JPH0232047B2 - - Google Patents
Info
- Publication number
- JPH0232047B2 JPH0232047B2 JP59263454A JP26345484A JPH0232047B2 JP H0232047 B2 JPH0232047 B2 JP H0232047B2 JP 59263454 A JP59263454 A JP 59263454A JP 26345484 A JP26345484 A JP 26345484A JP H0232047 B2 JPH0232047 B2 JP H0232047B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- superplastic
- pressure
- metal plate
- molding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B30—PRESSES
- B30B—PRESSES IN GENERAL
- B30B5/00—Presses characterised by the use of pressing means other than those mentioned in the preceding groups
- B30B5/02—Presses characterised by the use of pressing means other than those mentioned in the preceding groups wherein the pressing means is in the form of a flexible element, e.g. diaphragm, urged by fluid pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/10—Stamping using yieldable or resilient pads
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
【発明の詳細な説明】 a 発明の技術分野 本発明は超塑性金属板材の成形方法に関する。[Detailed description of the invention] a Technical field of the invention The present invention relates to a method for forming a superplastic metal plate.
b 従来技術と問題点
超塑性とは材料がある条件下で異常に伸び、変
形抵抗が格段に低下する現象のことであり、一般
的な“めやす”として引張試験における伸びが、
300%以上得られる場合を指している。この材料
を成形加工に応用すると、成形能が優れているの
で従来からの成形法では成形が困難であつた複雑
な形状のものを少ない工程で製造できる。b Conventional technology and problems Superplasticity is a phenomenon in which a material elongates abnormally under certain conditions and its deformation resistance significantly decreases.As a general guideline, the elongation in a tensile test is
This refers to cases where you can get more than 300%. When this material is applied to molding processes, it has excellent moldability, so it is possible to manufacture products with complex shapes that are difficult to mold using conventional molding methods, with fewer steps.
超塑性金属が板状のものである場合には、塊状
のものの場合に比べて加工力は一般に小さくな
る。この板状の超塑性金属板においては、プラス
チツクの成形で用いられている真空成形やガス圧
によるブロー成形を用いることさえ可能であり、
金属の板材があたかもプラスチツクの板材のよう
に成形できるのである。 When the superplastic metal is in the form of a plate, the working force is generally smaller than when it is in the form of a block. For this plate-shaped superplastic metal plate, it is even possible to use vacuum forming or blow molding using gas pressure, which is used in plastic forming.
Metal plates can be shaped as if they were plastic plates.
このように超塑性金属板材の成形をプラスチツ
クの成形手法により行うことができき極めて便利
なのであるが、問題点が無い訳ではない。すなわ
ち、真空成形やブロー成形を行うためには、所定
の圧力に到達させるための密封装置が必要であ
る。つまり、真空成形においては加工力は真空に
引くことによつて生じるものであるので、成形に
必要な真空度が達成されなければ成形は不可能で
あり、これに耐え得る密封装置を準備しなければ
ならない。一方、ブロー成形の場合においては、
成形に必要な空気圧力もしくはガス圧力に到達さ
せるために、やはり密封装置が必要である。 Although it is extremely convenient to be able to mold a superplastic metal plate using a plastic molding method, it is not without its problems. That is, in order to perform vacuum forming or blow molding, a sealing device is required to reach a predetermined pressure. In other words, in vacuum forming, the processing force is generated by drawing a vacuum, so forming is impossible unless the degree of vacuum required for forming is achieved, and a sealing device that can withstand this must be prepared. Must be. On the other hand, in the case of blow molding,
A sealing device is still required to reach the air or gas pressure required for molding.
大量生産する場合においては、このような密封
装置を使用する超塑性金属板材の成形方法も経済
的に可能であろうが、現在は多品種少量生産が要
求されることが多いので、なるべく簡便に成形で
きる方法が要望されている。 In the case of mass production, it may be economically possible to form a superplastic metal plate using such a sealing device, but currently there is often a demand for high-mix, low-volume production, so it is necessary to make it as simple as possible. There is a demand for a method that can be molded.
