[go: up one dir, main page]

JPH02312287A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPH02312287A
JPH02312287A JP1133109A JP13310989A JPH02312287A JP H02312287 A JPH02312287 A JP H02312287A JP 1133109 A JP1133109 A JP 1133109A JP 13310989 A JP13310989 A JP 13310989A JP H02312287 A JPH02312287 A JP H02312287A
Authority
JP
Japan
Prior art keywords
material layer
layer
magnetic field
product
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1133109A
Other languages
Japanese (ja)
Inventor
Akihiro Suzuki
哲広 鈴木
Tomihiko Tatsumi
富彦 辰巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1133109A priority Critical patent/JPH02312287A/en
Publication of JPH02312287A publication Critical patent/JPH02312287A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To enable a ferromagnetic magnetoresistance material layer to be given an enough bias by a method wherein the product of the saturation magnetization and the thickness of a soft magnetic bias auxiliary layer is specified to that of the ferromagnetic magnetoresistance effect material layer. CONSTITUTION:A ferromagnetic magnetoresistance effect MR material layer 1 contains Ni, Fe, and Co as main components, where the composition ratio of Ni ranges from 80% to 83% by weight and that of Co ranges from 6% to 9% by weight, and the product of the saturation magnetization and thickness of a soft magnetic bias auxiliary layer 3 is set to be 85-105% of that of the MR material layer 1. A magnetic field 8 induced inside the MR material layer 1 and a magnetic field 10 induced in the soft magnetic bias auxiliary layer 3 by currents 5 and 6 have the same direction, and a magnetic field 7 induced in the auxiliary layer 3 and a magnetic field 9 induced in the MR layer 1 are also in the same direction. At this point, in the region where the product ratio is above 105% or below 85%, a nonlinear distortion increases to more than 0.1 in absolute value. By this setup, the MR layer 1 can be given an optimal bias.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気ヘッド及び磁気センサー等に使用される
磁気抵抗効果素子(以下、MR素子と記す)に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a magnetoresistive element (hereinafter referred to as an MR element) used in a magnetic head, a magnetic sensor, and the like.

(従来の技術) 磁気抵抗効果を用いたMR素子は、高い再生感度を有し
ているため、磁気ヘッド、磁気センサーなどで盛んに利
用されている。MR素子においてはその原理上、信号磁
界の線形応答を得るためには、磁気抵抗効果材料層(以
下、MR材料層と記す)に供給するセンス電流とMR材
料層の磁化のなす角度を約45度に設定するバイアス手
段が必要である。
(Prior Art) MR elements using magnetoresistive effects have high reproduction sensitivity and are therefore widely used in magnetic heads, magnetic sensors, and the like. In principle, in an MR element, in order to obtain a linear response to a signal magnetic field, the angle between the sense current supplied to the magnetoresistive material layer (hereinafter referred to as MR material layer) and the magnetization of the MR material layer must be approximately 45 A bias means is required to set the value at the same time.

MR材料層のバイアス方法として、実開昭60−159
518号公報には、軟磁性バイアス補助層とMR材料層
が非磁性導体層を挾んで積層された構造が開示されてい
る。この構成では、軟磁性バイアス補助層の比抵抗がM
R材料層の比抵抗に比較して著しく高いので、センス電
流の大部分がMR材料層を流れ、軟磁性バイアス補助層
を磁化するとともに、軟磁性バイアス補助層が発生する
磁界で、MR材料層にバイアスがかかる。
As a method of biasing the MR material layer, Utility Model Application No. 60-159
No. 518 discloses a structure in which a soft magnetic bias auxiliary layer and an MR material layer are laminated with a nonmagnetic conductor layer in between. In this configuration, the specific resistance of the soft magnetic bias auxiliary layer is M
Since the resistivity is significantly higher than that of the R material layer, most of the sense current flows through the MR material layer, magnetizing the soft bias auxiliary layer, and the magnetic field generated by the soft bias auxiliary layer causes the MR material layer to is biased.

