[go: up one dir, main page]

JPH0231462B2 - - Google Patents

Info

Publication number
JPH0231462B2
JPH0231462B2 JP55027232A JP2723280A JPH0231462B2 JP H0231462 B2 JPH0231462 B2 JP H0231462B2 JP 55027232 A JP55027232 A JP 55027232A JP 2723280 A JP2723280 A JP 2723280A JP H0231462 B2 JPH0231462 B2 JP H0231462B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
dilute sulfuric
electrode
electrode plate
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55027232A
Other languages
Japanese (ja)
Other versions
JPS56123675A (en
Inventor
Yoshihisa Yagyu
Masashi Wakamatsu
Akio Watanabe
Yoshihiro Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2723280A priority Critical patent/JPS56123675A/en
Publication of JPS56123675A publication Critical patent/JPS56123675A/en
Publication of JPH0231462B2 publication Critical patent/JPH0231462B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • H01M10/10Immobilising of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は密閉型鉛蓄電池の放電容量及び寿命を
ともに良好な状態にするとともに、電池内の電解
質である希硫酸の漏れ出しを十分に防ぐことので
きる密閉型鉛蓄電池の製造法を提案することを目
的としたものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a sealed lead-acid battery that can improve both the discharge capacity and life of the battery, and can sufficiently prevent dilute sulfuric acid, which is the electrolyte inside the battery, from leaking out. The purpose of this study is to propose a manufacturing method for .

従来、密閉型鉛蓄電池の主な電池構成として
は、正極と負極の間に吸液性のセパレータを配
し、このセパレータ中に電解質である希硫酸をこ
れが自由に遊離できない程度の量で含浸させる。
通常、のようなセパレータは用いずに、正極
と負極の間には二酸化ケイ素、アルミナなどと電
解質である希硫酸とで形成されたゲルを存在さ
せ、ゲル自体にセパレータとしての役割を持たせ
た状態とする。の二つの方法に大別される。以上
に記した方法では、いずれも正極よりも負極の放
電容量を大とし、過充電時に正極から発生した酸
素ガスは負極で消失、還元されて電解質中へイオ
ンの形で導入され、このイオンが再び正極から酸
素ガスとなつて発生する循環的な反応を起こさせ
ることにより、電池外部へはほとんど排出物を出
さないのが特徴である。これらの方法のうち、
の構成は正極および負極の活物質がセパレータを
介して強く圧迫、保持されるので長寿命である。
の構成はゲル状電解質を、電池内へ注入すると
きは強く撹拌することでチキソトロピー現象によ
りゾル状となつているために、電解質は極板内、
極板間及び電そう内壁と極板との間の間〓などに
充満するので電解質の保持が有効に行なえる利点
はあるが、正極と負極との隔離効果や活物質の圧
迫、保持の効果はにくらべ少ないので寿命の点
で多少劣ることが避けられない。
Conventionally, the main structure of a sealed lead-acid battery is to place a liquid-absorbing separator between the positive and negative electrodes, and to impregnate this separator with dilute sulfuric acid, which is an electrolyte, in an amount that prevents it from being freely released. .
Normally, a separator such as the one in state. It is roughly divided into two methods. In all of the methods described above, the discharge capacity of the negative electrode is larger than that of the positive electrode, and the oxygen gas generated from the positive electrode during overcharging is lost and reduced at the negative electrode and introduced into the electrolyte in the form of ions. By causing a cyclical reaction in which oxygen gas is generated from the positive electrode again, almost no waste is emitted to the outside of the battery. Of these methods,
This structure has a long lifespan because the active materials of the positive and negative electrodes are strongly compressed and held through the separator.
The composition of the electrolyte is that when it is injected into the battery, it is strongly stirred and becomes a sol-like substance due to the thixotropic phenomenon.
It has the advantage of effectively retaining the electrolyte because it fills the space between the electrode plates and between the inner wall of the electrode and the electrode plate, but it also has the effect of isolating the positive and negative electrodes and compressing and retaining the active material. It is inevitable that it will have a somewhat inferior lifespan because it has a smaller amount of energy compared to the same one.

