating adjustment is relatively reduced. Flow rate adjustable temperature control device.
JP18282388A 1988-07-23 1988-07-23 Automatic temperature control device with warm water flow adjustment Pending JPH0234420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18282388A JPH0234420A (en) 1988-07-23 1988-07-23 Automatic temperature control device with warm water flow adjustment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18282388A JPH0234420A (en) 1988-07-23 1988-07-23 Automatic temperature control device with warm water flow adjustment

Publications (1)

Publication Number Publication Date
JPH0234420A true JPH0234420A (en) 1990-02-05

Family

ID=16125085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18282388A Pending JPH0234420A (en) 1988-07-23 1988-07-23 Automatic temperature control device with warm water flow adjustment

Country Status (1)

Country Link
JP (1) JPH0234420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156044A (en) * 1992-09-04 1994-06-03 Interdynamics Inc Retrofit universal air conditioning system
US6422309B2 (en) * 1998-01-29 2002-07-23 Valeo Climatisation Motor vehicle heating and/or air conditioning device, with improved heat exchange management

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156044A (en) * 1992-09-04 1994-06-03 Interdynamics Inc Retrofit universal air conditioning system
US6422309B2 (en) * 1998-01-29 2002-07-23 Valeo Climatisation Motor vehicle heating and/or air conditioning device, with improved heat exchange management

Similar Documents

Publication Publication Date Title
ITTO970205A1 (en) COOLING SYSTEM FOR AN INTERNAL COMBUSTION ENGINE, PARTICULARLY FOR MOTOR VEHICLES
DK200101659A (en) Method for controlling heating systems and heating systems
US20070084939A1 (en) Systems and methods of controlling a fan coil unit
JPH0234420A (en) Automatic temperature control device with warm water flow adjustment
EP3779302B1 (en) Air conditioning system
KR100728316B1 (en) Variable air volume air conditioning control system
JPS6248619B2 (en)
JPH0466727B2 (en)
GB2127182A (en) An arrangement for regulating the flow of heat transfer medium flowing through a heat exchange element
JPH0390430A (en) Automotive heat pump device
JP3846754B2 (en) Refrigerant circulation type air conditioning system
JPH071116B2 (en) Air conditioner
KR200146953Y1 (en) The automatic system for controlling water temperature
JP2548291B2 (en) Variable air flow controller
JP2827074B2 (en) Control method of air conditioning system
JPH0139860Y2 (en)
JPS638015A (en) Hot water type heating device for automobile
JPH0324830Y2 (en)
JPH0484038A (en) Apparatus for air conditioning and method of operation
JP2006027363A (en) Air conditioner for automobile
JPS5950523B2 (en) Railway vehicle heating system that uses waste heat from the engine
JP3556099B2 (en) Control method of air conditioner
JP3776990B2 (en) One can two water channel compounder
JPH01123923A (en) Hot and cold water mixing device
JPH07317927A (en) Water heater