JPH02311160A - Two sides linear motor - Google Patents
Two sides linear motorInfo
- Publication number
- JPH02311160A JPH02311160A JP13151289A JP13151289A JPH02311160A JP H02311160 A JPH02311160 A JP H02311160A JP 13151289 A JP13151289 A JP 13151289A JP 13151289 A JP13151289 A JP 13151289A JP H02311160 A JPH02311160 A JP H02311160A
- Authority
- JP
- Japan
- Prior art keywords
- slot
- stator
- winding
- coil side
- stator winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004804 winding Methods 0.000 claims abstract description 54
- 230000001360 synchronised effect Effects 0.000 abstract description 9
- 230000015556 catabolic process Effects 0.000 abstract 2
- 238000006731 degradation reaction Methods 0.000 abstract 2
- 239000011295 pitch Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000002542 deteriorative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Linear Motors (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は2個の固定子間に可動子を配置した両側式リニ
アモータに関し、特にその固定子:a線の構成を改良し
たものに関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a double-sided linear motor in which a mover is arranged between two stators, and in particular, the stator: A-line configuration. Regarding improvements.
(従来の技術)
従来のこの種のりニアモータにつき、固定子巻線の配置
の一例を第5図に示す。各鉄心1は多数のスロット2を
備え、各スロット2に3相の固定子巻線が図のように配
置されている。ここで記号rU、UJ、rv、」及びr
W、WJは夫々順にU相、V相及びWt口のコイル辺を
示し、「U。(Prior Art) FIG. 5 shows an example of the arrangement of stator windings in a conventional linear motor of this type. Each core 1 has a large number of slots 2, and three-phase stator windings are arranged in each slot 2 as shown in the figure. where the symbols rU, UJ, rv,'' and r
W and WJ indicate the U-phase, V-phase, and Wt port coil sides, respectively, and "U.
、WJはrU、V、WJとは逆方向に電流が流れること
を示している。このような各固定子は、図示しない可動
子が通る空隙を残して対向状態にされ、両鉄心1の各歯
部1aが互いに1対1に向かい合う。, WJ indicate that current flows in the opposite direction to rU, V, and WJ. These stators are opposed to each other leaving a gap for a movable element (not shown) to pass through, and the toothed portions 1a of both iron cores 1 face each other one-to-one.
(発明が解決しようとする課題)
ところが、この種のりニアモータでは、電源の周波数が
一定であると、同期速度はスロットピッチ×相数で決ま
る一定速度となる。このため、特に低い同期速度を得よ
うとする場合には、毎極毎を目のスロット数qを1とし
た上で、鉄心1の歯部1aの幅を狭くしてスロットピッ
チをできるだけ短く設計する必要がある。しがし、歯部
1aを狭くすれば、歯部1aの折れ曲がり等の製作上の
□、□r′
問題を生ずるから、この方法には限界がある。(Problem to be Solved by the Invention) However, in this type of linear motor, if the frequency of the power source is constant, the synchronous speed is a constant speed determined by the slot pitch x the number of phases. Therefore, when trying to obtain a particularly low synchronous speed, the number of slots q for each pole should be set to 1, and the width of the teeth 1a of the iron core 1 should be narrowed to make the slot pitch as short as possible. There is a need to. However, if the tooth portion 1a is narrowed, manufacturing problems such as bending of the tooth portion 1a will occur, so this method has a limit.
この問題を避けるため、第6図に示すように、双方の固
定子巻線を分数スロット巻線として構成することが考え
られている。この場合には、第5図に示したものと同様
なスロットピッチの鉄心1にて同図に比べて半分の同期
速度が得られ、可動子の低速化が可能である。In order to avoid this problem, it has been considered to construct both stator windings as fractional slot windings, as shown in FIG. In this case, with the iron core 1 having the same slot pitch as that shown in FIG. 5, a synchronous speed half as high as that shown in FIG. 5 can be obtained, and the speed of the mover can be lowered.
しかしながら、第6図の構成では、起磁力に多くの高調
波成分が含まれることになる。これを巻線係数で示すと
、基本波成分については0.886で、第2次、第4次
、第6次、第8次等の偶数次の高調波成分も0.866
、第3次、第5次、第7次等の奇数次の高調波成分も
o、geeとなる。このため、推力、電流等の面で特性
の低下を招くのみならず、振動及び騒音が増大するとい
う問題が生ずる。However, in the configuration shown in FIG. 6, the magnetomotive force includes many harmonic components. Expressing this as a winding coefficient, the fundamental wave component is 0.886, and even harmonic components such as the 2nd, 4th, 6th, 8th, etc. are also 0.866.