そこで本発明では上記及びの構成の長所を
同時に満足させるための新しい製造法を提供する
ものである。
Therefore, the present invention provides a new manufacturing method that simultaneously satisfies the advantages of the above configurations.

なお、正極と負極との間にセパレータを介在し
て全体を重ねて電極群を構成し、これを電そう中
へ挿入した後二酸化ケイ素を分散させた希硫酸よ
りなるゲル電解質を強く撹拌することによりゾル
状として注入する方法は、先に本出願人が提案し
た(特願昭52−65005号)。
In addition, a separator is interposed between the positive electrode and the negative electrode to form an electrode group, and after inserting this into an electrolyte, a gel electrolyte made of dilute sulfuric acid in which silicon dioxide is dispersed is strongly stirred. The method of injecting it in the form of a sol was previously proposed by the present applicant (Japanese Patent Application No. 1983-65005).

本発明は上記の方法とは異なり、強く撹拌しな
くても十分な流動性を有している二酸化ケイ素を
希硫酸に分散させたゾル、つまり二酸化ケイ素の
含有量の少ない希硫酸電解質を用いることを特微
とする。このような流動性の良い電解質を注入す
ることにより、電解質は電池内の細孔部まで容易
かつ十分に充てんされ、電池特性を良好にするこ
とができる。なお、二酸化ケイ素を含む希硫酸の
注入量は、注入された希硫酸の液体部分がセパレ
ータを含む極板群に優先的に吸収されて、極板群
の周辺部分、つまり極板と電そう内壁との間〓
や、極板群の上部空間部に存在する電解質が十分
ゲル化する範囲の量に限定している。注入量が多
すぎると極板群の周辺部分に存在する電解質はゾ
ル状態のままで、ゲル化しない。
The present invention differs from the above method in that it uses a sol in which silicon dioxide is dispersed in dilute sulfuric acid, which has sufficient fluidity without strong stirring, that is, a dilute sulfuric acid electrolyte with a low content of silicon dioxide. Features: By injecting such an electrolyte with good fluidity, the electrolyte can easily and sufficiently fill up to the pores in the battery, and the battery characteristics can be improved. Note that the injection amount of dilute sulfuric acid containing silicon dioxide is such that the liquid portion of the injected dilute sulfuric acid is preferentially absorbed by the electrode plate group including the separator, and the surrounding area of the electrode plate group, that is, the electrode plate and the inner wall of the electrode plate, is absorbed by the electrode group including the separator. Between
The amount is limited to a range in which the electrolyte present in the upper space of the electrode plate group is sufficiently gelled. If the amount of injection is too large, the electrolyte existing around the electrode plate group remains in a sol state and does not gel.

二酸化ケイ素の希硫酸に対する分散割合は、極
板群の多孔度(吸液の割合)、極板群と電そう内
壁との間〓の割合、極板群に対する分散液の添加
割合などにより最適値が異なる。しかし分散液が
十分な流動性を有するゾル状態であるとともに、
電そう内への注入後において極板群の周辺部分に
おいて十分な固さを有するゲル状態とするために
は、重量比でおおむね0.5〜2.5%程度が適当であ
る。
The dispersion ratio of silicon dioxide to dilute sulfuric acid is the optimum value depending on the porosity of the electrode group (liquid absorption ratio), the ratio between the electrode group and the inner wall of the electrode, the addition ratio of the dispersion liquid to the electrode group, etc. are different. However, while the dispersion is in a sol state with sufficient fluidity,
In order to form a gel state with sufficient hardness in the peripheral portion of the electrode plate group after being injected into the electric cell, a weight ratio of approximately 0.5 to 2.5% is appropriate.

