JPH0233726A - Magnetic recording medium and its manufacture - Google Patents
Magnetic recording medium and its manufactureInfo
- Publication number
- JPH0233726A JPH0233726A JP18360188A JP18360188A JPH0233726A JP H0233726 A JPH0233726 A JP H0233726A JP 18360188 A JP18360188 A JP 18360188A JP 18360188 A JP18360188 A JP 18360188A JP H0233726 A JPH0233726 A JP H0233726A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- magnetic
- recording medium
- magnetic recording
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 68
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 230000005294 ferromagnetic effect Effects 0.000 claims description 61
- 239000010419 fine particle Substances 0.000 claims description 58
- 229920005989 resin Polymers 0.000 claims description 36
- 239000011347 resin Substances 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 32
- 239000000843 powder Substances 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 19
- 239000003822 epoxy resin Substances 0.000 claims description 19
- 229920000647 polyepoxide Polymers 0.000 claims description 19
- 239000000758 substrate Substances 0.000 claims description 13
- 238000004898 kneading Methods 0.000 claims description 12
- 239000005011 phenolic resin Substances 0.000 claims description 5
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims 4
- 239000006249 magnetic particle Substances 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000003960 organic solvent Substances 0.000 claims 1
- 229920005596 polymer binder Polymers 0.000 claims 1
- 239000002491 polymer binding agent Substances 0.000 claims 1
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 36
- 238000000576 coating method Methods 0.000 description 31
- 239000011248 coating agent Substances 0.000 description 30
- 230000003746 surface roughness Effects 0.000 description 16
- 239000003973 paint Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000007796 conventional method Methods 0.000 description 8
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 8
- 239000012046 mixed solvent Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 229910006297 γ-Fe2O3 Inorganic materials 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002452 interceptive effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000006247 magnetic powder Substances 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Paints Or Removers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は塗布型の磁気記録媒体に係り、特に磁性体微粒
子の凝集が少なく、磁性体微粒子の含率の高い、高密度
記録に適した磁気記録媒体の製造方法、およびその方法
を用いて製造した磁気記録媒体に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a coating type magnetic recording medium, and in particular, it is suitable for high-density recording, with little agglomeration of magnetic fine particles and a high content of magnetic fine particles. The present invention relates to a method for manufacturing a magnetic recording medium and a magnetic recording medium manufactured using the method.
強磁性体微粒子を高分子結合剤中に分散させた磁性塗料
を非磁性体基体上に塗布して磁気記録媒体を製造する方
法は数多く提案されている。例えば特公昭57−405
66号公報および特開昭5610087]号公報には、
強磁性体微粒子をエポキシ樹脂などのシクロヘキサノン
溶液と共に、高ずり応力下で混線する工程を含む磁気記
録媒体の製造方法が開示されている。Many methods have been proposed for manufacturing magnetic recording media by coating a non-magnetic substrate with a magnetic paint in which ferromagnetic fine particles are dispersed in a polymeric binder. For example, Tokuko Sho 57-405
No. 66 and Japanese Unexamined Patent Publication No. 5610087],
A method for manufacturing a magnetic recording medium is disclosed that includes a step of cross-talking ferromagnetic fine particles with a cyclohexanone solution such as an epoxy resin under high shear stress.
これらの方法においては樹脂溶液を用いるために、次の
ような問題点があった。第1(こ強磁性体微粒子と樹脂
溶液とが均一しこ混合されにくい、ということである。Since these methods use resin solutions, they have the following problems. First, it is difficult to uniformly mix the ferromagnetic particles and the resin solution.
強磁性体微粒子と結合剤樹脂とが十分に混合、接触しな
ければ、強磁性体微粒子が均一に分散した磁性塗膜を得
るのは困難である。Unless the ferromagnetic particles and the binder resin are sufficiently mixed and contacted, it is difficult to obtain a magnetic coating film in which the ferromagnetic particles are uniformly dispersed.
第2に、結合剤樹脂を溶解させている溶媒の量が、樹脂
の溶解度の関係上、混練に必要な量よりも多く添加され
ることである。余分な溶媒により、強磁性体微粒子表面
が溶媒和されて樹脂との親和性を弱める場合があり、ま
た混練されている混合物の粘度が低トして、強磁性体微
粒子を機械的な力で分散させる効果が弱まる。Second, the amount of solvent in which the binder resin is dissolved is greater than the amount required for kneading due to the solubility of the resin. Excess solvent may solvate the surface of the ferromagnetic particles, weakening their affinity with the resin, and may also lower the viscosity of the kneaded mixture, making it difficult for the ferromagnetic particles to be exposed to mechanical force. The dispersion effect is weakened.
これらの理由により、得られた塗膜中では強磁性体微粒
子が凝集を起こし、塗布面の平滑性が失われていた。塗
膜の加工前粗さが大きいと、第1図に示すごとく、ノイ
ズが増加する。For these reasons, the ferromagnetic fine particles agglomerated in the resulting coating film, and the smoothness of the coated surface was lost. If the roughness of the coating film before processing is large, noise increases as shown in FIG.
これに対して、結合剤樹脂を粉末化して、固体状態で強
磁性体微粒子と混合し、これに溶媒を添加して混練する
方法が特開昭63−4422号公報に開示されている。On the other hand, JP-A-63-4422 discloses a method in which a binder resin is pulverized, mixed with ferromagnetic fine particles in a solid state, and a solvent is added thereto and kneaded.
この方法により、強磁性体微粒子と結合剤樹脂との混合
状態が改善され、また溶媒の添加量に減少させて混線効
果を高めることが可能となった。その結果、強磁性体微
粒子の分散状態が良好で、加工前の面粗さが極めて小さ
い従ってノイズの小さい磁性塗膜が形成されている。し
かし、この))法においても強磁性体微粒子と結合剤樹
脂との混合状態は必ずしも十分とは呂えない。This method improves the mixing state of the ferromagnetic fine particles and the binder resin, and also makes it possible to increase the crosstalk effect by reducing the amount of solvent added. As a result, a magnetic coating film is formed in which the ferromagnetic fine particles are well-dispersed, the surface roughness before processing is extremely low, and the noise is low. However, even in this method), the mixing state of the ferromagnetic fine particles and the binder resin is not necessarily sufficient.