なお、前記の真空成形やブロー成形以外に、超
塑性金属板材の成形手段として液圧成形やゴム圧
成形も考えられる。しかし、液圧成形の場合にお
いては、圧力媒体である液体の漏れを防止するた
めに真空成形やブロー成形と同様の問題点があ
り、簡便な方法とは考えられない。また、ゴムを
圧力媒体としたゴム圧成形の場合には、冷間加工
であれば比較的問題が少ないが、超塑性材は超塑
性を発現する高温の下で加工するものであるの
で、ゴムがその加工温度に耐えられないという欠
点がある。 In addition to the above-mentioned vacuum forming and blow forming, hydraulic forming and rubber pressure forming may also be considered as means for forming the superplastic metal plate material. However, in the case of hydraulic molding, there are problems similar to those of vacuum molding and blow molding in order to prevent leakage of liquid, which is a pressure medium, and it cannot be considered a simple method. In addition, in the case of rubber compression molding using rubber as a pressure medium, there are relatively few problems if it is cold processed, but superplastic materials are processed at high temperatures where they develop superplasticity, so rubber The disadvantage is that it cannot withstand the processing temperature.
以上のようなことより、超塑性板材の簡便な成
形方法の開発が期待されている。 Based on the above, it is hoped that a simple method for forming superplastic plates will be developed.
c 発明の目的
本発明は上記の点に鑑み、超塑性金属板材を簡
便に成形する方法を提供することを目的とする。c. Object of the Invention In view of the above-mentioned points, an object of the present invention is to provide a method for easily forming a superplastic metal plate material.
d 発明の構成
第1図イのように形状を転写させるための金型
1の上に超塑性金属板材2を置き、その外周に任
意の寸法を有する円筒3を設置する。その円筒の
中に粉粒体4を入れ、超塑性を発現する温度とひ
ずみ速度の下で加圧すると粉粒体が圧力の伝達媒
体となり、第1図ロのように超塑性金属板材2に
金型1の形状を転写するものである。この場合、
粉粒体4が転写されるべき金型の形状に柔軟性を
有して変形するので、加圧用の工具5は金型1の
形状に加工しておく必要がなく、そのため金型加
工における簡易化を図ることができる。d Structure of the Invention As shown in FIG. 1A, a superplastic metal plate 2 is placed on a mold 1 for transferring a shape, and a cylinder 3 having arbitrary dimensions is placed around its outer periphery. When the granular material 4 is placed in the cylinder and pressurized at a temperature and strain rate that exhibits superplasticity, the granular material becomes a pressure transmission medium, and as shown in FIG. This is to transfer the shape of the mold 1. in this case,
Since the granular material 4 is flexibly deformed to the shape of the mold to which it is to be transferred, there is no need to process the pressurizing tool 5 into the shape of the mold 1, which simplifies mold processing. It is possible to aim for
この場合、圧力の伝達媒体として用いる粉粒体
に期待される性質は、次のようなものである。 In this case, the properties expected of the granular material used as the pressure transmission medium are as follows.
条件(1):圧力状態が静水圧に近いこと。Condition (1): The pressure state is close to hydrostatic pressure.
条件(2):加圧力が小さいこと。Condition (2): Pressure force is small.
条件(3):見掛け密度が大きく、圧縮成形時のスト
ロークが短いこと。Condition (3): The apparent density is high and the stroke during compression molding is short.
条件(4):耐熱性があること。Condition (4): Must be heat resistant.
条件(5):加圧することにより固まらないこと。Condition (5): Do not harden when pressurized.
