[go: up one dir, main page]

JPH0233822A - Cathode for electron tube - Google Patents

Cathode for electron tube

Info

Publication number
JPH0233822A
JPH0233822A JP63184002A JP18400288A JPH0233822A JP H0233822 A JPH0233822 A JP H0233822A JP 63184002 A JP63184002 A JP 63184002A JP 18400288 A JP18400288 A JP 18400288A JP H0233822 A JPH0233822 A JP H0233822A
Authority
JP
Japan
Prior art keywords
electron
cathode
substrate
earth metal
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63184002A
Other languages
Japanese (ja)
Inventor
Keiji Watabe
渡部 頚二
Keiji Fukuyama
福山 敬二
Ryo Suzuki
量 鈴木
Masato Saito
正人 斉藤
Shigeko Ishida
石田 誠子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63184002A priority Critical patent/JPH0233822A/en
Publication of JPH0233822A publication Critical patent/JPH0233822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To ensure the long lifetime of an electron tube cathode by applying a rare earth metal and the like to the inner side of a grid formed with the deposition of an alkaline earth metal oxide containing Ba on a substrate and dispersing the deposit with an electron shock for the deposition thereof to an electron emission substance layer. CONSTITUTION:The ternary carbonate of Ba, St and Ca is used as a suspension and this suspension is sprayed to a substrate 7 mainly composed of Ni and preliminarily made to contain a reducing element such as Si and Mg. Thereafter, an electron emission substance layer 8 is deposited on the substrate 7 via a decomposition process from carbonate to oxide and an activating process for reducing a part of the oxide. Furthermore, in a cathode for an electronic tube, the electron emission substance layer 8 is heated with a heater 9 up to the predetermined temperature after the finish of the aforesaid decomposition and activation processes, and the predetermined direct current voltage is applied between a cathode 1 and a grid 4 for the control of an electron beam. According to the aforesaid constitution. a scandium metal film 6 is subjected to an electron shock and dispersed for deposition on the electron emission substance layer 8. Also, the scandium metal is dispersed even internally.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はTV用ダブラウン管撮像管などに用いられる
電子管用陰極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cathode for an electron tube used in a double cathode ray tube image pickup tube for TV and the like.

〔従来の技術〕[Conventional technology]

第3図は従来のTV用ダブラウン管撮像管に用いられて
いる電子銃の陰極近傍の構造を示すものである。(1)
は陰極、(2)はこの陰極の側外周に設けられたシール
ド、(4)は電子ビーム制御用グリッドで、このグリッ
ドには小孔(5)があけられている。
FIG. 3 shows the structure of the vicinity of the cathode of an electron gun used in a conventional double picture tube for TV. (1)
is a cathode, (2) is a shield provided on the outer periphery of this cathode, and (4) is an electron beam control grid, in which a small hole (5) is made.

(8)はセラミック構体で、上記シールド(2)と電子
ビーム制御用グリッド(4)の間に設けられ陰極(1)
と電子ビーム制御用グリッド(4)を固定している。そ
して陰極(1)から放出された電子は上記小孔(5)を
通り電子ビームとなり放出される。第2図は、陰極の構
造を模式的に示し、(γ)はシリコン(Si) 、マグ
ネシウム(磯)などの還元性元素を微量含む主成分がニ
ッケルからなる有底筒状の基体、(8)はこの基体(γ
)の底部上面に被着され、少なくともバリウム(Ba)
を含み、他にストロンチウム(Sr)および/またはカ
ルシウム(cXa)を含むアルカリ土類金属酸化物から
なる電子放射物質層、(9)は上記基体(γ)内に配設
されたヒータ(9)で、加熱により上記電子放射物質層
(8)から熱電子を放出させるためのものである。
(8) is a ceramic structure, which is provided between the shield (2) and the electron beam control grid (4) and has a cathode (1).
and the electron beam control grid (4) are fixed. Electrons emitted from the cathode (1) pass through the small hole (5) and are emitted as an electron beam. Figure 2 schematically shows the structure of the cathode, where (γ) is a bottomed cylindrical base mainly composed of nickel and containing trace amounts of reducing elements such as silicon (Si) and magnesium (Iso); ) is this substrate (γ
), at least barium (Ba)
(9) is a heater (9) disposed within the base (γ); This is for emitting thermoelectrons from the electron emitting material layer (8) by heating.