, 3rd, 5th, 7th, and other odd-numbered harmonic components are also o and gee. This causes problems such as not only deterioration of characteristics in terms of thrust, current, etc., but also increase in vibration and noise.
そこで、本発明の目的は、特性の低下や振動・騒音の増
大を招くことなく低同期速度を得ることができる両側式
リニアモータを提供するにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a double-sided linear motor that can obtain a low synchronous speed without deteriorating characteristics or increasing vibration and noise.
[発明の構成]
(課題を解決するための手段)
本発明の両側式リニアモータは、各固定子巻線を毎極毎
相のスロット数qがn/2 (nは奇数)となる分数ス
ロット巻線とすると共に、一方の固定子巻線に属する1
のコイル辺が他方の固定子巻線に属し且つ逆方向の電流
が流れる同相の他の1のコイル辺に対して3n/2スロ
ットピッチだけずれるように構成したところに特徴を有
する。[Structure of the Invention] (Means for Solving the Problems) The double-sided linear motor of the present invention has each stator winding arranged in fractional slots such that the number of slots q for each pole and each phase is n/2 (n is an odd number). winding, and 1 belonging to one stator winding.
It is characterized in that the coil side belongs to the other stator winding and is shifted by 3n/2 slot pitch with respect to the other coil side of the same phase through which current flows in the opposite direction.
(作用)
上記構成とすることにより、同期速度は毎極毎相のスロ
ット数qが1である場合に比べて1/2となる。しかも
、各固定子巻線に流れる電流により生ずる起磁力のうち
、奇数次の高調波成分は残るが、偶数次の高調波成分は
互いに打ち消し合って消滅する。(Function) With the above configuration, the synchronous speed becomes 1/2 compared to the case where the number of slots q for each pole and each phase is 1. Moreover, of the magnetomotive force generated by the current flowing through each stator winding, odd-order harmonic components remain, but even-order harmonic components cancel each other out and disappear.
(実施例)
以下本発明の一実施例について第1図ないし第4図を参
照して説明する。(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.
第1図には2つの固定子鉄心11.12に巻装した各固
定子巻線13.14の巻線配置を示しである。双方の固
定子鉄心11.12とも、7個のスロットが等間隔て形
成された同一の構成である。FIG. 1 shows the winding arrangement of each stator winding 13, 14 wound around two stator cores 11, 12. Both stator cores 11 and 12 have the same configuration in which seven slots are formed at equal intervals.
これらの固定子鉄心11.12は、一方の固定子鉄心の
歯部が他方の固定子鉄心のスロットの正面に対向して互
いに1/2スロツトだけずれて配置された関係にある。These stator cores 11, 12 are in such a relationship that the teeth of one stator core face the front of the slots of the other stator core and are offset from each other by 1/2 slot.
各固定子巻線13.14は極数が4、毎極毎相のスロッ
ト数qが1/2である分数スロット巻である。Each stator winding 13, 14 is a fractional slot winding in which the number of poles is 4 and the number of slots q for each pole and each phase is 1/2.
さて、下側の固定子鉄心11のスロット番号を#1〜#
7とし、上側の固定子鉄心12のスロット番号を#1′
〜#7′として各固定子巻線13゜14の配置状態を詳
細を述べる。まず下側の固定子鉄心11に巻装した固定
子巻線13について、U相巻線は#1.#2.#4.#
5のスロットに収納した4個のコイル辺からなり、これ
らが第2図のように直列に接続されて両端に端子U、、
U2が形成されている。一方、上側の固定子鉄心12に
巻装した固定子巻線14について、U相巻線は#2’
、#3’ 、#5’ 、#6’のスロットに収納した4
個のコイル辺からなり、これらが第3図のように接続さ
れて両端に端子U4.Uiが形成されている。従って、
両固定子巻線13.14は互いに空間的に1スロットピ
ッチだけずれたスロットに収納され、且つ両固定子鉄心
11.12が既に1ン2スロットピッチだけずれて配置
されているから、結局、両固定子巻線13.14は互い
に空間的に3/2スロットピッチだけずれた位置関係に
ある。そして、後述するように、これらの両固定子巻線
13.14は端子U2.U、が接続されて端子U、、U
1間に電流が流されるから、例えば端子U、側から電流
が流れ込む時には、各コイル辺に第2図及び第3図に矢
印で示す方向に電流が流れる。この結果、一方の固定子
巻線13に属する1のコイル辺(例えば#1に収納され
たコイル辺)が、他方の固定子巻線14に属し且つ逆方
向の電流が流れる同相の他の1のコイル辺(例えば#2
′に収納されたコイル辺)に対して3/2スロットピッ
チだけずれることになっている。尚、第1図には符号r
UJのコイル辺と逆方向の電流が流れるコイル辺には符
号rUJを使用して示している。また、V相及びW柑の
各固定子巻線についてもU相巻線から順に1スロットピ
ッチずれるのみで同様に巻装され、第1図ないし第3図
に示す通りである。そして、各相の巻線は第4図に示す
ように1×Y結線されて図示しない三相電源に接続され
る。Now, set the slot numbers of the lower stator core 11 from #1 to #
7, and the slot number of the upper stator core 12 is #1'.