また、結合剤樹脂の量を減らすと混線状態にはいりにく
いため、強磁性体微粒子の含率を高くすると非常に長時
間の混合が必要となり、場合によっては混線不可能とな
る。さらに、強磁性体微粒子のかさ密度が小さい場合も
混練が困難になり、多量の結合剤樹脂と溶媒を添加しな
ければならず、混線にはいるまでに、やはり長時間を要
する。Furthermore, if the amount of binder resin is reduced, it is difficult to cause crosstalk, so if the content of ferromagnetic fine particles is increased, mixing will be required for a very long time, and in some cases, crosstalk will not be possible. Furthermore, when the bulk density of the ferromagnetic fine particles is small, kneading becomes difficult, and a large amount of binder resin and solvent must be added, and it takes a long time to enter the mixed wire.
上記従来技術では、粉末状の結合剤樹脂を用いる方法に
おいても十分な混合状態を達成するのは困難であり、強
磁性体微粒子の分散性の向上、磁性塗膜表面の平滑性の
向」二に限界がある。従って磁気記録媒体のノイズの低
減、ハードディスクにおける浮動磁気ヘッドの浮上安定
性の向」二が困難な状況であった。また、混練プロセス
に多量の結合剤樹脂が必要で、強磁性体微粒子の含率を
高めるのが難しく、樹脂の量を減らすと混線状態にはい
らない、あるいは混線状態になるまでに長時間を要する
ことも問題であった。さらに、かさ密度の小さい強磁性
体微粒子の場合も多量の結合剤樹脂と溶媒を添加しなけ
れば混線できず、しかも長時間混合しなければ混線状態
にはいらない。In the above-mentioned conventional technology, it is difficult to achieve a sufficient mixing state even in the method using powdered binder resin, and it is difficult to achieve a sufficient mixing state even in the method using powdered binder resin. There are limits to Therefore, it has been difficult to reduce noise in magnetic recording media and improve flying stability of floating magnetic heads in hard disks. In addition, a large amount of binder resin is required in the kneading process, making it difficult to increase the content of ferromagnetic fine particles, and if the amount of resin is reduced, the crosstalk state will not occur or it will take a long time to reach the crosswire state. That was also a problem. Furthermore, even in the case of ferromagnetic fine particles having a small bulk density, crosstalk cannot occur unless a large amount of binder resin and solvent are added, and furthermore, crosstalk does not occur unless mixed for a long time.
本発明の目的は、混線プロセスの改良により、いかなる
かさ密度の強磁性体微粒子に対しても有効な混線が可能
で、加工前の而粗さが小さく、強磁性体微粒子の含率の
高い磁気記録媒体を、短時間のプロセスで提供すること
にある。The purpose of the present invention is to improve the cross-crossing process to enable effective cross-crossing of ferromagnetic particles of any bulk density. The purpose is to provide recording media in a short process time.
上記目的を達成するために磁気記録媒体の製造方法を検
討した結果、従来のように強磁性体微粒子と結合剤樹脂
を同時に添加するのではなく、結合剤樹脂のみを溶媒で
膨潤状態にするか、または加熱溶融して高粘度の流動状
態にし1強磁性体微粒子を2回以上に分けて添加して高
ずり応力で混練した後に、従来と同様にボールミル混練
等を行なうことにより、強磁性体微粒子の初めのかさ密
度に関係なく、強磁性体微粒子の分散性の良好な磁性塗
料が得られた。このようにして製造した磁性塗料を非磁
性基体に塗布し、磁場中で配向させることによって作製
した磁気記録媒体は加工前の面粗さが従来法によるもの
よりも小さく、また強磁性体微粒子の塗膜中の含率を8
0wt%に高めても、磁気記録媒体の作製が可能となり
、その加工前の面粗さも0 、04.0 11 m R
a以下と小さくすることができた。また、従来法と同じ
組成の磁気記録媒体を製造する場合、混線プロセスに要
する時間2約50%短縮することができた。In order to achieve the above objective, we investigated the manufacturing method of magnetic recording media, and found that instead of adding ferromagnetic fine particles and binder resin at the same time as in the past, we decided to swell only the binder resin with a solvent. , or by heating and melting the ferromagnetic material to a highly viscous fluid state, adding 1 ferromagnetic material fine particles in two or more portions, kneading with high shear stress, and then performing ball mill kneading as in the conventional method. A magnetic paint with good dispersibility of ferromagnetic fine particles was obtained regardless of the initial bulk density of the fine particles. Magnetic recording media produced by applying the magnetic paint produced in this way onto a non-magnetic substrate and orienting it in a magnetic field have smaller surface roughness before processing than those produced by conventional methods, and also have fine ferromagnetic particles. The content in the coating film is 8
Even if it is increased to 0 wt%, it is possible to manufacture a magnetic recording medium, and the surface roughness before processing is also 0.04.0 11 m R
We were able to make it as small as a or less. Furthermore, when producing a magnetic recording medium with the same composition as in the conventional method, the time required for the crosstalk process could be reduced by approximately 50%.