さらに本発明ではゾル状の電解質を注入する
と、その液体部分(希硫酸)の一部分が優先的に
セパレータを含む極板群に吸収され、その結果極
板群周辺部分の電解質は二酸化ケイ素の割合が多
くなりゲル化が促進される。このまま引続いて電
そうを密封状態とするためには、正極と負極は化
成ずみの極板とすることが望ましい。未化成の極
板を用いた場合は、化成時の充電効率が一抜に低
いため、希硫酸中の水分が電気分解されてかなり
の量が失なわれるので、電そう内の極板群上部の
空間部の体積を十分大きくして電解質の注入量を
増加させるか、又は化成中に適宜失なわれた水分
の補充を行なうことなどが必要となる。
Furthermore, in the present invention, when a sol-like electrolyte is injected, a part of the liquid part (dilute sulfuric acid) is preferentially absorbed into the electrode group including the separator, and as a result, the electrolyte in the area around the electrode group has a lower silicon dioxide ratio. As the amount increases, gelation is promoted. In order to continue to keep the electric cell in a sealed state, it is desirable that the positive and negative electrodes be chemically formed plates. If unformed electrode plates are used, the charging efficiency during formation is extremely low, and a considerable amount of water in dilute sulfuric acid is electrolyzed and lost, so the upper part of the electrode plate group in the electrolytic chamber is It is necessary to sufficiently increase the volume of the space to increase the amount of electrolyte injected, or to appropriately replenish water lost during chemical formation.

つぎに本発明の実施例について詳述する。 Next, embodiments of the present invention will be described in detail.

化成ずみの正極および負極(いずれもペースト
式極板とし、正極は縦80mm、横30mm、厚さ3mm、
負極は縦80mm、横30mm、厚さ2mmとした)を厚さ
2mmのガラス繊維製マツトよりなるセパレータを
極板間に介在して正極2枚、負極3枚を重ね合せ
て極板群を構成する。この極板群を、極板の左右
両側面方向にのみ各1mmだけ余裕のある電そう中
に挿入し、平均粒径20mμの二酸化ケイ素を重量
比で1.2%分散させた比重1.30の希硫酸を極板群
の端部上約2mmになるまで注入した後、ふたをか
ぶせて電そうを密封状態とした。ただし、電そう
のふたには電池内部の圧力が大気圧に比べて0.3
気圧の加圧状態となつたときのみ開放状態となる
安全弁を設けた。この電池をAとする。またここ
では電池内に自由に動き得る遊離した状態の希硫
酸は実際上存在しないものとした。
Chemically formed positive and negative electrodes (both are paste-type electrode plates, the positive electrode is 80mm long, 30mm wide, 3mm thick,
The negative electrode was 80 mm long, 30 mm wide, and 2 mm thick), with a separator made of 2 mm thick glass fiber mat interposed between the electrode plates, and two positive electrodes and three negative electrodes were stacked to form an electrode plate group. do. This electrode plate group was inserted into an electric cell with a margin of 1 mm on both the left and right sides of the electrode plate, and dilute sulfuric acid with a specific gravity of 1.30 in which silicon dioxide with an average particle size of 20 mμ was dispersed at 1.2% by weight was added. After injecting the solution to a depth of approximately 2 mm above the edge of the electrode plate group, the electrode was covered with a lid to seal the cell. However, the pressure inside the battery is 0.3% higher than atmospheric pressure on the lid of the battery.
A safety valve was installed that opens only when the air pressure is increased. This battery is called A. Furthermore, it was assumed here that free dilute sulfuric acid that could freely move within the battery did not actually exist.

つぎに比較のための電池として、Aにおいて用
いた二酸化ケイ素を分散させた希硫酸のかわり
に、二酸化ケイ素を分散させていない比重1.30の
希硫酸を極板群に含浸させた電池Bを構成した。
ここで、極板群に含浸させる希硫酸量は、自由に
動き得る遊離状態では実際上存在しない範囲で、
かつ十分な量となるようにした。
Next, as a battery for comparison, battery B was constructed in which the electrode plate group was impregnated with dilute sulfuric acid with a specific gravity of 1.30 without silicon dioxide dispersed therein, instead of the dilute sulfuric acid in which silicon dioxide was dispersed as used in A. .
Here, the amount of dilute sulfuric acid impregnated into the electrode plate group is within a range that does not actually exist in a freely movable free state.
and in sufficient quantity.