また、このバイアス方法に関して、特開昭62゜234
329号公報には、軟磁性バイアス補助層の飽和磁化と
膜厚の積が強磁性MR素子の飽和磁化と膜厚の積の60
%以上90%以下とすることにより、安定したバイアス
を供給できることが開示されている。
Regarding this bias method, Japanese Patent Application Laid-Open No. 62゜234
No. 329 states that the product of the saturation magnetization and film thickness of the soft magnetic bias auxiliary layer is 60 times the product of the saturation magnetization and film thickness of the ferromagnetic MR element.
% or more and 90% or less, it is disclosed that a stable bias can be supplied.

さらに、MR材料層に関して、特願昭63−17474
2号公報には、Ni、 Fe、 Coを主成分とし、N
iの組成比が80重量%以上83重量%以下、Coの組
成比が6重量%以上9重量%以下とすることにより、M
R比が大きく、良好な軟磁性特性を示すMR材料が得ら
れることが開示されている。
Furthermore, regarding the MR material layer, Japanese Patent Application No. 63-17474
Publication No. 2 discloses that the main components are Ni, Fe, and Co, and N
By setting the composition ratio of i to 80% to 83% by weight and the composition ratio of Co to 6% to 9% by weight, M
It is disclosed that an MR material having a large R ratio and exhibiting good soft magnetic properties can be obtained.

第1表は従来の磁気抵抗効果型ヘッドの構成を示す。Table 1 shows the configuration of a conventional magnetoresistive head.

第1表に示すように、MR材料層としてN15zFex
oCos、非磁性導体層としてTiのシャント膜、軟磁
性バイアス補助層としてCoZrMoを用い、MR材料
層及びシャント層は真空蒸着法により成膜し、軟磁性バ
イアス補助層は高周波スパッタ法により成膜した。MR
素子の形状は長さ1100p、幅10pmである。
As shown in Table 1, N15zFex is used as the MR material layer.
oCos, a Ti shunt film as the nonmagnetic conductor layer, and CoZrMo as the soft magnetic bias auxiliary layer, the MR material layer and the shunt layer were formed by vacuum evaporation, and the soft magnetic bias auxiliary layer was formed by high frequency sputtering. . M.R.
The shape of the element is 1100p long and 10pm wide.

第1表 第1表に示す例では、軟磁性バイアス補助層の膜厚とし
飽和磁化の積は、MR材料層の膜厚と飽和磁化の積の7
5%である。
Table 1 In the example shown in Table 1, the product of the thickness of the soft magnetic bias auxiliary layer and the saturation magnetization is 7 of the product of the thickness of the MR material layer and the saturation magnetization.
It is 5%.

作成したMR素子に20mAの電流を供給し、外部磁界
に対する最大抵抗変化で企画した抵抗変化(以下、R−
H曲線と呼ぶ)を測定した。−50e〜50eの外部磁
界に対するLH曲線の傾き(第4図のA/10、以下、
規格化感度と呼ぶ)を求めたところ0.01210eが
得られた。また、規格化感度を表す直線のy切片と外部
磁界R−Hllのy切片の差(第4図のB)と外部磁界
−50eと50eでの抵抗変化の差(第4図のA)の比
B/A(以下、非直線歪と呼ぶ)を求めたところ−0,
2が得られた。非直線歪の値は対称性の点から−0,1
以上0.1以下であることが望まれるが、上記MR素子
では、非直線歪の値はこの範囲を越えている。このよう
な非直線歪の増加は、MR材料であるNi Fe C。
A current of 20 mA was supplied to the created MR element, and the resistance change (hereinafter referred to as R-
H curve) was measured. The slope of the LH curve for an external magnetic field of -50e to 50e (A/10 in Figure 4, hereinafter referred to as
When the normalized sensitivity (referred to as normalized sensitivity) was calculated, 0.01210e was obtained. Also, the difference between the y-intercept of the straight line representing normalized sensitivity and the y-intercept of the external magnetic field R-Hll (B in Figure 4) and the difference in resistance change between external magnetic fields -50e and 50e (A in Figure 4) When the ratio B/A (hereinafter referred to as nonlinear distortion) was calculated, it was -0,
2 was obtained. The value of nonlinear distortion is −0,1 from the point of symmetry.
Although it is desired that the value be 0.1 or less, the value of nonlinear distortion in the above MR element exceeds this range. Such an increase in nonlinear strain is observed in the MR material NiFeC.