条件(1)〜(5)を順に説明する。条件(1):圧力状態
が静水圧に近い程、圧力の伝達効率がよく、超塑
性金属板材の成形性が向上する。また、粉粒体と
円筒との間の摩擦が小さいければ、超塑性金属板
に伝達される圧力が増大し、加圧軸に垂直な方向
の圧力分布が均一になる。粉粒体と円筒との間の
摩擦を軽減させるためには、いわゆる“片押し成
形法”でなく、“両押し成形法”を用いると効果
的である。成形された超塑性金属板の表面性状の
点から判断すると、粉粒体の粒径は一般に細かい
方がよい。粒径が大きすぎると、超塑性金属板に
粉粒体が押し込まれ、板材に作用する圧力分布が
不均一となり、表面性状が劣る。この傾向を緩和
するために、粉粒体と超塑性金属板材との間に金
属製の箔もしくは薄板を敷くと効果的である。条
件(2):加圧装置の容量を軽減させるためには、加
圧力が小さくて済む粉粒体が望ましい。条件(3):
粉粒体の見掛け密度の大きいものの方が、圧縮時
のストロークが短くて済み、また粉粒体の使用量
が少なくてよい。条件(4):超塑性発現温度に粉粒
体を加熱するので、その温度に耐え得るものでな
ければならない。条件(5):成形後に金型から取り
出した時、粉粒体が固まつているとその粉粒体を
再利用することが困難であるので、粉粒体は固ま
らない方が望ましい。 Conditions (1) to (5) will be explained in order. Condition (1): The closer the pressure state is to hydrostatic pressure, the better the pressure transmission efficiency and the better the formability of the superplastic metal plate material. Furthermore, if the friction between the powder and the cylinder is small, the pressure transmitted to the superplastic metal plate increases, and the pressure distribution in the direction perpendicular to the pressurizing axis becomes uniform. In order to reduce the friction between the powder and the cylinder, it is effective to use a "double-press method" rather than a so-called "single-press method." Judging from the surface quality of the formed superplastic metal plate, it is generally better for the particle size of the powder to be finer. If the particle size is too large, the powder particles will be forced into the superplastic metal plate, resulting in uneven pressure distribution acting on the plate material and poor surface quality. In order to alleviate this tendency, it is effective to place a metal foil or thin plate between the powder and the superplastic metal plate. Condition (2): In order to reduce the capacity of the pressurizing device, it is desirable to use powder and granules that require a small pressurizing force. Condition (3):
The larger the apparent density of the powder or granule, the shorter the stroke during compression, and the smaller the amount of powder or granule used. Condition (4): Since the granular material is heated to the temperature at which superplasticity occurs, it must be able to withstand that temperature. Condition (5): If the powder or granules are solidified when taken out from the mold after molding, it is difficult to reuse the powder or granules, so it is preferable that the powder or granules do not solidify.
以上のような条件を極力満足するものを鋭意検
討を重ねて調査した結果、粒径が数μmから数百
μm程度の黒鉛粉末、またはそれを一部として含
む金属粉末、セラミツクス粉末などが有効であ
り、黒鉛粉末が粉末潤滑剤としても機能するた
め、これらの粉粒体を用いることにより擬静水圧
の状態を簡便に作り出すことができ、気体や液体
を用いる従来からの成形法に比べてはるかにフレ
キシビリテイーに富む簡便な成形手段を提供する
ものであることが明らかとなつた。 As a result of intensive research and investigation into materials that satisfy the above conditions as much as possible, we found that graphite powder with a particle size of several micrometers to several hundred micrometers, or metal powder or ceramic powder that contains graphite as a part, is effective. Since graphite powder also functions as a powder lubricant, quasi-hydrostatic pressure can be easily created using these powders, which is much more effective than conventional molding methods using gas or liquid. It has become clear that this method provides a simple molding means with great flexibility.
f 実施例
実施例 1
超塑性金属板としてZn―22Al超塑性材を用い
た。更に詳しく説明すると、アルゴン噴霧法によ
り製造した粒径が25μm以下の粉末を、380℃で30
分加熱した後、氷水の中で急冷処理を施し、最後
に真空乾燥した。このようにして得られたZn―
22Al超塑性粉末を12.5gf使用し、46mm〓の金型を
用いて55Kgf/mm2の成形圧力で圧縮成形し、直径
と厚さが46mm〓×1.5mmの円板状の板材を製造し、
これを実施例用の材料とした。f Examples Example 1 A Zn-22Al superplastic material was used as the superplastic metal plate. To explain in more detail, powder with a particle size of 25 μm or less produced by the argon atomization method was heated at 380°C for 30 minutes.