~#7', the arrangement of each stator winding 13 and 14 will be described in detail. First, regarding the stator winding 13 wound around the lower stator core 11, the U-phase winding is #1. #2. #4. #
It consists of four coil sides housed in slots 5 and 5, and these are connected in series as shown in Figure 2, with terminals U at both ends.
U2 is formed. On the other hand, regarding the stator winding 14 wound around the upper stator core 12, the U-phase winding is #2'
, #3', #5', #6' slots.
These coil sides are connected as shown in FIG. Ui is formed. Therefore,
Both stator windings 13 and 14 are housed in slots spatially shifted by one slot pitch from each other, and both stator cores 11 and 12 are already arranged shifted by one slot pitch and two slot pitches. Both stator windings 13, 14 are spatially shifted from each other by 3/2 slot pitch. As will be described later, these stator windings 13, 14 are connected to terminals U2. U, is connected to terminal U,,U
1, so when a current flows from the terminal U side, for example, the current flows through each coil side in the direction shown by the arrow in FIGS. 2 and 3. As a result, one coil side belonging to one stator winding 13 (for example, the coil side housed in #1) belongs to the other stator winding 14 and is connected to another side of the same phase in which current flows in the opposite direction. side of the coil (e.g. #2
It is supposed to be shifted by 3/2 slot pitch with respect to the coil side housed in '). In addition, in Fig. 1, the symbol r
The coil side through which a current flows in the opposite direction to the coil side of UJ is indicated using the symbol rUJ. Furthermore, the V-phase and W-phase stator windings are wound in the same manner from the U-phase winding with only one slot pitch shift, as shown in FIGS. 1 to 3. The windings of each phase are connected in a 1×Y connection as shown in FIG. 4 to a three-phase power source (not shown).
さて、上記固定子巻線13を三相電源に接続したときの
起磁力分布H1ltmlは、次式で表される。Now, the magnetomotive force distribution H1ltml when the stator winding 13 is connected to a three-phase power source is expressed by the following equation.
H13Lll ” ff Kcos (w t−I
X )ここで、X:電気角で表したギャップの座標(#
1と#2の中央をx−0とし、
スロット番号が大きくなる方向を
正として電気角で表す)。H13Lll” ff Kcos (w t-I
X) Here, X: Coordinate of the gap expressed in electrical angle (#
The center of #1 and #2 is defined as x-0, and the direction in which the slot number increases is defined as positive (expressed in electrical angle).
1、:高調波次数(3の倍数を除く整数)。1,: Harmonic order (integer excluding multiples of 3).
ω:三相電源の角速度。ω: Angular velocity of three-phase power supply.
Kニジ次高調波についての巻線係数で、3の倍数以外の
全ての(の値に対して、
0.866である。The winding coefficient for the K-order harmonic is 0.866 for all values of (other than multiples of 3).
t:U相電流が最大の時点からの経過時間(秒)。t: Elapsed time (seconds) from the point when the U-phase current is at its maximum.
一方、固定子巻線14を三相電源に接続したときの起磁
力分布H,4,、、は、次式で表される。On the other hand, the magnetomotive force distribution H,4, when the stator winding 14 is connected to a three-phase power source is expressed by the following equation.