この様に構成された電子管用陰極において、基体(γ)
への電子放射物質層(8)の被着は次の様にして行なわ
れる。まず、アルカリ土類金属(Ba 、 Sr 。
In the electron tube cathode configured in this way, the base (γ)
The electron emissive material layer (8) is deposited on the substrate as follows. First, alkaline earth metals (Ba, Sr.

Oa)の三元炭酸塩からなる懸濁液を基体(ア)の底部
上面に塗布し、真空排気工程中にヒータ(9)によって
加熱する。この時、アルカリ土類金属の炭酸塩はアルカ
リ土類金属の酸化物に変わる。その後、アルカリ土類金
属の酸化物の一部を還元して半導体的性質を有するよう
に活性化を行なうことにより、基体(ア)上にアルカリ
土類金属の酸化物からなる電子放射物質層(8)を被着
形成している。
A suspension consisting of the ternary carbonate of Oa) is applied to the bottom upper surface of the substrate (A) and heated by a heater (9) during the evacuation process. At this time, the alkaline earth metal carbonate turns into an alkaline earth metal oxide. Thereafter, by reducing a part of the alkaline earth metal oxide and activating it to have semiconducting properties, an electron emitting material layer made of the alkaline earth metal oxide ( 8) is formed by adhesion.

この活性化工程において、アルカリ土類金属の酸化物の
一部は次の様に反応する。つまシ、基体(γ)内に含有
されたシリコン、マグネシウム等の還元性元素は拡散に
よりアルカリ土類金属の酸化物と基体(γ)の界面に移
動し、アルカリ土類金属酸化物と反応する。たとえば、
アルカリ土類酸化物として酸化バリウム(Bad)であ
れば次式(1) 、 (2)の様に反応する。
In this activation step, a part of the alkaline earth metal oxide reacts as follows. Reducing elements such as silicon and magnesium contained in the base (γ) move to the interface between the alkaline earth metal oxide and the base (γ) by diffusion and react with the alkaline earth metal oxide. . for example,
If barium oxide (Bad) is used as the alkaline earth oxide, it reacts as shown in the following formulas (1) and (2).

BaO+ 1/2Si = Ba + 1/ZSiOz
  曲−−−−−(1)EaO+ Mg = Ba +
 MgO−−−・ (2)この反応の結果、基体(ア)
上に被着形成されたアルカリ土類金属酸化物の一部が還
元され、酸素欠乏型の半導体となり、陰極温度700〜
800°Cの動作温度で0.5〜0.8 A/crlの
電子放射が得られることになる。
BaO+ 1/2Si = Ba + 1/ZSiOz
Song --- (1) EaO+ Mg = Ba +
MgO --- (2) As a result of this reaction, the substrate (a)
A part of the alkaline earth metal oxide deposited on the top is reduced and becomes an oxygen-deficient semiconductor, and the cathode temperature is 700~
An electron emission of 0.5-0.8 A/crl will be obtained at an operating temperature of 800°C.

ところが、上記電子管用陰極では、電子放射が0.5〜
0.8A/、−J以上の電流密度は取り出せない。
However, in the above cathode for an electron tube, the electron emission is 0.5~
A current density of 0.8 A/-J or more cannot be obtained.

その理由として、アルカリ土類金属酸化物の一部を還元
反応させた場合、上記(1) 、 (Z)式からも明ら
かなように、基体(γ)とアルカリ土類金属酸化物層と
の界面にSiO2,MgOまたはEaO、5i02など
の複合酸化物層(中間層)が形成され、この中間層が高
抵抗層となって電流の流れを妨げること、および上記中
間層が基体(γ)中の□還元性元素(81、Mg ’1
が電子放射物質層(8)の表面側へ拡散するのを妨げる
ため十分な量のバリウム(臣)が生成されないためであ
ると考えられている。つまり、電子管動作中に基体(γ
)と電子放射物質層(8)の界面近傍、特に基体(γ)
表面近傍のニッケル結晶粒界と上記界面より10μm程
度電子放射物質層(8)内側の位置に上記中間層が偏析
するため、電流の流れおよび電子放射物質層(8)表面
側への還元性元素の拡散が妨げられ、高電流密度下の十
分な電子放出特性が得られないという問題があった。
The reason for this is that when a part of the alkaline earth metal oxide is subjected to a reduction reaction, as is clear from equations (1) and (Z) above, the relationship between the substrate (γ) and the alkaline earth metal oxide layer is A composite oxide layer (intermediate layer) such as SiO2, MgO, EaO, 5i02, etc. is formed at the interface, and this intermediate layer becomes a high resistance layer and impedes the flow of current. □ Reducing element (81, Mg '1
It is thought that this is because a sufficient amount of barium is not produced because it prevents barium from diffusing to the surface side of the electron emitting material layer (8). In other words, during electron tube operation, the substrate (γ
) and the vicinity of the interface between the electron emitting material layer (8), especially the substrate (γ)
Since the intermediate layer is segregated at a position approximately 10 μm inside the electron emitting material layer (8) from the nickel crystal grain boundary near the surface and the interface, current flow and reducing elements toward the surface of the electron emitting material layer (8) occur. There was a problem in that the diffusion of electrons was hindered, and sufficient electron emission characteristics under high current density could not be obtained.

これに対して特願昭60−229303の出願には、基
体に0.01〜0.5重量%の希土類金属を含有させる
ことによって電子放射物質層を基体に被着形成する際の
活性化時に、アルカリ土類金属の炭酸塩が分解する際、
あるいは陰極としての動作中に酸化バリウムが解離反応
を起こす際に基体が酸化する反応を防止するとともに、
電子放射物質層中への基体に含有された還元性元素の拡
散を適度に制御し、還元性元素による複合酸化物からな
る中間層が基体と電子放射物質層との界面近傍に集中的
に形成されることを防止し、中間層を電子放射物質層内
に分散させるという技術が示されている。つまり、この
第2の従来例の電子管用陰極においては、中間層が分散
されるために、1〜3 A/、j程度の高電流密度動作
でのエミッション劣化が少ないという優れた特性を有す
るものである。
On the other hand, Japanese Patent Application No. 60-229303 discloses that 0.01 to 0.5% by weight of a rare earth metal is contained in a substrate, so that during activation when an electron emitting material layer is deposited on the substrate. , when carbonates of alkaline earth metals decompose,
Alternatively, it prevents the oxidation of the substrate when barium oxide undergoes a dissociation reaction during operation as a cathode, and
The diffusion of the reducing element contained in the substrate into the electron emitting material layer is moderately controlled, and an intermediate layer made of a composite oxide of the reducing element is concentrated near the interface between the substrate and the electron emitting material layer. Techniques have been shown to prevent this from occurring and to disperse the intermediate layer within the electron emissive material layer. In other words, this second conventional electron tube cathode has an excellent property of having little emission deterioration during high current density operation of about 1 to 3 A/j because the intermediate layer is dispersed. It is.

ところがこのものにおいても、3A/、l を越える、
たとえば4 A/dの高電流密度動作ではエミッション
劣化が大きいという問題がある。更に特願昭60−16
0851の出願には、電子放射物質層に0.1〜20重
量%の希土類金属酸化物を含有させることにより、第2
の従来例と同様、基体の酸イヒを防止するとともに中間
層を分散させるとpzう技術が示されている。この場合
においては、4A/c、4以上の高電流密度動作でも、
エミッション劣化を少くできる。
However, even in this case, it exceeds 3A/,l.
For example, when operating at a high current density of 4 A/d, there is a problem in that emission deterioration is large. Furthermore, a special application was made in 1986-16.
In the application No. 0851, the second
Similar to the prior art example, a technique has been proposed in which the intermediate layer is dispersed while preventing the substrate from becoming acidic. In this case, even with high current density operation of 4A/c, 4 or more,
Emission deterioration can be reduced.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の童子管用陰極において
は、通常の活性化工程を経た後4A/cW1以上の高電
流密度動作をさせると、ノ<リウムの蒸発を抑える効果
が十分でないことがあり、このためエミッションの劣化
が大きい場合があり、活性化の時間を長(しなければな
らないという問題点力;あった。
However, in such conventional cathodes for doji tubes, when operated at a high current density of 4 A/cW1 or more after going through the normal activation process, the effect of suppressing the evaporation of Norium may not be sufficient. Therefore, the deterioration of emissions may be large, and the activation time must be long.

この発明は上記のような問題点を解消するためになされ
たもので、4A/、1以上の高電流密度動作において、
バリウムの蒸発を抑える効果が常にあり、長時間にわた
って安定したエミッション特性を有する電子管用陰極を
得ることを目的とするっ〔課題を解決するための手段〕 この発明に係る電子管用陰極は、陰極前面の電子ビーム
制御用グリッドの内面に希土類金属あるいは化合物を塗
布し、陰極からの電子ビームによってこれを陰極の電子
放射物質層に付着させたことを特徴とする。
This invention was made to solve the above problems, and in high current density operation of 4A/1 or more,
It is an object of the present invention to obtain a cathode for an electron tube which is always effective in suppressing barium evaporation and has stable emission characteristics over a long period of time. A rare earth metal or a compound is coated on the inner surface of the electron beam control grid, and is attached to the electron emitting material layer of the cathode by the electron beam from the cathode.

〔作用〕[Effect]

この発明においては、電子放射物質層に付着された希土
類金属あるいは化合物が還元性元素による複合酸化物か
らなる中間層が基体と電子放射物質層との界面近傍に集
中的に形成されることを防止し、中間層を電子放射物質
層内に分散させるものであり、さらに付着した希土類金
属あるいは化合物がバリウムの蒸発を抑制するものであ
る。
In this invention, the rare earth metal or compound attached to the electron emitting material layer prevents the formation of an intermediate layer consisting of a composite oxide of a reducing element in the vicinity of the interface between the substrate and the electron emitting material layer. However, the intermediate layer is dispersed within the electron emitting material layer, and the attached rare earth metal or compound suppresses the evaporation of barium.

〔実施例〕〔Example〕

以下にこの発明の一実施例を第1図および第4図に基づ
いて説明する。第4図において、電子ビーム制御用グリ
ッド(4)の内側にスカンジウム金属膜(6)が形成さ
れている。第1図において(γ)は主成分がニッケルか
らなる基体で、基体(ア)中にはSl。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 4. In FIG. 4, a scandium metal film (6) is formed inside the electron beam control grid (4). In FIG. 1, (γ) is a substrate whose main component is nickel, and the substrate (A) contains Sl.

lvlgなどの還元性元素が含有されている。(8)は
基体(γ)の底部上面に被着され、少なくともバリウム
を含み、他にストロンチウムおよび/またはカルシウム
を含むアルカリ土類金属酸化物を主成分とした電子放射
物質層である。
Contains reducing elements such as lvlg. (8) is an electron-emitting material layer deposited on the bottom upper surface of the substrate (γ) and containing at least barium, and also containing an alkaline earth metal oxide containing strontium and/or calcium as a main component.

この電子管用陰極においては、まず、バリウム、ストロ
ンチウム、カルシウムの三元炭酸塩を懸濁液とし、この
懸濁液をニッケルを主成分とし、予めSi、Mgなどの
還元性元素(各々003〜0.1wt%含有)を含有さ
せた基体(ア)上にスプレィにより約80ミクロンの厚
みで塗布し、その後、従来のものと同様に、炭酸塩から
酸化物への分解過程及び酸化物の一部を還元する活性化
過程を経て、電子放射物質層(8)を基体(γ)に被着
せしめるものである。
In this electron tube cathode, first, a ternary carbonate of barium, strontium, and calcium is made into a suspension. .1wt%) onto the substrate (A) by spraying to a thickness of approximately 80 microns, and then, as in the conventional method, the decomposition process from carbonate to oxide and a part of the oxide are applied. The electron emitting material layer (8) is deposited on the substrate (γ) through an activation process of reducing the .

さらにこの電子管用陰極においては、上記分解・活性化
過程の終了後、ヒータ(9)で加熱して電子放射物質層
(8)ヲ約8000とし、陰極(1)と電子ビーム制御
用グリッド(4)との間に直流電圧を100V程度印加
する。これにより、スカンジウム金属膜(6)が電子衝
撃を受け、飛散して電子放射物質層(8)に付着し、内
部にも拡散する。
Further, in this electron tube cathode, after the above decomposition/activation process is completed, the electron emitting material layer (8) is heated to about 8,000 yen by heating with a heater (9), and the cathode (1) and the electron beam control grid (4) are heated. ), apply a DC voltage of about 100V between the two. As a result, the scandium metal film (6) receives an electron bombardment, scatters, adheres to the electron emitting material layer (8), and also diffuses inside.

第5図には、この電子管用陰極を用いて2極真空管を作
成し、4.3 A/、−dの電流密度で動作させて寿命
試験を行った場合のエミッション電流の変化を調へた結
果を示した。図中、曲線Aは電子ビーム制御用グリッド
(4)の内面にスカンジウム金属膜(6)を形成し、上
記過程を経た電子管陰極を用いたものである。また曲線
すは上記スカンジウム金属膜(6)がないもの、すなわ
ち従来の電子管用陰極を用いたものである。
Figure 5 shows the change in emission current when a diode vacuum tube was created using this electron tube cathode and a life test was conducted by operating it at a current density of 4.3 A/, -d. The results were shown. In the figure, curve A is an electron tube cathode in which a scandium metal film (6) is formed on the inner surface of an electron beam control grid (4), and the electron tube cathode has undergone the above process. The curved line does not have the scandium metal film (6), that is, it uses a conventional electron tube cathode.

この発明が従来に比較して優れた特性が得られるのは以
下の理由によると考えられる。電子放射物質層(8)に
付着した鑓は、電子管用陰極の動作とともに、内部に拡
散し基体(γ)の表面から約20 )tmの深さまで拡
散する。一方、基体(ア)内の還元剤S1、Mgは閏と
は逆に表面へ拡散し、表面でBaOと反応し、遊離りを
つくるが、また拠5103を生成する。
The reason why this invention provides superior characteristics compared to the conventional one is considered to be due to the following reasons. The particles attached to the electron emitting material layer (8) diffuse into the interior along with the operation of the electron tube cathode to a depth of approximately 20 tm from the surface of the substrate (γ). On the other hand, the reducing agent S1 and Mg in the substrate (a) diffuse to the surface in the opposite direction to the ferrule, react with BaO on the surface, and create free substances, but also form bases 5103.

このhsioaは中間層と呼ばれ、還元剤のBaNとの
反応を阻害する。しかし、この発明では、基体(γ)の
表層に存在するScによって上記中間層を分離するので
、還元剤S1は電子放射物質層内へさらに移動でき、電
子放射に寄与する。
This hsioa is called an intermediate layer and inhibits the reaction of the reducing agent with BaN. However, in the present invention, since the intermediate layer is separated by Sc present on the surface layer of the substrate (γ), the reducing agent S1 can further move into the electron emitting material layer and contribute to electron emission.

また上記においては、電子ビーム制御用グリッド(4)
にスカンジウム金属膜を塗布したが、イツトリウム、ラ
ンタン、セリウム、プラセオジム、ネオジム、サマリウ
ム、ガドリニウム、スカンジウム、ジスプロシウム、ホ
ルミウム、エルビウム。
In addition, in the above, the electron beam control grid (4)
A scandium metal film was applied to the metal, including yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, scandium, dysprosium, holmium, and erbium.

ツリウムから選ばれた少なくとも1種を用いても同様な
効果が得られる。また金属以外に酸化物。
A similar effect can be obtained by using at least one species selected from thulium. In addition to metals, there are also oxides.

窒化物など種々の化合物を用いてもよい。Various compounds such as nitrides may also be used.

〔発明の効果〕〔Effect of the invention〕

この発明は以上述べたように、N1かうなる基体上に少
なくともバリウムを含むアルカリ土類金属酸化物を被着
形成し電子ヒーム制御用グリッドの内側に希土類金属あ
るいは化合物を塗布し、これを電子衝撃で飛散させ電子
放射物質層に付着させたことにより、4A/i以上の高
電流密度による動作下での長寿命を確実に実現できると
いう効果を有する。
As described above, in this invention, an alkaline earth metal oxide containing at least barium is deposited on a substrate made of N1, a rare earth metal or a compound is coated on the inside of an electron beam control grid, and this is applied by electron bombardment. By scattering the particles and attaching them to the electron emitting material layer, it is possible to reliably achieve a long life under operation at a high current density of 4 A/i or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による電子管用陰極を示す
断面図、第2図は従来の電子管用陰極を示す断面図、第
3図は従来の電子銃の陰極近傍を示す図、第4図はこの
発明による陰極近傍を示す図、第5図は寿命試験時間と
エミッション電流との関係を示す図である。 図において(])は基体、(2)は電子放射物質層。 なお、各図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a sectional view showing a cathode for an electron tube according to an embodiment of the present invention, FIG. 2 is a sectional view showing a conventional cathode for an electron tube, FIG. 3 is a view showing the vicinity of the cathode of a conventional electron gun, and FIG. The figure shows the vicinity of the cathode according to the present invention, and FIG. 5 is a diagram showing the relationship between life test time and emission current. In the figure, (]) is the substrate, and (2) is the electron emitting material layer. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 主成分がニッケルからなる基体上に、少なくともバリウ
ムを含むアルカリ土類金属配化物からなる電子放射物質
層が被着された陰極と、この陰極の前面に設置された電
子ビーム制御用グリッドとを備えたものにおいて、上記
電子ビーム制御用グリッドの陰極側表面に希土類金属ま
たは化合物が塗布され、上記陰極から放出された電子ビ
ームが上記電子ビーム制御用グリッドに衝突する構成と
し、この衝突により飛散した希土類金属または化合物を
上記電子放射物質層に付着させる構成としたことを特徴
とする電子管用陰極。
It comprises a cathode in which an electron-emitting material layer made of an alkaline earth metal alloy containing at least barium is deposited on a substrate made of nickel as a main component, and an electron beam control grid installed in front of the cathode. A rare earth metal or compound is coated on the cathode side surface of the electron beam control grid, and the electron beam emitted from the cathode collides with the electron beam control grid, and the rare earth metal or compound is scattered by this collision. A cathode for an electron tube, characterized in that a metal or a compound is attached to the electron emitting material layer.
JP63184002A 1988-07-22 1988-07-22 Cathode for electron tube Pending JPH0233822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63184002A JPH0233822A (en) 1988-07-22 1988-07-22 Cathode for electron tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63184002A JPH0233822A (en) 1988-07-22 1988-07-22 Cathode for electron tube

Publications (1)

Publication Number Publication Date
JPH0233822A true JPH0233822A (en) 1990-02-05

Family

ID=16145604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63184002A Pending JPH0233822A (en) 1988-07-22 1988-07-22 Cathode for electron tube

Country Status (1)

Country Link
JP (1) JPH0233822A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168254A (en) * 1989-11-21 1992-12-01 Hitachi Metals, Ltd. Magnetostatic wave device with minimized higher order mode excitations
KR960025915A (en) * 1994-12-28 1996-07-20 윤종용 Hot electron-emitting oxide cathode and method of manufacturing same
US6232708B1 (en) 1997-10-23 2001-05-15 Samsung Display Devices Co., Ltd. Cathode with an electron emitting layer for a cathode ray tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5168254A (en) * 1989-11-21 1992-12-01 Hitachi Metals, Ltd. Magnetostatic wave device with minimized higher order mode excitations
KR960025915A (en) * 1994-12-28 1996-07-20 윤종용 Hot electron-emitting oxide cathode and method of manufacturing same
US6232708B1 (en) 1997-10-23 2001-05-15 Samsung Display Devices Co., Ltd. Cathode with an electron emitting layer for a cathode ray tube

Similar Documents

Publication Publication Date Title
JP2758244B2 (en) Cathode for electron tube
JP2876591B2 (en) Cathode for electron tube
JPS6222347A (en) Cathode for electron tube
JPH0233822A (en) Cathode for electron tube
JP2882386B2 (en) Manufacturing method of cathode for electron tube
JP2936460B2 (en) Cathode for electron tube
US6232708B1 (en) Cathode with an electron emitting layer for a cathode ray tube
JP2891209B2 (en) Cathode for electron tube
JPH04220924A (en) Cathode for electron tube
JPH0546653B2 (en)
JP2897938B2 (en) Cathode for electron tube
JP2937145B2 (en) Cathode for electron tube
JP2730260B2 (en) Cathode for electron tube
JPH01213929A (en) Cathode of electron tube
JP3010155B2 (en) Manufacturing method of cathode for electron tube
JPH0237645A (en) Cathode for electron tube
JPS6290821A (en) Cathode for electron tube
JPH10199397A (en) Cathode for electron tube
JPH09185939A (en) Electron tube cathode, and manufacture of the same
JPS6290819A (en) Cathode for electron tube
JPH04220925A (en) Cathode for electron tube
JPH08321250A (en) Electron tube with cathode having electron emitting material layer
JPH03219524A (en) Cathode for electron tube
JPH02288042A (en) Cathode for electron tube
JPS62165833A (en) Cathode for electron tube