の異方性磁界が大きいため、異方性磁界の小さなMR材
料層と同じバイアス磁界では、十分にバイアスがかから
ないことを示している。
This shows that because the anisotropic magnetic field is large, a sufficient bias cannot be applied with the same bias magnetic field as the MR material layer with a small anisotropic magnetic field.

(発明が解決しようとする課題) NiszFetoCos合金はMR比が5%であり、N
iFeと比較して2.5%大きいためMρオ料層材料と
して適していると考えられるが、異方性磁界が大きいた
め、従来の膜厚と飽和磁界の積の値では十分なバイアス
を得ることができない。
(Problem to be solved by the invention) NiszFetoCos alloy has an MR ratio of 5% and N
Since it is 2.5% larger than iFe, it is considered to be suitable as an Mρ layer material, but because the anisotropic magnetic field is large, sufficient bias can be obtained with the conventional value of the product of film thickness and saturation magnetic field. I can't.

本発明の目的は、大きな異方性磁界をもつMR材料層に
十分にバイアスを与えることのできるMR素子を提供す
ることにある。
An object of the present invention is to provide an MR element that can sufficiently bias an MR material layer having a large anisotropic magnetic field.

(課題を解決するための手段) 本発明によれば、非磁性導体層を挾んで強磁性磁気抵抗
効果材料層と軟磁性バイアス補助層とが積層された構造
を有する磁気抵抗効果素子において、前記強磁性磁気抵
抗効果材料層がNi、 Fe、 C。
(Means for Solving the Problems) According to the present invention, in a magnetoresistive element having a structure in which a ferromagnetic magnetoresistive material layer and a soft magnetic bias auxiliary layer are laminated with a nonmagnetic conductor layer in between, The ferromagnetic magnetoresistive material layer is made of Ni, Fe, or C.

を主成分とし、Niの組成比が80重量%以上83重量
%以下、Coの組成比が6重量%以上9重量%以下であ
り、前記軟磁性バイアス補助層の飽和磁化と膜厚の積が
前記強磁性磁気抵抗効果材料層の飽和磁化と膜厚の積の
85%以上105%以下であることを特徴とする磁気抵
抗効果素子を得ることができる。
is the main component, the Ni composition ratio is 80% by weight or more and 83% by weight or less, the Co composition ratio is 6% by weight or more and 9% by weight or less, and the product of the saturation magnetization and the film thickness of the soft magnetic bias auxiliary layer is It is possible to obtain a magnetoresistive element characterized in that the product of the saturation magnetization and the film thickness of the ferromagnetic magnetoresistive material layer is 85% or more and 105% or less.

、(作用) 第1図は本発明の詳細な説明するためのMR素子の斜視
図である。
(Operation) FIG. 1 is a perspective view of an MR element for explaining the present invention in detail.

第1図に示すように、NiFeCoからなるMR材料層
1と非磁性上田い層のシャント層2と、軟磁性バイアス
補助層3とが順に積層された構造になっている。
As shown in FIG. 1, it has a structure in which an MR material layer 1 made of NiFeCo, a shunt layer 2 made of a nonmagnetic layer, and a soft magnetic bias auxiliary layer 3 are laminated in this order.

第2図は本発明の動作原理を説明するための第1図のM
R素子の断面図である。
FIG. 2 shows M in FIG. 1 for explaining the operating principle of the present invention.
FIG. 3 is a cross-sectional view of an R element.