H14Lml ” f、 (−T)Kcos(ωL−’
、 (x−yr ) 1ここで、高調波次数lが偶数の
場合は、1(,4,、、ccΣ(−−T−)K cos
(ωt−(x )であり、高調波次数lが奇数の場合は
、HI3.、、ocΣ Kcos(ωt−1,x )
1 丁
となる。従って、両固定T間の空隙の起磁力分布はH1
□1とHI3゜、との和で表されるから、偶数次成分に
ついては互いに打ち消し合って消滅する。また、奇数次
成分については基本波成分に対する比率は一定であり、
巻線係数には全て0.886となる。この値は、第5図
に示したq−1の固定子巻線のものと同一である。H14Lml ” f, (-T)Kcos(ωL-'
, (x-yr) 1Here, if the harmonic order l is an even number, 1(,4,,,ccΣ(--T-)K cos
(ωt-(x), and if the harmonic order l is an odd number, HI3.,,ocΣ Kcos(ωt-1,x)
It becomes 1 knife. Therefore, the magnetomotive force distribution in the air gap between both fixed T is H1
Since it is expressed as the sum of □1 and HI3°, even-numbered components cancel each other out and disappear. In addition, the ratio of odd-order components to the fundamental wave component is constant,
All winding coefficients are 0.886. This value is the same as that of the q-1 stator winding shown in FIG.
このように本実施例によれば、分数スロット巻を採用し
ているから、第5図に示した従来構造に比べて同様な固
定子鉄心を用いながら、同期速度を1/2にすることが
できる。しかも、分数スロット巻でありながら、第6図
に示した構造とは異なり、高調波成分を半減することが
できるから、推力や電流等の特性の低下はなく、且つ振
動・騒音を十分に抑えることができる。According to this embodiment, since fractional slot winding is adopted, the synchronous speed can be reduced to 1/2 compared to the conventional structure shown in FIG. 5 while using the same stator core. can. Moreover, although it is a fractional slot winding, unlike the structure shown in Figure 6, harmonic components can be halved, so there is no reduction in characteristics such as thrust and current, and vibration and noise are sufficiently suppressed. be able to.
尚、本発明の実施構造は上記した実施例に限定されるも
のではなく、例えば次のように変更する等、その要旨を
逸脱しない範囲で種々変更して実施することができる。Note that the implementation structure of the present invention is not limited to the above-described embodiments, and can be implemented with various changes without departing from the gist, such as the following changes.
(イ)固定子巻線は、毎極毎相のスロット数qが1/2
に限らず、3/2.5/2.・・・等のn/2(nは奇
数)となる分数スロット巻に広く適用できる。(a) In the stator winding, the number of slots q for each pole and each phase is 1/2
Not limited to 3/2.5/2. It can be widely applied to fractional slot windings such as n/2 (n is an odd number).
(ロ)上記実施例では、4極の固定子を構成する場合に
ついて示したが、これに限らず、2極、6極、8極等の
固定子についても同様に適用でき°る。(b) In the above embodiment, a case where a stator with four poles is constructed is shown, but the present invention is not limited to this, and can be similarly applied to stators with two poles, six poles, eight poles, etc.
(ハ)固定子巻線13.14は必ずしも直列接続せずと
も、並列接続してもよい。また、Δ結線としてもよい。(c) The stator windings 13 and 14 are not necessarily connected in series, but may be connected in parallel. Alternatively, a Δ connection may be used.
[発明の効果]
以上述べたように、本発明の両側式リニアモータによれ
ば、特性の低下や振動・騒音の増大を招くことなく低同
期速度を得ることができるという優れた効果を奏する。[Effects of the Invention] As described above, the double-sided linear motor of the present invention has the excellent effect of being able to obtain a low synchronous speed without deteriorating characteristics or increasing vibration and noise.
第1図ないし第4図は本発明の一実施例を示し、第1図
は固定子鉄心と共に示す固定子巻線の巻線配置図ミ第2
図は一方の固定子巻線の展開図、第3図は他方の固定子
巻線の展開図、第4図は固定子巻線の接続図、第5図は
従来例を示す第1図相当図、第6図は固定子巻線に分数
スロット巻を採用した一例を示す第1図相当図である。
図面中、11.12は固定子鉄心、13.14は固定子
巻線である。
代理人 弁理士 則 近 憲 右同
第 子 丸 健U+ V+ V/
+ U2 V2 W2 W4U4 V
4 W3 U3 V3第2図 第3
図
M4図1 to 4 show one embodiment of the present invention, and FIG. 1 is a winding arrangement diagram of the stator winding shown together with the stator core.