強磁性体微粒子を結合剤樹脂と共に高ずり応力下で混練
する方法は、強磁性体微粒子の磁性塗料中、および塗膜
中での分散性を高めるのに有効な手段である。混線を行
なうには強磁性体微粒子の間の空隙を樹脂溶液、或いは
膨潤した樹脂で埋めることが必要である。効率よく空隙
を埋めるためには、空隙の体積よりもかなり多くの樹脂
が必要であると思われる。強磁性体微粒子と樹脂とを同
時に添加した場合、一定量の空隙に対する樹脂の量が少
なく、特に強磁性体微粒子の含率が高い場合および、強
磁性体微粒子のかさ密度が小さい場合に著しい。そのた
め混線状態にするためには、多量の樹脂と溶媒が必要と
なり、混線状態になるまでに長時間を要する。これに対
して、膨潤、あるいは加熱溶融して均一な流動状態にし
た樹脂に強磁性体微粒子を数回に分けて添加する方法で
は、初めに添加した微粒子に対して樹脂過剰であるから
、すぐに混線状態にはいる。混線状態になれば、最低限
必要な量の樹脂以外は余分として残っているので、次に
添加した強磁性体微粒子の混線に活用される。従って、
強磁性体微粒子を添加するたびに樹脂が過剰な状態で実
現でき、効率よく混線が進行すると考えられる。その結
果、従来法では樹脂が不足して混線が不可能であった条
件でも混線可能となり、強磁性体微粒子の含率を高くし
ても、かさ密度の小さい強磁性体微粒子を用いても問題
はない。また、従来法で混線可能である条件でも、本発
明によれば混線プロセスの所要時間を短縮でき、強磁性
体微粒子の含率が高い場合や、強磁性体微粒子のかさ密
度が小さい場合には50%の時間短縮が可能である。以
上のように、本発明によれば短時間で効率のよい混練が
可能となり、強磁性体微粒子の分散性が向上して、塗膜
の加工前面粗さの極めて小さい磁気記録媒体が作製でき
る。また、結合剤樹脂の添加量を減じて強磁性体微粒子
の含率の高い磁気記録媒体が得られる。A method of kneading ferromagnetic fine particles with a binder resin under high shear stress is an effective means for increasing the dispersibility of ferromagnetic fine particles in magnetic paints and coatings. To perform crosstalk, it is necessary to fill the gaps between the ferromagnetic fine particles with a resin solution or a swollen resin. In order to efficiently fill the voids, it seems that a considerably larger amount of resin is required than the volume of the voids. When ferromagnetic fine particles and resin are added at the same time, the amount of resin for a given amount of voids is small, which is particularly noticeable when the content of ferromagnetic fine particles is high or when the bulk density of the ferromagnetic fine particles is small. Therefore, a large amount of resin and solvent are required to create a crosstalk state, and it takes a long time to reach a crosstalk state. On the other hand, in the method of adding ferromagnetic fine particles in several parts to a resin that has been swollen or heated and melted to a uniform fluid state, the resin is in excess of the initially added fine particles, so There is a crosstalk situation. If a crosstalk occurs, the excess resin other than the minimum required amount remains, and is used for crosstalk of the ferromagnetic fine particles added next. Therefore,
It is thought that an excess amount of resin can be achieved each time ferromagnetic fine particles are added, and crosstalk progresses efficiently. As a result, it is now possible to cross-wire even under conditions where cross-talk was impossible due to lack of resin in the conventional method, and even if the content of ferromagnetic fine particles is increased or ferromagnetic fine particles with a small bulk density are used, there is no problem. There isn't. In addition, even under conditions where crosstalk is possible in the conventional method, the time required for the crosstalk process can be shortened according to the present invention, and when the content of ferromagnetic fine particles is high or the bulk density of ferromagnetic fine particles is small, A time reduction of 50% is possible. As described above, according to the present invention, efficient kneading is possible in a short time, the dispersibility of ferromagnetic fine particles is improved, and a magnetic recording medium with extremely small roughness of the processed surface of the coating film can be produced. Furthermore, by reducing the amount of binder resin added, a magnetic recording medium with a high content of ferromagnetic fine particles can be obtained.
以−トに本発明の実施例を挙げる。 Examples of the present invention are listed below.
(実施例]−)
粒径約200μmのエポキシ樹脂粉末25重量部をニー
ダ−混線機に入れ、シクロヘキサノン10重量部を添加
し、上記エポキシ樹脂を膨潤状態とした。これに、強磁
性体微粒子(針状γFe2.08粉、長軸径0.3
μm、軸比5〜6、かさ密度約0.6g/mu)50重
量部と単結晶アルミナ微粒子10重量部を添加し30分
間、高ずり応力下が混練した。その後、強磁性体微粒子
50重量部を添加し、さらに4時間混線を行なった。(Example) -) 25 parts by weight of epoxy resin powder having a particle size of about 200 μm was put into a kneader mixer, and 10 parts by weight of cyclohexanone was added to bring the epoxy resin into a swollen state. In addition, ferromagnetic fine particles (acicular γFe2.08 powder, major axis diameter 0.3
[mu]m, axial ratio 5 to 6, bulk density about 0.6 g/mu) and 10 parts by weight of single crystal alumina fine particles were added and kneaded for 30 minutes under high shear stress. Thereafter, 50 parts by weight of ferromagnetic fine particles were added, and crosstalk was continued for another 4 hours.
ニーダ−混線に要した時間は4時間40分であった。The time required for the kneader crosstalk was 4 hours and 40 minutes.
」二記混練物をボールミルポットに入れ、シクロヘキサ
ノンとイソホロンとジオキサンから成る混合溶媒200
重景部を加えて5日間ボールミル混練を行なった後、フ
ェノール樹脂25重量部とビニル樹脂6重量部を上記混
合溶媒300重量部に溶解した溶液を加えて、磁性塗料
を作製した。次に、あらかじめ表面を清浄にした8、8
インチ径のアルミニウム基板上に上記塗料をスピンコ
ードし、周知の方法により磁場配向を行なった後、塗膜
を加熱硬化した。得られたディスクには目視で確認でき
る欠陥はなく、塗布膜厚は全面0.5μmで、加工前の
面粗さは、0.030 μmRaであった。” Put the kneaded product in a ball mill pot and add 200% of a mixed solvent consisting of cyclohexanone, isophorone, and dioxane.