さらに、Aにおける極板群で正極と負極の間隔
はマツト状セパレータを介した場合と同じに保ち
ながら、マツトを除去した状態で電そう内へ挿入
し、二酸化ケイ素を重量比で10%を分散させた比
重1.30の希硫酸ゲルを強く撹拌しながらチキソト
ロピー現象により流動性を持たせて電そう内の極
板群の上端部から2mm上まで注入し、固化させ
た。この電池をCとする。
Furthermore, while keeping the distance between the positive and negative electrodes in the electrode plate group A the same as when using a mat-like separator, the mat was removed and inserted into the electrolyte, and silicon dioxide was dispersed at 10% by weight. The dilute sulfuric acid gel having a specific gravity of 1.30 was made fluid by thixotropy while being strongly stirred, and was injected into the cell up to 2 mm above the upper end of the electrode plate group and solidified. This battery is called C.

つぎに、Aにおける二酸化ケイ素の希硫酸分散
液において、二酸化ケイ素の割合を重量比で3%
とした場合の電池をDとする。この場合は分散液
を電そう内へ注入したときの固化が早く、Aにく
らべて極板群中への分散液の浸入がかなり妨害さ
れていることが観察された。
Next, in the dilute sulfuric acid dispersion of silicon dioxide in A, the proportion of silicon dioxide was 3% by weight.
Let D be the battery in this case. In this case, it was observed that when the dispersion liquid was injected into the electrode plate, it solidified quickly, and compared to A, the penetration of the dispersion liquid into the electrode plate group was considerably hindered.

また、Aの二酸化ケイ素の希硫酸分散液におい
て、二酸化ケイ素の割合を重量比で0.5%未満と
して電そう内へ注入したときは、分散液の性状は
希硫酸単独の場合とほとんど変わらず、極板群の
周辺部分に固化してゲル状で存在する分散液はほ
とんどみられず、極板群周辺の遊離電解液を少く
するためBの場合とほぼ同量の電解液量とした。
この電池をEとする。
In addition, when the dispersion of silicon dioxide in dilute sulfuric acid (A) is injected into an electric chamber with a proportion of silicon dioxide of less than 0.5% by weight, the properties of the dispersion are almost the same as when dilute sulfuric acid is used alone. Almost no solidified gel-like dispersion liquid was observed around the plate group, and the amount of electrolyte solution was set to be approximately the same as in case B in order to reduce the amount of free electrolyte solution around the electrode plate group.
This battery is called E.

以上に述べた電池A〜Eを、充電を2.5V定電
圧(ただし、最大電流を0.5Aに制限した)で、
8時間、放電を2.5Ω定抵抗負荷で電圧が1.75Vに
低下するまで行なう充放電を繰り返したときの放
電持続時間の変化を図に示す。
The batteries A to E described above were charged at a constant voltage of 2.5V (however, the maximum current was limited to 0.5A).
The figure shows the change in discharge duration when charging and discharging was repeated for 8 hours with a 2.5Ω constant resistance load until the voltage dropped to 1.75V.

図の結果によれば、本実施例Aは、充放電の初
期における放電容量にすぐれ、また充放電サイク
ルの進行による放電時間の変化割合が少ないこと
がわかる。これは、Aにおいては極板群の中には
十分な希硫酸が含有されているとともに、極板群
の周辺部分にはゲル状の希硫酸が存在して極板群
の内外を適切な量の希硫酸電解液が占め、この電
解液が放電反応を助け、また正極と負極の活物質
はマツト状セパレータで強く圧迫されているの
で、充放電の繰り返しによる放電容量の低下が少
ないものと考えられる。
According to the results shown in the figure, it can be seen that Example A has excellent discharge capacity at the initial stage of charging and discharging, and the rate of change in discharge time as the charging and discharging cycles progress is small. This is because, in A, sufficient dilute sulfuric acid is contained in the electrode group, and gel-like dilute sulfuric acid is present in the surrounding area of the electrode group, and an appropriate amount of dilute sulfuric acid is present inside and outside the electrode group. This electrolyte assists the discharge reaction, and the active materials of the positive and negative electrodes are strongly compressed by the pine-like separator, so it is thought that the decrease in discharge capacity due to repeated charging and discharging will be small. It will be done.