第2図に示すように、MR材料層1、シャント層2及び
軟磁性バイアス補助層3それぞれに電流4.5.6が流
れると、電流4及び5により離礁性バイアス補助層3が
磁界7を受け、電流5及び6によりMR材料層1が磁界
8を受け、MR材料層1が磁界9を発生し、軟磁性バイ
アス補助層3が磁界lOを発生する。
As shown in FIG. 2, when currents 4, 5, and 6 flow through the MR material layer 1, shunt layer 2, and soft magnetic bias auxiliary layer 3, the currents 4 and 5 cause the reefing bias auxiliary layer 3 to MR material layer 1 receives magnetic field 8 due to currents 5 and 6, MR material layer 1 generates magnetic field 9, and soft magnetic bias auxiliary layer 3 generates magnetic field IO.

第2図において、MR材料層1内の電流5.6による磁
界8と軟磁性バイアス補助層3が発生する磁界10は同
じ方向となり、更に、軟磁性バイアス補助層3内の電流
4.5による磁界7とMR材料層が発生する磁界eも同
じ方向になる。従って、MR材料層1と軟磁性バイアス
補助層3は電流が発生する磁界により互いに磁化を強め
合い、MR材料層1の磁化バイアスを与えることができ
る。
In FIG. 2, the magnetic field 8 due to the current 5.6 in the MR material layer 1 and the magnetic field 10 generated by the soft magnetic bias auxiliary layer 3 are in the same direction, and further due to the current 4.5 in the soft magnetic bias auxiliary layer 3. The magnetic field 7 and the magnetic field e generated by the MR material layer are also in the same direction. Therefore, the MR material layer 1 and the soft magnetic bias auxiliary layer 3 can strengthen their magnetization with each other by the magnetic field generated by the current, and can provide a magnetization bias to the MR material layer 1.

ここで、軟磁性バイアス補助層3が発生する磁界は、軟
磁性バイアス補助層3の膜厚と飽和磁化の関数であり、
この膜厚と飽和磁化の値が大きいほど、MR材料層1に
対して強いバイアス磁界を発生することが出来る。しか
しながら、MR材料層1が飽和するほど強い磁界を与え
ると、MR材料層1の外部磁界に対する感度が減少し、
かつ、非直線歪が増加するので好ましくない。
Here, the magnetic field generated by the soft magnetic bias auxiliary layer 3 is a function of the thickness and saturation magnetization of the soft magnetic bias auxiliary layer 3,
The larger the film thickness and the saturation magnetization value, the stronger the bias magnetic field can be generated for the MR material layer 1. However, when a magnetic field strong enough to saturate the MR material layer 1 is applied, the sensitivity of the MR material layer 1 to the external magnetic field decreases.
Moreover, non-linear distortion increases, which is not preferable.

第3図は、M効オ料層の異方性磁界を90eとし、軟磁
性バイアス補助層3が飽和する程度の電流を供給したと
き、MR材料層1の膜厚と飽和磁化の積に対する軟磁性
バイアス補助層3の膜厚と飽和磁化の積の割合が、MR
材料層の外部磁界に対する規格化感度、及び非直線歪に
与える影響を1次元セルフコンシステント計算により求
めた結果である。
FIG. 3 shows the soft magnetic field versus the product of the film thickness and saturation magnetization of the MR material layer 1 when the anisotropic magnetic field of the M-effect material layer is 90e and a current sufficient to saturate the soft magnetic bias auxiliary layer 3 is supplied. The ratio of the product of the film thickness and saturation magnetization of the magnetic bias auxiliary layer 3 is MR
These are the results obtained by one-dimensional self-consistent calculation of the normalized sensitivity of the material layer to an external magnetic field and its influence on nonlinear strain.

第3図に示すように、軟磁性バイアス補助層3の膜厚と
飽和磁化の積が、MR材料層1の膜厚と飽和磁化の積の
85%以下及び105%以上の領域では、非直線歪が増
大し、その値の絶対値が0.1を越えてしまう。非直線
歪が増大するとMRヘッドの再生波形から正しい情報を
読み取ることができなくなるので、゛軟磁性バイアス補
助層3の膜厚と飽和磁化の積はMR材料層1の膜厚と飽
和磁化の積の85%以上105%以下にする必要がある
As shown in FIG. 3, in the region where the product of the film thickness and saturation magnetization of the soft magnetic bias auxiliary layer 3 is 85% or less and 105% or more of the product of the film thickness and saturation magnetization of the MR material layer 1, the nonlinear The distortion increases and its absolute value exceeds 0.1. If the nonlinear strain increases, it becomes impossible to read correct information from the reproduced waveform of the MR head. It is necessary to set the value to 85% or more and 105% or less.