After adding the heavy grains and kneading in a ball mill for 5 days, a solution of 25 parts by weight of phenol resin and 6 parts by weight of vinyl resin dissolved in 300 parts by weight of the above mixed solvent was added to prepare a magnetic paint. Next, clean the surface in advance 8, 8
The above paint was spin-coded onto an inch-diameter aluminum substrate, magnetically oriented by a well-known method, and then cured by heating. The obtained disk had no visible defects, the coating thickness was 0.5 μm over the entire surface, and the surface roughness before processing was 0.030 μmRa.
(実施例2)
粒径約200μmのエポキシ樹脂粉末25重量部をニー
ダ−混線機に入れ、シクロヘキサノン10重量部を添加
し、−上記エポキシ樹脂を膨潤状態とした。これに強磁
性体微粒子(六方晶バリウムフェライト粉2粒径0.0
5μm、板状比5゜かさ密度約0.8g/mQ)20重
量部を添加し、高ずり応力下で混練した。その後15分
ごとに20重量部の強磁性体微粒子を4回添加し、さら
に4時間混線を続けた。ニーダ−混線に要した時間は5
時間10分であった。(Example 2) 25 parts by weight of epoxy resin powder having a particle size of about 200 μm was placed in a kneader mixer, and 10 parts by weight of cyclohexanone was added to bring the epoxy resin into a swollen state. To this, ferromagnetic fine particles (hexagonal barium ferrite powder 2 grain size 0.0
5 μm, plate ratio 5°, bulk density approximately 0.8 g/mQ) was added and kneaded under high shear stress. Thereafter, 20 parts by weight of ferromagnetic fine particles were added four times every 15 minutes, and crosstalk was continued for an additional 4 hours. The time required for kneader crosstalk is 5
The time was 10 minutes.
」二記混練物を実施例1と同様の方法で磁性塗料とし、
あらかじめ表面を清浄にした5、25 インチ径のアル
ミニウム基板に塗布した後、周知の方法により面内方向
に磁場配向した。電子顕微鏡による観察の結果、バリウ
ムフェライト粉は板面をアルミニウム基板に対して垂直
に向けていることが確認できた。また、振動試料型磁束
計による測定で、面内方向の角形比は0.7 であった
。塗膜を加熱硬化し得られたディスクには目視で確認で
きる欠陥はなく、塗布膜厚は全面0.5 μmで、加
工前の面粗さは0.038 μmRaであった。” The kneaded product obtained in Example 2 was made into a magnetic paint in the same manner as in Example 1,
After coating on an aluminum substrate with a diameter of 5 or 25 inches, the surface of which had been cleaned in advance, it was magnetically aligned in the in-plane direction using a well-known method. As a result of observation using an electron microscope, it was confirmed that the plate surface of the barium ferrite powder was oriented perpendicular to the aluminum substrate. Furthermore, the squareness ratio in the in-plane direction was 0.7 as measured by a vibrating sample magnetometer. The disk obtained by heating and curing the coating film had no visible defects, the coating thickness was 0.5 μm over the entire surface, and the surface roughness before processing was 0.038 μmRa.
(実施例3)
実施例2と同様の方法で作製した磁性塗料を、あらかじ
め表面を清浄にした5、25 インチ径のアルミニウム
基板に塗布した後、基板に垂直方向の磁場を部分的に印
加して強磁性体微粒子の方向を不規則にした。振動試料
型磁束計による測定の結果、角形比はあらゆる方向で0
.42〜0.46であった。塗膜は230 ’Cで加熱
硬化した。得られたディスクには目視で確認できる欠陥
はなく、塗布膜厚は全面0.5μmで、加工前の而粗さ
は0.030μmRaであった。(Example 3) A magnetic paint prepared in the same manner as in Example 2 was applied to a 5.25-inch diameter aluminum substrate whose surface had been cleaned in advance, and then a vertical magnetic field was partially applied to the substrate. The direction of the ferromagnetic particles was made irregular. As a result of measurement using a vibrating sample magnetometer, the squareness ratio is 0 in all directions.
.. It was 42-0.46. The coating was heat cured at 230'C. The obtained disk had no visible defects, the coating thickness was 0.5 μm over the entire surface, and the roughness before processing was 0.030 μm Ra.
(実施例4)
粒径約200μmのエポキシ樹脂粉末11重量部をニー
ダ−混練機に入れ、シクロへキサノン20重量部を添加
し、上記エポキシ樹脂を膨潤状態とした。これに強磁性
体微粒子(針状γ−Fe2O3粉、長軸径0.3μm、
軸比5〜6、かさ密度0 、6 g / m Q )を
30分間に20重量部ずつ、計100重量部、高ずり応
力下で添加し、さらに4時間混線を行なった。(Example 4) 11 parts by weight of epoxy resin powder having a particle size of about 200 μm was put into a kneader-kneader, and 20 parts by weight of cyclohexanone was added to bring the epoxy resin into a swollen state. In addition, ferromagnetic fine particles (acicular γ-Fe2O3 powder, long axis diameter 0.3 μm,
Axial ratio 5 to 6, bulk density 0, 6 g/m Q) was added in 20 parts by weight every 30 minutes, a total of 100 parts by weight, under high shear stress, and crosstalk was further performed for 4 hours.
上記混線物をボールミルポットに入れ、シクロヘキサノ
ンとイソホロンとジオキサンとから成る混合溶媒]−5
0重量部を加えて5日間ボールミル混練を行なった後、
フェノール樹脂」」重量部とビニル樹脂3重量部を上記
混合溶媒200重量部に溶解した溶液を加えて、磁性塗
料を作製した。Put the above mixture into a ball mill pot, and put the mixed solvent consisting of cyclohexanone, isophorone, and dioxane]-5
After adding 0 parts by weight and performing ball mill kneading for 5 days,
A magnetic paint was prepared by adding a solution in which parts by weight of phenolic resin and 3 parts by weight of vinyl resin were dissolved in 200 parts by weight of the above mixed solvent.