The figure is a developed view of one stator winding, Figure 3 is a developed view of the other stator winding, Figure 4 is a connection diagram of the stator winding, and Figure 5 is equivalent to Figure 1 showing a conventional example. 6 is a diagram corresponding to FIG. 1 showing an example in which fractional slot winding is adopted for the stator winding. In the drawing, 11.12 is a stator core, and 13.14 is a stator winding. Agent: Patent Attorney Noriyuki Chika
Ken Maru No. 1 U+ V+ V/
+ U2 V2 W2 W4U4 V
4 W3 U3 V3 Fig. 2 Fig. 3
Figure M4
Claims (1)
おいて、前記固定子の固定子巻線を毎極毎相のスロット
数qがn/2(nは奇数)となる分数スロット巻線とす
ると共に、一方の固定子巻線に属する1のコイル辺が他
方の固定子巻線に属し且つ逆方向の電流が流れる同相の
他の1のコイル辺に対して3n/2スロットピッチだけ
ずれるように構成したことを特徴とする両側式リニアモ
ータ。In a device consisting of one or two stators facing each other at a distance, the stator winding of the stator is fractionally slot wound so that the number of slots q for each pole and each phase is n/2 (n is an odd number). In addition, one coil side belonging to one stator winding has a slot pitch of 3n/2 with respect to another coil side of the same phase that belongs to the other stator winding and in which current flows in the opposite direction. A double-sided linear motor characterized by being configured to shift.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13151289A JPH02311160A (en) | 1989-05-26 | 1989-05-26 | Two sides linear motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13151289A JPH02311160A (en) | 1989-05-26 | 1989-05-26 | Two sides linear motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02311160A true JPH02311160A (en) | 1990-12-26 |
Family
ID=15059772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13151289A Pending JPH02311160A (en) | 1989-05-26 | 1989-05-26 | Two sides linear motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02311160A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1320725C (en) * | 2003-12-17 | 2007-06-06 | 上海大学 | Electrode and slot number matching of wheel motor and rule structure therefor |
US7355293B2 (en) * | 2003-04-14 | 2008-04-08 | Seabased Ab | Wave power assembly with an electromagnetic dampning means |
CN103001365A (en) * | 2011-09-13 | 2013-03-27 | 华域汽车电动系统有限公司 | Double-layer fractional-slot winding structure of permanent-magnet synchronous motor |
-
1989
- 1989-05-26 JP JP13151289A patent/JPH02311160A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7355293B2 (en) * | 2003-04-14 | 2008-04-08 | Seabased Ab | Wave power assembly with an electromagnetic dampning means |
CN1320725C (en) * | 2003-12-17 | 2007-06-06 | 上海大学 | Electrode and slot number matching of wheel motor and rule structure therefor |
CN103001365A (en) * | 2011-09-13 | 2013-03-27 | 华域汽车电动系统有限公司 | Double-layer fractional-slot winding structure of permanent-magnet synchronous motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102053660B1 (en) | Optimized electric motor with narrow teeth | |
EP0295718B1 (en) | Method for winding a motor with armature teeths and field magnet | |
DE102004044697B4 (en) | synchronous machine | |
JP6288369B2 (en) | Rotating electric machine | |
JPH0132742B2 (en) | ||
Tang et al. | Framework and solution techniques for suppressing electric machine winding MMF space harmonics by varying slot distribution and coil turns | |
US8680731B2 (en) | Permanent-magnetic type rotary electric machine | |
Jiang et al. | Analysis of rotor poles and armature winding configurations combinations of wound field flux switching machines | |
JP2007507191A (en) | Three-phase synchronous machine with permanent magnet rotor with squirrel-cage induction winding conductor | |
JP3535485B2 (en) | Three-phase hybrid type stepping motor | |
US3118015A (en) | Balanced transposition for stranded conductor with asymmetrically disposed strand ends | |
US5315192A (en) | Three-phase hybrid type stepping motor | |
US11239717B2 (en) | AC machine windings | |
US4363985A (en) | Pole change dynamo-electric machines | |
JPH02311160A (en) | Two sides linear motor | |
JP5734135B2 (en) | Electric machine and manufacturing method thereof | |
US6597077B2 (en) | Stator coil T-connection for two-phase step motors | |
JP2010142034A (en) | Stator and winding method thereof | |
JPS62230346A (en) | Winding method of brushless motor | |
JPH06261479A (en) | Armature winding | |
JP4720024B2 (en) | Permanent magnet synchronous motor | |
WO2020261809A1 (en) | Linear motor | |
CN102684347B (en) | Electrical machinery and its manufacturing method | |
JP2518206B2 (en) | Winding method of brushless DC linear motor | |
Fong et al. | Three-speed single-winding squirrel-cage induction motors |