After heating for several minutes, it was rapidly cooled in ice water and finally dried in vacuum. Zn obtained in this way
Using 12.5 gf of 22Al superplastic powder, compression molding was performed using a 46 mm mold at a molding pressure of 55 Kgf/mm 2 to produce a disc-shaped plate material with a diameter and thickness of 46 mm × 1.5 mm.
This was used as a material for examples.
圧力媒体としては、粒度分布が+80メツシユ20
%以下、−80メツシユ80%以上(80メツシユは
175μmに対応)である黒鉛粉末(日本黒鉛工業(株)
PAG―80)を約80gf使用した。この黒鉛粉末を
第2図のように充てんした。充てんした際の粉末
の体積は約100cm3である。第2図に示したものを
電気炉に入れてZn―22Al超塑性材の超塑性発現
温度である250℃に加熱した後に取り出し、油圧
式万能試験機を用いて10tonfの加圧力(圧力に換
算して6Kgf/mm2)を作用させた。負荷時の所要
時間は約1分30秒である。加圧後にZn―22Al超
塑性材を取り出すと、金型の形状を転写して第2
図の破線で示したように成形されており、また、
黒鉛粉末は固まつていなかつた。 As a pressure medium, the particle size distribution is +80 mesh 20
% or less, -80 mesh 80% or more (80 mesh is
Graphite powder (compatible with 175μm) (Nippon Graphite Industries Co., Ltd.)
Approximately 80gf of PAG-80) was used. This graphite powder was filled as shown in FIG. The volume of the powder when filled is approximately 100 cm 3 . The material shown in Figure 2 was placed in an electric furnace and heated to 250℃, which is the superplasticity development temperature of Zn-22Al superplastic material. 6 Kgf/mm 2 ) was applied. The time required under load is approximately 1 minute and 30 seconds. When the Zn-22Al superplastic material is taken out after pressure is applied, the shape of the mold is transferred and the second
It is shaped as shown by the broken line in the figure, and
The graphite powder was not solidified.
実施例 2
第3図のようにZn―22Al超塑性金属板の上に
実施例1よりも粒径の細かい黒鉛粉末(+150メ
ツシユ1%以下、−250メツシユ75〜90%;日本黒
鉛工業(株)CB―150)を4〜5gf(体積にして約10
cm3)充てんし、その上層部に実施例1の黒鉛粉末
PAG―80を約70gf充てんした。ここで、圧力媒
体の全体を粒径の細かい黒鉛粉末にしなかつたの
は、粒径の細かい方が成形品の表面性状が優れて
いるものの粒径が小さいと一般に充てん時の見掛
け密度が小さく、その分だけ円筒の長さが余分に
必要であり、また圧縮時のストロークが長くなる
ので、これらの弊害を除くためである。Example 2 As shown in Figure 3, graphite powder with a finer particle size than in Example 1 (+150 mesh 1% or less, -250 mesh 75 to 90%; Nippon Graphite Industries Co., Ltd. )CB-150) from 4 to 5 gf (approximately 10 gf by volume)
cm 3 ), and the graphite powder of Example 1 was added to the upper layer.
I filled it with about 70 gf of PAG-80. Here, the reason why the entire pressure medium was not made of graphite powder with a fine particle size is because although finer particle sizes give better surface properties to molded products, smaller particle sizes generally result in lower apparent density when filled. This is to eliminate these disadvantages since the length of the cylinder is required to compensate for this and the stroke during compression becomes longer.