次に、あらかじめ表面を清浄にした8、8 インチ径の
アルミニウム基板上に上記塗料をスピンコードし、周知
の方法により磁場配向を行なった後、塗膜を加熱硬化し
た。塗布膜厚はR65mmの位置で0.5 μm、R
105mmの位置で0.6μmで、加工前の面粗さは、
強磁性体微粒子の含率が80wt%(5QvoD、%)
に増加しているにもかかわらず0.040 μmRa
という小さい値であった。Next, the above coating material was spin-coded onto an 8.8 inch diameter aluminum substrate whose surface had been previously cleaned, and after magnetic field orientation was performed by a well-known method, the coating film was cured by heating. The coating film thickness is 0.5 μm at the R65mm position, R
The surface roughness before machining is 0.6μm at the 105mm position.
The content of ferromagnetic fine particles is 80 wt% (5QvoD, %)
0.040 μmRa despite the increase in
This was a small value.
(実施例5)
粒径約200μmのエポキシ樹脂粉末20重量部をニー
ダ−混線機に入れ、シクロへキサノン]O重景部を添加
し、」二記エポキシ樹脂を膨潤状態とした。これに強磁
性体粒子(針状γ−Fe2O3粉、長軸径0.3μm、
軸比5〜6、かさ密度0 、6 g / m Q )
を20分間に20重量部ずつ、計100重量部を添加し
、高ずり応力下でさらに4時間混練した。混線に要した
時間は約6時間であった。(Example 5) 20 parts by weight of epoxy resin powder having a particle size of about 200 μm was placed in a kneader mixer, and cyclohexanone]O was added to make the epoxy resin swollen. In addition, ferromagnetic particles (acicular γ-Fe2O3 powder, major axis diameter 0.3 μm,
Axial ratio 5-6, bulk density 0, 6 g/m Q)
was added in 20 parts by weight every 20 minutes, for a total of 100 parts by weight, and kneaded for an additional 4 hours under high shear stress. The time required for crosstalk was approximately 6 hours.
上記混線物をボールミルポットに入れ、シクロヘキサノ
ンとイソホロンとジオキサンから成る混合溶媒180重
量部を加えて5日間ボールミル混練を行なった後、フェ
ノール樹脂20重量部とビニル樹脂5重量部を上記混合
溶媒240重量部に溶解した溶液を加えて、磁性塗料を
作成した。これを用いて実施例4と同様の方法で磁気デ
ィスクとした。塗膜の加工前の面粗さは0.038
μmRaであった。The above mixture was placed in a ball mill pot, 180 parts by weight of a mixed solvent consisting of cyclohexanone, isophorone, and dioxane was added, and kneaded in a ball mill for 5 days. 20 parts by weight of phenol resin and 5 parts by weight of vinyl resin were added to 240 parts by weight of the above mixed solvent. A magnetic paint was prepared by adding a solution dissolved in the sample. Using this, a magnetic disk was prepared in the same manner as in Example 4. The surface roughness of the coating film before processing is 0.038
It was μmRa.
(実施例6)
粒径約200μmのエポキシ樹脂粉末25重量部をニー
ダ−混線機に入れ、シクロへキサノン10重量部を添加
し、上記エポキシ樹脂を膨潤状態とした。これに、強磁
性体微粒子(針状Fe粉、長軸径0.5 μm、軸比
6〜8、かさ密度0.4g/mfl)20重量部を添加
し、高ずり応力下で混練した。その後15分ごとに20
重量部の強磁性体微粒子を4回添加し、さらに4時間混
練を続けた。ニーダ−混線に要した時間は5時間10分
であった。(Example 6) 25 parts by weight of epoxy resin powder having a particle size of about 200 μm was placed in a kneader mixer, and 10 parts by weight of cyclohexanone was added to bring the epoxy resin into a swollen state. To this was added 20 parts by weight of ferromagnetic fine particles (acicular Fe powder, long axis diameter 0.5 μm, axial ratio 6 to 8, bulk density 0.4 g/mfl), and kneaded under high shear stress. 20 every 15 minutes thereafter
Parts by weight of ferromagnetic fine particles were added four times, and kneading was continued for an additional 4 hours. The time required for the kneader crosstalk was 5 hours and 10 minutes.
上記混線物を実施例1と同様の方法で磁性塗料とし、あ
らかじめ表面を清浄にした5、25インチ径のアルミニ
ウム基板に塗布した後、周知の方法により磁場配向した
。塗膜を不活性ガス中で加熱硬化して磁気ディスクを得
た。得られたディスクには目視で確認できる欠陥はなく
、塗布膜は全面0.5 μmで、加工前の而粗さは0
.040μm Raであった。The above-mentioned crosstalk was made into a magnetic paint in the same manner as in Example 1, and after coating on a 5.25 inch diameter aluminum substrate whose surface had been previously cleaned, it was oriented in a magnetic field by a well-known method. The coating film was cured by heating in an inert gas to obtain a magnetic disk. The obtained disk had no visible defects, the coating film was 0.5 μm on the entire surface, and the roughness before processing was 0.
.. It was 040 μm Ra.
以下には比較例として、本発明によらない従来方法によ
って磁性粉を混練したときの状態を挙げる。Below, as a comparative example, a state in which magnetic powder was kneaded by a conventional method not based on the present invention is listed.