BおよびEでは、正極と負極の活物質はマツト
状セパレータで強く圧迫されているので充放電の
繰返しによる放電容量の低下そのものは少ない
が、Aの場合と異なり極板群周辺部分にゲル状希
硫酸が存在しないか、存在してもごくわずかであ
り、電池反応に必要な硫酸量が不足して放電容量
の増大に寄与しない(Eではわずかに寄与する)
ためであろうと思われる。
In B and E, the active materials of the positive and negative electrodes are strongly compressed by the pine-like separator, so there is little decrease in discharge capacity due to repeated charging and discharging, but unlike in case A, there is a gel-like diluted material around the electrode plate group. Sulfuric acid does not exist, or even if it does exist, it is very small, and the amount of sulfuric acid required for the battery reaction is insufficient and does not contribute to increasing the discharge capacity (in case of E, it contributes slightly)
It seems that this is for a reason.

またCではマツト状セパレータで正極と負極の
活物質は強く圧迫されることはなく、比較的やわ
らかいゲル状の希硫酸でおさえられるのみである
ため、充放電の繰り返しによる活物質の軟化が進
みやすく、そのため充放電の繰り返しによる放電
容量の低下割合が比較的大きいものと考えられ
る。
In addition, in C, the active materials of the positive and negative electrodes are not strongly compressed by the pine-like separator, but are only held down by relatively soft gel-like dilute sulfuric acid, so the active materials tend to soften due to repeated charging and discharging. Therefore, it is thought that the rate of decrease in discharge capacity due to repeated charging and discharging is relatively large.

Dでは、充放電の繰り返し初期における放電容
量、充放電の繰返しによる放電容量の維持割合と
もに少ないが、これは極板群の中への希硫酸ゾル
の浸入が不十分であつたためであろうと考えられ
る。
In case D, both the discharge capacity at the beginning of repeated charging and discharging and the rate of maintaining discharge capacity through repeated charging and discharging were small, but this is thought to be due to insufficient penetration of the dilute sulfuric acid sol into the electrode group. It will be done.

以上に詳しく説明したように、本発明の方法に
よれば、放電容量が大きく、しかも長寿命の密閉
型鉛蓄電池を得ることが可能である。
As explained in detail above, according to the method of the present invention, it is possible to obtain a sealed lead-acid battery with a large discharge capacity and a long life.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例及び比較例の密閉型鉛蓄電
池の放電回数と放電容量との関係を示す。
The figure shows the relationship between the number of discharges and the discharge capacity of sealed lead-acid batteries according to examples of the present invention and comparative examples.

Claims (1)

【特許請求の範囲】[Claims] 1 ともに化成ずみの正極板と負極板の間に吸液
性のセパレータを介在し、全体を重ね合せて得ら
れる極板群を電そう中に挿入し、ついで電そう中
に二酸化ケイ素を重量比で0.5〜2.5%分散させた
所定量の流動性に富むゾル状希硫酸を注入して希
硫酸液分を極板群に優先的に吸収させ、かつ極板
群の周辺部に存在する残留希硫酸に二酸化ケイ素
が分散した分散液をゲル化させることを特徴とす
る密閉型鉛蓄電池の製造法。
1. A liquid-absorbing separator is interposed between the positive electrode plate and the negative electrode plate, both of which have been chemically formed, and the electrode plate group obtained by stacking the whole is inserted into an electrolyser, and then silicon dioxide is added at a weight ratio of 0.5 during the electrolyzer. By injecting a predetermined amount of highly fluid sol-like dilute sulfuric acid dispersed at ~2.5%, the dilute sulfuric acid liquid is preferentially absorbed into the electrode group, and the remaining dilute sulfuric acid existing around the electrode group is absorbed. A method for manufacturing a sealed lead-acid battery, which is characterized by gelling a dispersion liquid in which silicon dioxide is dispersed.
JP2723280A 1980-03-04 1980-03-04 Manufacture of closed type lead-acid battery Granted JPS56123675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2723280A JPS56123675A (en) 1980-03-04 1980-03-04 Manufacture of closed type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2723280A JPS56123675A (en) 1980-03-04 1980-03-04 Manufacture of closed type lead-acid battery