加圧力は4tonf(圧力に換算して2.4Kgf/mm2)
である。金型の形状は第3図のようであり、使用
した超塑性金属板、加熱温度および加圧速度など
は実施例1と同様である。成形の結果、超塑性板
と接している黒鉛粉末CB―150はやや固まつたも
のの、上層部の黒鉛粉末PAG―80は固まること
なく、第3図の破線で示したように成形すること
ができた。 Pressure force is 4tonf (converted to pressure: 2.4Kgf/mm 2 )
It is. The shape of the mold is as shown in FIG. 3, and the superplastic metal plate, heating temperature, pressing speed, etc. used are the same as in Example 1. As a result of forming, although the graphite powder CB-150 in contact with the superplastic plate hardened slightly, the graphite powder PAG-80 in the upper layer did not harden and could be formed as shown by the broken line in Figure 3. did it.
実施例 3
実施例2の場合と同様に粒径の異なる2種類の
黒鉛粉末を層状に充てんした。すなわち、Zn―
22Al超塑性板の上に粒径が更に小さい黒鉛粉末
(平均粒径10μm;日本黒鉛工業(株)ACP)を約4
g(体積にして約10cm3)充てんし、その上層部に
実施例1と実施例2で使用した黒鉛粉末(PAG
―80)を充てんした。加圧力は10tonf(圧力6Kg
f/mm2である。金型の形状は第4図のようであ
る。使用した超塑性金属板、加熱温度および加圧
速度などの条件は、実施例1、実施例2に同じで
ある。その結果、第4図の破線で示したように金
型の形状を転写して精度よく成形することができ
た。Example 3 As in Example 2, two types of graphite powders with different particle sizes were filled in layers. In other words, Zn―
Approximately 4 pieces of graphite powder with a smaller particle size (average particle size 10 μm; Nippon Graphite Industries Co., Ltd. ACP) is placed on the 22Al superplastic plate.
g (approximately 10 cm 3 in volume), and the graphite powder (PAG
-80) was filled. Pressure force is 10tonf (pressure 6Kg)
f/ mm2 . The shape of the mold is as shown in FIG. The conditions such as the superplastic metal plate used, the heating temperature, and the pressurizing speed were the same as in Examples 1 and 2. As a result, as shown by the broken line in FIG. 4, the shape of the mold could be transferred and molded with high precision.
実施例 4
第5図のようにZn―22Al超塑性金属板の上に
粉砕鉄粉(粒度分布177〜149μm5%以下、149〜
74μm50〜60%、74〜44μm20〜30%、−44μm15%
以上;日本磁力選鉱(株)ES―50)と黒鉛粉末
(ACP)の混合粉末を約300gf充てんした。この
場合、黒鉛粉末は粉末潤滑剤として用いたもので
あり、配合比は鉄粉290gfに対して黒鉛粉末は約
10gfである。これは体積割合では、おおよそ80
cm3:30cm3に相当する。加圧力は20tonf(12Kgf/
mm2)である。金型の形状は第5図のようである。
使用した超塑性金属板、加熱温度および加圧速度
などは、実施例1〜3と同様である。成形の結
果、第5図の破線で示したように超塑性金属を成
形することができた。Example 4 As shown in Figure 5, crushed iron powder (particle size distribution 177-149 μm, 5% or less, 149-
74μm50~60%, 74~44μm20~30%, -44μm15%
Approximately 300 gf of mixed powder of Nippon Magnetic Sensing Co., Ltd. ES-50) and graphite powder (ACP) was filled. In this case, the graphite powder was used as a powder lubricant, and the blending ratio was approximately 290gf of iron powder and graphite powder.
It is 10gf. This is approximately 80 in terms of volume percentage.
cm3 : equivalent to 30cm3 . Pressure force is 20tonf (12Kgf/
mm2 ). The shape of the mold is as shown in FIG.
The superplastic metal plate, heating temperature, pressing speed, etc. used were the same as in Examples 1 to 3. As a result of the forming, a superplastic metal could be formed as shown by the broken line in FIG.
実施例 5
実施例4の場合において、金型の形状と加圧力
だけを変化させ、他の条件は実施例4とまつたく
同一とした。この場合、金型は第3図のものを使
用し、加圧力は10tonf(6Kgf/mm2)とした。成
形の結果、第3図の破線のように成形することが
できた。Example 5 In the case of Example 4, only the shape of the mold and the pressing force were changed, and the other conditions were exactly the same as in Example 4. In this case, the mold shown in FIG. 3 was used, and the pressing force was 10 tonf (6 kgf/mm 2 ). As a result of molding, it was possible to mold as shown by the broken line in FIG.