(比較例1)
強磁性体微粒子(針状γ−FezOs粉、長軸径0.3
μm、軸比5〜6、かさ密度0.6g/mQ)1−00
重量部と単結晶アルミナ微粒子10重量部をニーダ−混
線機に投入して混合した後、エポキシ樹脂15重量部を
シクロへキサノン22重量部に溶解した溶液を添加して
混合を継続した。さらにエポキシ樹脂5重量部をシクロ
へキサノン8重量部に溶解した溶液を加え、高ずり応力
下で4時間混練した。混線に要した時間は5時間であっ
た。(Comparative Example 1) Ferromagnetic fine particles (acicular γ-FezOs powder, major axis diameter 0.3
μm, axial ratio 5-6, bulk density 0.6g/mQ) 1-00
Parts by weight and 10 parts by weight of single-crystal alumina fine particles were put into a kneader mixer and mixed, and then a solution of 15 parts by weight of epoxy resin dissolved in 22 parts by weight of cyclohexanone was added and mixing was continued. Further, a solution of 5 parts by weight of epoxy resin dissolved in 8 parts by weight of cyclohexanone was added and kneaded for 4 hours under high shear stress. The time required for crosstalk was 5 hours.
上記混線物をボールミルボットに入れ、エポキシ樹脂5
重量部とシクロヘキサノン、イソホロン。Put the above mixture into a ball mill bot and use epoxy resin 5.
Weight parts and cyclohexanone, isophorone.
ジオキサンから成る混合溶媒180重量部を加え、5日
間ボールミルを行なった。次にフェノール樹脂25重量
部とビニル樹脂6重量部を上記混合溶媒300重量部に
溶解した溶液を加えて、磁性塗料を作製した。次にあら
かじめ表面を清浄にした8.8 インチ径のアルミニウ
ム基板上に上記塗料をスピンコードし、周知の方法によ
り磁場配向を行なった後、塗膜を加熱硬化した。180 parts by weight of a mixed solvent consisting of dioxane was added, and ball milling was carried out for 5 days. Next, a solution of 25 parts by weight of phenol resin and 6 parts by weight of vinyl resin dissolved in 300 parts by weight of the above mixed solvent was added to prepare a magnetic paint. Next, the above coating material was spin-coded onto an 8.8 inch diameter aluminum substrate whose surface had been previously cleaned, and after magnetic field orientation was performed by a well-known method, the coating film was cured by heating.
得られた磁気ディスクは膜厚がR65mmで0.7μm
、R105mmで0.9μmと厚く、加工前の面粗さも
0.07μm R,aと大きな値であった。The obtained magnetic disk has a film thickness of 0.7 μm with R65 mm.
, R was 105 mm, and the thickness was 0.9 μm, and the surface roughness before processing was also a large value of 0.07 μm R,a.
(比較例2)
粒径約200μmのエポキシ樹脂粉末25重量部と、強
磁性体微粒子(針状γ−Fe2O3粉、長軸径0.3
μm、軸比5〜6、かさ密度0.6g/mQ)100重
量部をニーダ−混線機に投入して混合した後、シクロへ
キサノン10重量部を添加し、高ずり応力下で混合を続
けた。約3時間後に混線状態になり、さらに4時間混線
を継続した。(Comparative Example 2) 25 parts by weight of epoxy resin powder with a particle size of approximately 200 μm and ferromagnetic fine particles (acicular γ-Fe2O3 powder, major axis diameter 0.3
μm, axial ratio 5-6, bulk density 0.6 g/mQ) was put into a kneader-mixer and mixed, then 10 parts by weight of cyclohexanone was added and mixing was continued under high shear stress. Ta. After about 3 hours, the lines became interfering, and the interfering continued for another four hours.
ニーダ−混線に要した時間は8時間であった。The time required for kneader crosstalk was 8 hours.
上記混線物を実施例1と同様の方法で磁性塗料とし、磁
気ディスクを作製した。塗布膜厚は全面0.5μmで、
加工前の面粗さは0.030 μm Raであった。The above mixed wire was made into a magnetic paint in the same manner as in Example 1, and a magnetic disk was produced. The coating film thickness was 0.5 μm on the entire surface.
The surface roughness before processing was 0.030 μm Ra.
(比較例3)
強磁性体微粒子(六方晶バリウムフェライト粉、粒径0
.05μm、板状比5、かさ密度0.8g/rr+Q)
を比較例2と同様の方法で磁性塗料とし、あらかじめ表
面を清浄にした5、25 インチ径のアルミニウム基板
にスピンコードした後、周知の方法により面内方向に磁
場配向し、塗膜を加熱硬化した。得られたディスクは、
塗布膜厚が全面0.5 μm、加工前の面粗さは0.0
42μmRaであった。(Comparative Example 3) Ferromagnetic fine particles (hexagonal barium ferrite powder, particle size 0
.. 05μm, plate ratio 5, bulk density 0.8g/rr+Q)
was made into a magnetic paint using the same method as in Comparative Example 2, and spin-coded onto a 5- or 25-inch diameter aluminum substrate whose surface had been previously cleaned.Then, the magnetic field was oriented in the in-plane direction using a well-known method, and the coating film was cured by heating. did. The resulting disc is
Coating film thickness is 0.5 μm on the entire surface, surface roughness before processing is 0.0
It was 42 μmRa.
(比較例4)
強磁性体微粒子(針状γ−F”ezO8粉、長軸径0.
3 μm、軸比5〜6、がさ密度0.6g/mQ、)1
00重量部と、粒径約200μmのエポキシ樹脂粉末1
1重量部をニーダ−混線機に投入して混合し、シクロへ
キサノン20重量部を添加してさらに混合を続けたが、
6時間経過しても混線状態にならなかった。シクロヘキ
サノンをさらに5重量部添加して4時間混合を続けたが
、混線には至らなかった。(Comparative Example 4) Ferromagnetic fine particles (acicular γ-F”ezO8 powder, long axis diameter 0.
3 μm, axial ratio 5-6, bulk density 0.6 g/mQ, )1
00 parts by weight and epoxy resin powder 1 with a particle size of approximately 200 μm
1 part by weight was put into a kneader mixer and mixed, 20 parts by weight of cyclohexanone was added and mixing was continued.
No crosstalk occurred even after 6 hours had passed. An additional 5 parts by weight of cyclohexanone was added and mixing was continued for 4 hours, but no crosstalk occurred.