Publications (2)

Publication Number Publication Date
JPS56123675A JPS56123675A (en) 1981-09-28
JPH0231462B2 true JPH0231462B2 (en) 1990-07-13

Family

ID=12215322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2723280A Granted JPS56123675A (en) 1980-03-04 1980-03-04 Manufacture of closed type lead-acid battery

Country Status (1)

Country Link
JP (1) JPS56123675A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179761U (en) * 1982-05-26 1983-12-01 新神戸電機株式会社 lead acid battery
JPS60119082A (en) * 1983-11-30 1985-06-26 Yuasa Battery Co Ltd Sealed lead-acid battery
JPH0756811B2 (en) * 1985-08-09 1995-06-14 日本電池株式会社 Sealed lead acid battery
JPH0624139B2 (en) * 1985-11-26 1994-03-30 新神戸電機株式会社 Manufacturing method of sealed lead battery
JPH0628169B2 (en) * 1987-03-09 1994-04-13 日本電池株式会社 Sealed lead acid battery
JPH0624144B2 (en) * 1987-03-09 1994-03-30 日本電池株式会社 Sealed lead acid battery
US7682738B2 (en) 2002-02-07 2010-03-23 Kvg Technologies, Inc. Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators and method for producing it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147240A (en) * 1977-05-28 1978-12-21 Shin Kobe Electric Machinery Method of manufacturing enclosed type lead storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147240A (en) * 1977-05-28 1978-12-21 Shin Kobe Electric Machinery Method of manufacturing enclosed type lead storage battery

Also Published As

Publication number Publication date
JPS56123675A (en) 1981-09-28

Similar Documents

Publication Publication Date Title
EP2960978B1 (en) Flooded lead-acid battery
US20050084762A1 (en) Hybrid gelled-electrolyte valve-regulated lead-acid battery
JPH0231462B2 (en)
JPH02168575A (en) Sealed lead storage battery of clad type
JP2004055323A (en) Control valve type lead-acid battery
WO2011077640A1 (en) Valve-regulated lead acid battery
JPH0756811B2 (en) Sealed lead acid battery
JPH0373988B2 (en)
JPS6030063A (en) sealed lead acid battery
KR870000967B1 (en) Sealed deep-cycle lead acid battery
JP2809634B2 (en) Manufacturing method of sealed lead-acid battery
JPH0628169B2 (en) Sealed lead acid battery
US3578504A (en) Method of activating a silver oxide-zinc primary cell
JP2003178794A (en) Production process of sealed lead acid storage battery
JP3099527B2 (en) Manufacturing method of sealed lead-acid battery
JPH04149968A (en) Sealed-type lead secondary battery
JPH07296845A (en) Sealed lead acid battery
JPS6211466B2 (en)
JPS58158874A (en) Lead storage battery
JP2001126752A (en) Paste-type sealed lead-acid battery and manufacturing method therefor
JPH0624139B2 (en) Manufacturing method of sealed lead battery
JP2573094B2 (en) Manufacturing method of sealed lead-acid battery
JPH0550813B2 (en)
JPH07122289A (en) Sealed lead-acid battery
JPH06150960A (en) Clad type sealed lead-acid battery