第1図のイとロは本発明による成形方法の説明
図であり、イは成形を行う前の状態、ロは成形後
の状態の断面を示す。第2図は実施例1において
使用された装置と成形された板材の断面図、第3
図は実施例2と実施例5において使用された装置
と成形された板材の断面図、第4図は実施例3に
おいて使用された装置と成形された板材の断面
図、第5図は実施例4において使用された装置と
成形された板材の断面図である。
1……形状を転写させるための金型、2……超
塑性金属板材、3……円筒、4……粉粒体、5…
…加圧用工具。
A and B in FIG. 1 are explanatory diagrams of the molding method according to the present invention, where A shows a cross section before molding, and B shows a cross section after molding. Figure 2 is a sectional view of the device and molded plate material used in Example 1;
The figure is a sectional view of the apparatus and molded plate material used in Examples 2 and 5, FIG. 4 is a sectional view of the apparatus and molded plate material used in Example 3, and FIG. 5 is a sectional view of the molded plate material used in Example 3. FIG. 4 is a cross-sectional view of the device used in Example 4 and the molded plate material. 1... Mold for transferring the shape, 2... Superplastic metal plate, 3... Cylinder, 4... Powder, 5...
...Pressure tool.
Claims (1)
ずみ速度の下で成形するに際し、上記超塑性金属
からなる板材を製品の形状を転写させるべきダイ
ス上に置き、その上に全部または一部が黒鉛粉末
からなる圧力伝達媒体としての粉粒体を載置し、
この粉粒体を介して工具により上記超塑性金属板
材を加圧成形することを特徴とする粉粒体を圧力
媒体とした超塑性材の成形方法。 2 特許請求の範囲第1項記載の成形方法におい
て、粉粒体と超塑性金属板材との間に金属性の箔
もしくは薄板を介在させることを特徴とする超塑
性材の成形方法。[Scope of Claims] 1. When forming a superplastic metal plate material at a temperature and strain rate at which it develops superplasticity, the plate material made of the superplastic metal is placed on a die to which the shape of the product is to be transferred, and then A granular material as a pressure transmission medium consisting entirely or partially of graphite powder is placed on the
A method for forming a superplastic material using powder or granules as a pressure medium, characterized in that the superplastic metal plate material is pressure-formed using a tool through this powder or granules. 2. A method for molding a superplastic material according to claim 1, characterized in that a metallic foil or thin plate is interposed between the powder and the superplastic metal plate material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59263454A JPS61140328A (en) | 1984-12-12 | 1984-12-12 | Formation of superplastic material by using granular body as pressure-transmitting medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59263454A JPS61140328A (en) | 1984-12-12 | 1984-12-12 | Formation of superplastic material by using granular body as pressure-transmitting medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61140328A JPS61140328A (en) | 1986-06-27 |
JPH0232047B2 true JPH0232047B2 (en) | 1990-07-18 |
Family
ID=17389734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59263454A Granted JPS61140328A (en) | 1984-12-12 | 1984-12-12 | Formation of superplastic material by using granular body as pressure-transmitting medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61140328A (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5085068A (en) * | 1991-01-16 | 1992-02-04 | Extrude Hone Corporation | Die forming metallic sheet materials |
ES2094345T3 (en) * | 1991-07-23 | 1997-01-16 | Extrude Hone Corp | STAMPING OF METAL SHEETS. |
CN100376340C (en) * | 2005-01-24 | 2008-03-26 | 燕山大学 | Sheet Metal Half-Mold Forming Process |
CN101837407A (en) * | 2010-04-15 | 2010-09-22 | 重庆理工大学 | Forming die by solid particle medium and radial thrust |
FR2975313A1 (en) * | 2011-05-19 | 2012-11-23 | Peugeot Citroen Automobiles Sa | Method for shaping e.g. mechanical parts, in automobile industry, involves applying pressure on blank to plastically deform blank until contact with die by solid particles, where particles are formed of powder and/or balls |