さらに、軟磁性バイアス補助層3の膜厚と飽和磁化の積
が、M効オ料層1の膜厚と飽和磁化の積の90%以上1
00%以下の領域では、非直線歪の値の変化が小さいの
で再現性の良い結果が得られる。
Furthermore, the product of the film thickness and saturation magnetization of the soft magnetic bias auxiliary layer 3 is 90% or more of the product of the film thickness and saturation magnetization of the M-effect auxiliary layer 1.
In the region of 00% or less, the change in the value of nonlinear distortion is small, so results with good reproducibility can be obtained.

またMR素子として、雑音に対して十分なS/N比を確
保するためには、再生出力として約300μVが必要で
ある。最大抵抗変化5%比抵抗20vΩcm、輻10μ
m、長さ100μmのMR材料層を用いて、センス電流
20mAを供給した際に、10eの磁界変化に対してa
oopvを得るためには、規格化感度として0.011
0e以上が要求される。第3図において、軟磁性バイア
ス補助層3の膜厚と飽和磁化の積が、MR材料層の膜厚
と飽和磁化の積の60%維持しよう105%以下の領域
で、規格化感度0.0110e以上が得られる。
Furthermore, in order to ensure a sufficient S/N ratio against noise as an MR element, a reproduction output of approximately 300 μV is required. Maximum resistance change 5% specific resistance 20vΩcm, radiation 10μ
When a sense current of 20 mA is supplied using an MR material layer with a length of 100 μm and a magnetic field change of 10 e, a
To obtain oopv, the normalized sensitivity is 0.011.
0e or more is required. In FIG. 3, the normalized sensitivity is 0.0110e in the region where the product of the film thickness and saturation magnetization of the soft magnetic bias auxiliary layer 3 is 105% or less to maintain 60% of the product of the film thickness and saturation magnetization of the MR material layer. The above is obtained.

従って、膜厚と飽和磁化が既知のMR材料層1に最適な
バイアスを与えるためには、感度と非直線歪の双方を考
慮して、積層する軟磁性バイアス補助層の膜厚と飽和磁
化の積をM朗オ料層の膜厚と飽和磁化の積の85%以上
105%以下にすれば良い。
Therefore, in order to provide an optimal bias to the MR material layer 1 whose film thickness and saturation magnetization are known, it is necessary to consider both sensitivity and nonlinear strain, and to adjust the film thickness and saturation magnetization of the laminated soft magnetic bias auxiliary layer. The product may be set to 85% or more and 105% or less of the product of the film thickness of the M magnet layer and the saturation magnetization.

さらに、再現性を考慮した場合、軟磁性バイアス補助層
の膜厚と飽和磁化の積をMR材料層の膜厚と飽和磁化の
積の90%以上100%以下にすれば良い。
Furthermore, in consideration of reproducibility, the product of the thickness and saturation magnetization of the soft magnetic bias auxiliary layer may be set to 90% or more and 100% or less of the product of the thickness and saturation magnetization of the MR material layer.

(実施例) 第2表は本発明の第1の実施例の構成を示す。(Example) Table 2 shows the configuration of the first embodiment of the present invention.

第1の実施例は前述な第1図のMR材料層としてNi5
2FexoCoa、非磁性導体層としてTiのシャント
膜、軟磁性バイアス補助層としてCoZrMoを用い、
MR材料層及びシャント層は真空蒸着法により成膜し、
軟磁性バイアス補助層は高周波スパッタ法により成膜し
た。MR素子の形状は長さ1100p、幅10pmであ
る。
The first embodiment uses Ni5 as the MR material layer in FIG.
2FexoCoa, a Ti shunt film as the nonmagnetic conductor layer, and CoZrMo as the soft magnetic bias auxiliary layer.
The MR material layer and the shunt layer are formed by vacuum evaporation method,
The soft magnetic bias auxiliary layer was formed by high frequency sputtering. The shape of the MR element is 1100p in length and 10pm in width.

第2表 本実施例においては、軟磁性バイアス補助層の膜厚と飽
和磁化の積は、M効オ料層の膜厚と飽和磁化の積の94
%である。
Table 2 In this example, the product of the thickness and saturation magnetization of the soft magnetic bias auxiliary layer is 94
%.

作成した磁気抵抗型ヘッドに20mAの電流を供給し、
外部磁界に対する規格化感度を測定したところ0.01
510eが得られた。また非直線磁歪は−0,08であ
り、良好な値が得られた。
Supplying a current of 20 mA to the created magnetoresistive head,
The normalized sensitivity to external magnetic field was measured and was 0.01.
510e was obtained. Moreover, the nonlinear magnetostriction was −0.08, which was a good value.

第3表は本発明の第2の実施例の構成を示す。Table 3 shows the configuration of the second embodiment of the present invention.

第2の実施例は前述した第1図のMR材料層としてNi
82Fe12Co6、非磁性導体層としてTiのシャン
ト膜、軟磁性バイアス補助層としてCoZrMoを用い
、MR材料層及びシャント層は真空蒸着法により成膜し
、軟磁性バイアス補助層は高周波スパッタ法により成膜
した。MR素子の形状は長さ100μm、幅10pmで
ある。
The second embodiment uses Ni as the MR material layer in FIG.
Using 82Fe12Co6, a Ti shunt film as the nonmagnetic conductor layer, and CoZrMo as the soft magnetic bias auxiliary layer, the MR material layer and the shunt layer were formed by vacuum evaporation, and the soft magnetic bias auxiliary layer was formed by high frequency sputtering. . The shape of the MR element is 100 μm in length and 10 pm in width.

第3表 本実施例においては、軟磁性バイアス補助層の膜厚と飽
和磁化の積は、MR材料層の膜厚と飽和磁化の積の88
%である。
Table 3 In this example, the product of the thickness and saturation magnetization of the soft magnetic bias auxiliary layer is 88 of the product of the thickness and saturation magnetization of the MR material layer.
%.

作成した磁気抵抗型ヘッドに20mAの電流を供給し、
外部磁界に対する規格化感度を測定したところ0.01
610eが得られた。また非直線磁歪は−0,1であり
、良好な値が得られた。
Supplying a current of 20 mA to the created magnetoresistive head,
The normalized sensitivity to external magnetic field was measured and was 0.01.
610e was obtained. Moreover, the nonlinear magnetostriction was −0.1, which was a good value.

第4表は本発明の第3の実施例の構成を示す。Table 4 shows the configuration of the third embodiment of the present invention.

第3の実施例は前述した第1図のMR材料層としてN1
5oFeuCo9、非磁性導体層としてTiのシャント
膜、軟磁性バイアス補助層としてCoZrMoを用い、
MR材料層及びシャント層は真空蒸着法により成膜し、
軟磁性バイアス補助層は高周波スパッタ法により成膜し
た。MR素子の形状は長さ1100p、幅10μmであ
る。
The third embodiment uses N1 as the MR material layer in FIG.
5oFeuCo9, Ti shunt film as the nonmagnetic conductor layer, CoZrMo as the soft magnetic bias auxiliary layer,
The MR material layer and the shunt layer are formed by vacuum evaporation method,
The soft magnetic bias auxiliary layer was formed by high frequency sputtering. The shape of the MR element is 1100p in length and 10 μm in width.

(以下余白) 第4表 本実施例においては、軟磁性バイアス補助層の膜厚と飽
和磁化の積は、MR材料層の膜厚と飽和磁化の積の10
3%である。
(Margin below) Table 4 In this example, the product of the thickness and saturation magnetization of the soft magnetic bias auxiliary layer is 10 of the product of the thickness and saturation magnetization of the MR material layer.
It is 3%.

作成した磁気抵抗型ヘッドに2eOmAの電流を供給し
、外部磁界に対する規格化感度を測定したところ0.0
1610eが得られた。また非直線磁歪は0.01であ
り、良好な値が得られた。
When a current of 2eOmA was supplied to the created magnetoresistive head and the normalized sensitivity to external magnetic field was measured, it was 0.0.
1610e was obtained. Moreover, the nonlinear magnetostriction was 0.01, which was a good value.

(発明の効果) 以上のように、本発明による磁気抵抗効果素子において
は、軟磁性バイアス補助層の膜厚と飽和磁化の積をMR
材料層の膜厚と飽和磁化の積の85%以上105%以下
にすることにより、高感度かつ歪の少ないの特性が得ら
れるので、このMR素子を磁気ヘッド、磁気センサー等
に搭載することにより高出力低雑音のデバイスを作るこ
とができる。
(Effects of the Invention) As described above, in the magnetoresistive element according to the present invention, the product of the thickness of the soft magnetic bias auxiliary layer and the saturation magnetization is
High sensitivity and low distortion characteristics can be obtained by setting the product of the material layer thickness and saturation magnetization to 85% or more and 105% or less. It is possible to create high-power, low-noise devices.

図面の簡単な説明 第1図は本発明の詳細な説明するための磁気抵抗効果素
子の斜視図、第2図は本発明の動作原理を説明するため
の第1図の磁気抵抗効果素子の断面図、第3図は第1図
のMR素子のMR旧−料理1の膜厚と飽和磁化の積に対
する軟磁性バイアス補助層3の膜厚と飽和磁化の積の割
合と規格化感度及び非直線歪との相関を示す特性図であ
る。第4図は、従来のMR素子の外部磁界と最大抵抗変
化で規格化した抵抗変化との関係を示した図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of the magnetoresistive element for explaining the present invention in detail, and FIG. 2 is a cross-sectional view of the magnetoresistive element shown in FIG. 1 for explaining the operating principle of the present invention. Figure 3 shows the ratio of the product of the film thickness and saturation magnetization of the soft magnetic bias auxiliary layer 3 to the product of the film thickness and saturation magnetization of the MR old layer 1 of the MR element shown in Figure 1, normalized sensitivity, and nonlinearity. FIG. 3 is a characteristic diagram showing the correlation with distortion. FIG. 4 is a diagram showing the relationship between the external magnetic field and the resistance change normalized by the maximum resistance change of a conventional MR element.

図において、 1・・・MR材料層、2・・・シャント膜、3・・・軟
磁性バイアス補助層、4.5.6・・・電流、7.8・
・・電流による磁界、9・・・MR材料層が発生する磁
界、10・・・軟磁性バイアス補助層が発生する磁界。
In the figure, 1... MR material layer, 2... shunt film, 3... soft magnetic bias auxiliary layer, 4.5.6... current, 7.8...
...Magnetic field due to current, 9...Magnetic field generated by the MR material layer, 10...Magnetic field generated by the soft magnetic bias auxiliary layer.

第 1 図 第2図 4、5.6電流  乙8電流による磁界9 MR材料層
が発生する磁界 10軟磁性バイアス補助層が発生する磁界第3図 0.5              1.0MFI材料
層の膜厚×飽和磁化 第4図 ■
Fig. 1 Fig. 2 Fig. 4, 5.6 Current Otsu 8 Magnetic field due to current 9 Magnetic field generated by the MR material layer 10 Magnetic field generated by the soft magnetic bias auxiliary layer Fig. 3 0.5 1.0 Thickness of MFI material layer x Saturation magnetization Figure 4 ■

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性導体層を挟んで強磁性磁気抵抗効果材料層
と軟磁性バイアス補助層とが積層された構造を有する磁
気抵抗効果素子において、前記強磁性磁気抵抗効果材料
層がNi、Fe、Coを主成分とし、Niの組成比が8
0重量%以上83重量%以下、Coの組成比が6重量%
以上9重量%以下であり、前記軟磁性バイアス補助層の
飽和磁化と膜厚の積が前記強磁性磁気抵抗効果材料層の
飽和磁化と膜厚の積の85%以上105%以下であるこ
とを特徴とする磁気抵抗効果素子。
(1) In a magnetoresistive element having a structure in which a ferromagnetic magnetoresistive material layer and a soft magnetic bias auxiliary layer are laminated with a nonmagnetic conductor layer in between, the ferromagnetic magnetoresistive material layer is made of Ni, Fe, The main component is Co, and the composition ratio of Ni is 8.
0% by weight or more and 83% by weight or less, Co composition ratio is 6% by weight
9% by weight or less, and the product of the saturation magnetization and film thickness of the soft magnetic bias auxiliary layer is 85% or more and 105% or less of the product of the saturation magnetization and film thickness of the ferromagnetic magnetoresistive material layer. Characteristic magnetoresistive element.
(2)軟磁性バイアス補助層の飽和磁化と膜厚の積が前
記強磁性磁気抵抗効果材料層の飽和磁化と膜厚の積の9
0%以上100%以下であることを特徴とする特許請求
の範囲第(1)項記載の磁気抵抗効果素子。
(2) The product of the saturation magnetization and film thickness of the soft magnetic bias auxiliary layer is 9 of the product of the saturation magnetization and film thickness of the ferromagnetic magnetoresistive material layer.
The magnetoresistive element according to claim (1), wherein the magnetoresistive effect element is 0% or more and 100% or less.
JP1133109A 1989-05-26 1989-05-26 Magnetoresistance effect element Pending JPH02312287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1133109A JPH02312287A (en) 1989-05-26 1989-05-26 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1133109A JPH02312287A (en) 1989-05-26 1989-05-26 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPH02312287A true JPH02312287A (en) 1990-12-27

Family

ID=15097026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1133109A Pending JPH02312287A (en) 1989-05-26 1989-05-26 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPH02312287A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693791A1 (en) * 1994-07-21 1996-01-24 Commissariat A L'energie Atomique Auto-polarized multilayer magnetoresistive transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0693791A1 (en) * 1994-07-21 1996-01-24 Commissariat A L'energie Atomique Auto-polarized multilayer magnetoresistive transducer
FR2722918A1 (en) * 1994-07-21 1996-01-26 Commissariat Energie Atomique SELF-POLARIZED MULTILAYER MAGNETORESISTANCE SENSOR

Similar Documents

Publication Publication Date Title
US5686837A (en) Magnetic field sensor and instrument comprising such a sensor
JP3058338B2 (en) Magnetoresistive sensor
US5014147A (en) Magnetoresistive sensor with improved antiferromagnetic film
JP2000222709A (en) Spin valve magnetoresistance sensor and thin film magnetic head
JPH11354860A (en) Spin valve magnetic conversion element and magnetic head
JPH10143822A (en) Thin-film magnetic structure and thin-film magnetic head
US6084405A (en) Transducer utilizing giant magnetoresistance effect and having a ferromagnetic layer pinned in a direction perpendicular to a direction of a signal magnetic field
JP2002246671A (en) Method of manufacturing magnetic detection element
EP0570883B1 (en) A magnetoresistive element
JPH02312287A (en) Magnetoresistance effect element
JPH1091920A (en) Magneto-resistance effect type head
US6087026A (en) Magnetoresistive head and magnetic read/write device
JPH0845030A (en) Magneto-resistive magnetic head
JP2000150235A (en) Spin valve magnetoresistive sensor and thin-film magnetic head
JPH1186229A (en) Spin valve effect sensor
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
JPH08297814A (en) Magneto-resistance effect element
JPS6050612A (en) Magneto-resistance effect type magnetic head
JPH08201492A (en) Magnetic sensor
JP2000099925A (en) Spin valve film, magneto-resistive element and magneto- resistive magnetic head
JPS61264772A (en) Magnetoresistance effect element
JPS5856485A (en) Magneto-resistance effect element
JP3028585B2 (en) Magnetoresistive element
JP3008910B2 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing apparatus using the same
JPH103619A (en) Magneto-resistive element and its production