(比較例5)
強磁性体微粒子(針状γ−Fe2O3粉、長軸径0.3
μm、軸比5〜6、かさ密度0.6g/m(1)10
0重量部と、粒径約200μmのエポキシ樹脂粉末20
重量部をニーダ−混線機に投入して混合し、シクロへキ
サノン10重量部を添加して混合を続けた。約5時間後
に混線状態となり、さらに4時間、高ずり応力下で混線
を続けた。混線工程には9時間を要している。(Comparative Example 5) Ferromagnetic fine particles (acicular γ-Fe2O3 powder, major axis diameter 0.3
μm, axial ratio 5-6, bulk density 0.6g/m(1)10
0 parts by weight and 20 parts of epoxy resin powder with a particle size of approximately 200 μm.
Parts by weight were put into a kneader mixer and mixed, 10 parts by weight of cyclohexanone was added, and mixing was continued. After about 5 hours, the wires were crossed, and the wires continued to be crossed under high shear stress for another 4 hours. The crosstalk process takes nine hours.
上記混線物を用いて実施例5と同様の方法で磁気ディス
クを作成した。塗膜の加工前面粗さは0.038μmR
aであった。A magnetic disk was produced in the same manner as in Example 5 using the above-mentioned interfering material. The roughness of the processed front surface of the coating film is 0.038μmR
It was a.
(比較例6)
強磁性体微粒子(針状Fe粉、長軸径0.5μm、軸比
6〜8、かさ密度0.4g/mQ)100重量部とエポ
キシ樹脂粉末25重量部をニーダ−混線機に投入して混
合した後1、シクロへキサノン10重量部を添加したが
、3時間経過後も混線状態にならなかった。さらに10
重量部のシクロヘキサノンを添加し、約3時間後に混線
状態になった。さらに4時間混線を続けた。ニーダ−混
線に要した時間は約10時間であった。(Comparative Example 6) 100 parts by weight of ferromagnetic fine particles (acicular Fe powder, long axis diameter 0.5 μm, axial ratio 6 to 8, bulk density 0.4 g/mQ) and 25 parts by weight of epoxy resin powder were mixed in a kneader. After the mixture was put into the machine and mixed, 10 parts by weight of cyclohexanone was added, but no crosstalk occurred even after 3 hours. 10 more
After adding part by weight of cyclohexanone, a crosstalk state occurred after about 3 hours. The line continued to be mixed up for another four hours. The time required for kneader crosstalk was about 10 hours.
上記混線物を実施例6と同様の方法で磁性塗料とし、磁
気ディスクを作製した。塗布膜厚は全面0.5pmで、
加工前の面粗さは0.060 μm Raと粗くなった
。The above mixed wire was made into a magnetic paint in the same manner as in Example 6, and a magnetic disk was produced. The coating film thickness is 0.5pm on the entire surface.
The surface roughness before processing was 0.060 μm Ra.
以上の本発明の実施例においてはニーダ−混線機を用い
るが、その他に高ずり応力下で混線できる装置として、
ロールミル、サイドミル、ボールミル等を用いることも
できる。In the above embodiments of the present invention, a kneader crosstalk machine is used, but other devices capable of crosstalk under high shear stress include:
A roll mill, side mill, ball mill, etc. can also be used.
本発明の利点の一つは以」二に述べてきたように、磁気
記録媒体の加工前の面粗さを低減できることにある。第
1図に示しているのは、γ−Fe2O3粉を用いた磁気
ディスクの面粗さとディスクノイズとの関係を示したも
のであるが、他の磁性粉でも傾向は同じであり、本発明
を用いることで従来に比して格段と面粗さの低減がはか
られ、低ノイズの磁気ディスクを得ることができる。As mentioned above, one of the advantages of the present invention is that the surface roughness of the magnetic recording medium before processing can be reduced. Figure 1 shows the relationship between the surface roughness and disk noise of a magnetic disk using γ-Fe2O3 powder, but the tendency is the same for other magnetic powders, and the present invention By using this method, the surface roughness can be significantly reduced compared to the conventional method, and a magnetic disk with low noise can be obtained.
また、本発明のもう−っの利点は、磁気記録媒体製造プ
ロセスの所要時間を短縮できることにあり、第2図に示
すように従来法(比較例)と比較して最大50%も所要
時間を短縮できる。しかも、比較例1のような面粗さの
増加もない。Another advantage of the present invention is that it can shorten the time required for the magnetic recording medium manufacturing process, and as shown in Figure 2, the time required is up to 50% compared to the conventional method (comparative example). Can be shortened. Furthermore, there is no increase in surface roughness as in Comparative Example 1.
以上のように、本発明によれば、例えば、5.25イン
チ径、或いは8.8インチ径のアルミニウム基板を用い
た磁気ディスクを作製した場合、塗布面粗さを0.04
0 μmRa以下に押さえることができ、ノイズの低
減が期待できる。また、塗布面粗さ0.040 μm
Raという小さい値を維持したままで、強磁性体微粒子
の含率を80 w t%まで高めることが可能である。As described above, according to the present invention, for example, when a magnetic disk is manufactured using an aluminum substrate with a diameter of 5.25 inches or 8.8 inches, the roughness of the coated surface is reduced to 0.04.
It can be suppressed to 0 μmRa or less, and noise can be expected to be reduced. Also, the roughness of the coated surface is 0.040 μm
It is possible to increase the content of ferromagnetic fine particles to 80 wt% while maintaining a small value of Ra.
さらに、過剰な溶媒を添加することなく、混線プロセス
の所要時間を短縮でき、特に強磁性体微粒子が70wt
%以上含まれる塗膜の作製や、かさ密度0.4 g /
m Q程度の非常に空隙の多い強磁性体微粒子を用い
た場合には、混線プロセスの所要時間を50%短縮でき
る。Furthermore, the time required for the crosstalk process can be shortened without adding excessive solvent, and in particular, ferromagnetic fine particles of 70 wt.
% or more, or a bulk density of 0.4 g/
When using ferromagnetic fine particles with a large number of voids on the order of mQ, the time required for the crosstalk process can be reduced by 50%.
第1図は磁気ディスクの加工前の面粗さと磁気ディスク
ノイズとの関係を示すグラフ、第2図は磁性塗膜中の強
磁性体微粒子含率と、その塗膜を作製するのに要した混
練プロセスの時間との関係を示すグラフである。Figure 1 is a graph showing the relationship between the surface roughness of a magnetic disk before processing and magnetic disk noise. Figure 2 is a graph showing the ferromagnetic fine particle content in the magnetic coating and the amount of time required to produce the coating. It is a graph showing the relationship with time of the kneading process.
Claims (1)
微粒子を高分子結合剤中に分散させた磁性層が非磁性基
体上に設けられた磁気記録媒体の製造方法において、上
記高分子結合剤の少なくとも一種類を有機溶媒で膨潤さ
せるか、または加熱溶融して高粘度流動状態となし、該
高分子結合剤中に上記強磁性体微粒子、または強磁性体
微粒子と非磁性体微粒子を、少なくとも2回に分けて添
加し、高ずり応力下で混練する工程を含むことを特徴と
する磁気記録媒体の製造方法。 2、上記強磁性体微粒子は酸化鉄粉、Co被着酸化鉄粉
、金属粉、バリウムフェライト粉のうちの少なくとも一
種である特許請求の範囲第1項記載の磁気記録媒体の製
造方法。 3、上記高分子結合剤は、エポキシ樹脂、フェノール樹
脂、ビニル樹脂のうちの少なくとも一種を含む特許請求
の範囲第1項記載の磁気記録媒体の製造方法。 4、特許請求の範囲第1項乃至第3項記載の方法により
製造した磁気記録媒体。 5、上記磁気記録媒体が磁気ディスクである特許請求の
範囲第4項記載の磁気記録媒体。 6、上記磁気記録媒体が、磁性層中に50体積パーセン
ト以上の強磁性体微粒子を含む、特許請求の範囲第4項
記載の磁気記録媒体。[Claims] 1. A method for manufacturing a magnetic recording medium in which a magnetic layer in which ferromagnetic particles, or ferromagnetic particles and non-magnetic particles are dispersed in a polymeric binder, is provided on a non-magnetic substrate. In this step, at least one kind of the polymeric binder is swollen with an organic solvent or heated and melted to form a highly viscous fluid state, and the ferromagnetic fine particles or ferromagnetic fine particles are added to the polymeric binder. A method for producing a magnetic recording medium, comprising the step of adding non-magnetic fine particles in at least two portions and kneading them under high shear stress. 2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the ferromagnetic fine particles are at least one of iron oxide powder, Co-coated iron oxide powder, metal powder, and barium ferrite powder. 3. The method for manufacturing a magnetic recording medium according to claim 1, wherein the polymer binder includes at least one of epoxy resin, phenol resin, and vinyl resin. 4. A magnetic recording medium manufactured by the method described in claims 1 to 3. 5. The magnetic recording medium according to claim 4, wherein the magnetic recording medium is a magnetic disk. 6. The magnetic recording medium according to claim 4, wherein the magnetic recording medium contains 50 volume percent or more of ferromagnetic fine particles in the magnetic layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18360188A JPH0233726A (en) | 1988-07-25 | 1988-07-25 | Magnetic recording medium and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18360188A JPH0233726A (en) | 1988-07-25 | 1988-07-25 | Magnetic recording medium and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0233726A true JPH0233726A (en) | 1990-02-02 |
Family
ID=16138665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18360188A Pending JPH0233726A (en) | 1988-07-25 | 1988-07-25 | Magnetic recording medium and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0233726A (en) |
-
1988
- 1988-07-25 JP JP18360188A patent/JPH0233726A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63129519A (en) | Magnetic recording medium and its production | |
JPH0233726A (en) | Magnetic recording medium and its manufacture | |
JPS6348612A (en) | Magnetic recording medium | |
US4567063A (en) | Process for producing magnetic recording media | |
US5180616A (en) | Hard disk magnetic recording medium comprising magnetic powder and a binder and having a specified magnetic layer thickness and surface roughness | |
JP2609656B2 (en) | Method for producing magnetic paint and magnetic recording medium and magnetic recording / reproducing apparatus using the same | |
JPH0630151B2 (en) | Method of manufacturing magnetic recording medium | |
JPS6085438A (en) | Magnetic paint composition manufacturing method | |
JP2822218B2 (en) | Manufacturing method of magnetic recording medium | |
JP2656578B2 (en) | Manufacturing method of magnetic recording medium | |
JPS63124221A (en) | Production of magnetic coating compound and magnetic recording medium formed by using said compound | |
JPS634422A (en) | Production of magnetic coating compound and magnetic recording medium using said compound | |
JPH01149224A (en) | Production of magnetic coating compound and magnetic recording medium formed by using said compound | |
JPH0291811A (en) | magnetic recording medium | |
KR960003297B1 (en) | Magnetic recording medium & the producing method | |
JPS59165237A (en) | Method for producing coating composition for magnetic film | |
JP2000136328A (en) | Production of magnetic coating and magnetic recording medium | |
JPH05258281A (en) | Magnetic recording medium and magnetic recording device | |
JP4201826B1 (en) | Method of manufacturing magnetic paint and magnetic recording medium using the magnetic paint | |
KR960002034B1 (en) | Magnetic recording media | |
JPH04163717A (en) | Method for producing magnetic paint and magnetic recording medium using the same | |
JPS6250888B2 (en) | ||
JPS6341133B2 (en) | ||
JPS6190330A (en) | Manufacturing method of magnetic paint | |
JPH05282669A (en) | Production of magnetic coating material |