JP6086388B2 (en) * | 2014-02-28 | 2017-03-01 | 独立行政法人国立高等専門学校機構 | Foil drawing |
CN103909132A (en) * | 2014-04-04 | 2014-07-09 | 燕山大学 | Reverse drawing method for soft die with peripheral auxiliary thrust |
JP6269305B2 (en) * | 2014-05-08 | 2018-01-31 | 新日鐵住金株式会社 | Stretch flange processing method and processing apparatus |
CN105537360B (en) * | 2015-12-25 | 2017-08-11 | 燕山大学 | A kind of positive and negative drawing forming method of sheet metal soft mode |
CN112170608B (en) * | 2020-09-10 | 2022-07-05 | 平高集团有限公司 | A kind of part deep drawing forming method and forming die |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4869753A (en) * | 1971-12-20 | 1973-09-21 | ||
JPS4879755A (en) * | 1972-01-29 | 1973-10-25 | ||
JPS51132165A (en) * | 1975-05-14 | 1976-11-17 | Kumagaya Seisakushiyo Kk | Method of bead for metal cylinder |
JPS5238937A (en) * | 1975-09-23 | 1977-03-25 | Ricoh Co Ltd | Liquid developer for electrostatic photography |
-
1984
- 1984-12-12 JP JP59263454A patent/JPS61140328A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4869753A (en) * | 1971-12-20 | 1973-09-21 | ||
JPS4879755A (en) * | 1972-01-29 | 1973-10-25 | ||
JPS51132165A (en) * | 1975-05-14 | 1976-11-17 | Kumagaya Seisakushiyo Kk | Method of bead for metal cylinder |
JPS5238937A (en) * | 1975-09-23 | 1977-03-25 | Ricoh Co Ltd | Liquid developer for electrostatic photography |
Also Published As
Publication number | Publication date |
---|---|
JPS61140328A (en) | 1986-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4667497A (en) | Forming of workpiece using flowable particulate | |
US4640711A (en) | Method of object consolidation employing graphite particulate | |
US4946526A (en) | Method for compression molding of laminated panels | |
SE460655B (en) | PROCEDURES FOR CONSOLIDATING PROPERTIES IN A BOTTLE OF PROTECTIVE PARTICLES | |
JPH0232047B2 (en) | ||
JPS62119105A (en) | Bearing and supporting member made from intercalated graphite | |
US1510745A (en) | Briquette and method of making same | |
US5246638A (en) | Process and apparatus for electroconsolidation | |
US4371396A (en) | Method for manufacturing billets, from metal powder, intended to be subsequently rolled or forged | |
US20100003158A1 (en) | Vibratory powder consolidation | |
JPH04168201A (en) | Manufacture of ceramic reinforced al alloy composite material | |
CN107282740A (en) | A kind of drawing forming method of vanadium alloy plate | |
US3547599A (en) | Solid state joining method | |
US3861839A (en) | Diffusion molding apparatus | |
US3518336A (en) | Method of forming a compact article of particulate material | |
US3741756A (en) | Metal consolidation | |
US3472656A (en) | Method of manufacturing articles from particulate metal masses | |
US3746484A (en) | Apparatus for developing high pressure and high temperature | |
JP3898803B2 (en) | Method for producing metal composite member | |
JPH03290906A (en) | Warm-worked magnet and its manufacture | |
CN102941344A (en) | Technology for forming component by virtue of super-plastic hot-pressing and diffusion-bonding for titanium alloy powder | |
SU1678527A1 (en) | Process for manufacturing hard alloy-based tools | |
JP2640642B2 (en) | Method of improving alloy material properties and processing apparatus and product thereof | |
JPH0433782A (en) | Manufacture of composite material made of intermetallic compound partly at least | |
JPS5933086A (en) | Production of composite roll |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |