JPH02311159A - Electromagnetic stepping actuator - Google Patents
Electromagnetic stepping actuatorInfo
- Publication number
- JPH02311159A JPH02311159A JP12888589A JP12888589A JPH02311159A JP H02311159 A JPH02311159 A JP H02311159A JP 12888589 A JP12888589 A JP 12888589A JP 12888589 A JP12888589 A JP 12888589A JP H02311159 A JPH02311159 A JP H02311159A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic pole
- magnetic
- permanent magnet
- ring
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000004907 flux Effects 0.000 claims description 24
- 230000000737 periodic effect Effects 0.000 claims description 4
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 3
- 230000004393 visual impairment Effects 0.000 description 3
- 201000004569 Blindness Diseases 0.000 description 2
- 206010047571 Visual impairment Diseases 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 208000018769 loss of vision Diseases 0.000 description 2
- 231100000864 loss of vision Toxicity 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 235000012012 Paullinia yoco Nutrition 0.000 description 1
- 241000532784 Thelia <leafhopper> Species 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Electromagnets (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野1
本発明は、電磁ステッピングアクチュエータに関し、さ
らに詳しくは、ソレノイドコイルに通電することにより
発生するTi磁力によってプランジャーにステップ変位
を与える電磁ステッピンクアクチ1エータに関する。Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to an electromagnetic stepping actuator, and more particularly to an electromagnetic stepping actuator that applies a step displacement to a plunger by a Ti magnetic force generated by energizing a solenoid coil. Regarding 1 eta.
〔従来の技術l
従来の電磁ステッピングアクチュエータが持つている本
質的な欠点について説明する。[Prior Art I] The essential drawbacks of conventional electromagnetic stepping actuators will be explained.
■電磁アクチュエータに使用される円筒状永久磁石は1
円筒の半径方向に磁化された永久磁石であることが多く
、両極の面積が異なり磁化されにくく、従って、幾つか
に分解して製作し、それらを円筒状に組立て5LZ=さ
れていた。従って、製作・組立工程数が増加するという
問題があった。■The cylindrical permanent magnet used in electromagnetic actuators is 1
It is often a permanent magnet that is magnetized in the radial direction of a cylinder, and the areas of both poles are different, making it difficult to be magnetized. Therefore, it was manufactured by disassembling it into several pieces and assembling them into a cylindrical shape. Therefore, there is a problem in that the number of manufacturing and assembly steps increases.
■電磁アクチュエータの固定電極を励磁するコイルの巻
回には、コイル面かヨーク側面戸平行となるようになさ
れていた。従って、固定電極の構造によってはコイルの
装着に手間が掛るという問題があった。■The coil that excites the fixed electrode of the electromagnetic actuator was wound so that the coil surface was parallel to the yoke side door. Therefore, depending on the structure of the fixed electrode, there is a problem in that it takes time and effort to attach the coil.
■一般に電磁アクチュエータの固定Ri極と可動電極の
1mに作用する電磁力吸引力Fおよび固定電極と可動電
極の間の空隙における磁束密度Bは次式で示される。(2) In general, the electromagnetic attractive force F acting on the fixed Ri pole of an electromagnetic actuator and the movable electrode of 1 m, and the magnetic flux density B in the gap between the fixed electrode and the movable electrode are expressed by the following equation.
F=KIB2S ・・・ (1)B=K
z (Nl) 2/d ・−(2)ここに、
K1.に2・・・ 比例常数
S・・・固定電極と可動電極の間の空隙の断面積Nl・
・・磁路の励磁アンペアターン
d・・・固定電極と可動電極の間の空隙長さである。F=KIB2S... (1) B=K
z (Nl) 2/d ・−(2) Here, K1. 2... Proportionality constant S... Cross-sectional area of the gap between the fixed electrode and the movable electrode Nl・
...Magnetic path excitation ampere turn d...Gap length between the fixed electrode and the movable electrode.
(1)式と(2)式から。From equations (1) and (2).
F:Kt K2 (Nl)’S/d2・・−(3)(3
)式が求められるが、電磁吸引力Fは、lia路の励磁
アンペアターンNIの2乗と断面積Sに比例し、空隙長
さdの2乗に反比例することは明白であり、特に可動電
極のストローク長の2乗に比例して電磁力吸引力Fが減
少する特性は、電磁アクチュエータ駆動所要電力の増大
、或は電磁アクチュエータの大型化を必要としていた。F: Kt K2 (Nl)'S/d2...-(3)(3
) equation is obtained, but it is clear that the electromagnetic attractive force F is proportional to the square of the excitation ampere turn NI of the lia path and the cross-sectional area S, and inversely proportional to the square of the gap length d. The characteristic that the electromagnetic attraction force F decreases in proportion to the square of the stroke length requires an increase in the power required to drive the electromagnetic actuator, or an increase in the size of the electromagnetic actuator.
[発明が解決しようとする課題]
本発明は、上述のような欠点を排除し、量産に好適であ
り、かつ、小型・高感度で大きな可動電極のストローク
長を持つ電磁ステラピンクアクチュエータを提供するこ
とを課題とするものである。[Problems to be Solved by the Invention] The present invention provides an electromagnetic Stellar Pink actuator that eliminates the above-mentioned drawbacks, is suitable for mass production, and has a small size, high sensitivity, and a large stroke length of the movable electrode. This is the issue.
[課題を解決するための手段1
本発明は、上述の問題点を解決するものであり、次の技
術手段を採った。すなわち、第1の発明は、
(O軸方向に磁化された円筒状永久磁石、永久磁石の両
磁極側に永久磁石と同一軸心に配設された円筒ヨークお
よび円筒ヨーク内面に円筒ヨークと同一軸心にかつ軸方
向に所定のピッチで配設された所定数の第1のリング状
磁極を(lia久だ固定磁極と。[Means for Solving the Problems 1] The present invention solves the above-mentioned problems, and employs the following technical means. That is, the first invention has the following features: (A cylindrical permanent magnet magnetized in the O-axis direction, a cylindrical yoke disposed on both magnetic pole sides of the permanent magnet on the same axis as the permanent magnet, and a cylindrical yoke identical to the cylindrical yoke on the inner surface of the cylindrical yoke. A predetermined number of first ring-shaped magnetic poles arranged at a predetermined pitch in the axial center and in the axial direction are called fixed magnetic poles.
■円筒ヨークの周方向に巻回され各第1のリング状磁極
を通電により磁化するコイルと、■各コイルに所定極性
の電流を通電すると共に各電流の極性を所定の順序に従
って切替え供給する通電制御卸手段と。■A coil that is wound in the circumferential direction of the cylindrical yoke and is magnetized by applying electricity to each first ring-shaped magnetic pole; ■A current of a predetermined polarity is passed through each coil, and the polarity of each current is switched and supplied in a predetermined order. With controlled wholesale means.
■固定磁極と同一軸心に各第1のリング状磁極の磁極面
に内接して貫設された非磁性ガイドパイプ又は非磁性間
隙と。(2) A non-magnetic guide pipe or a non-magnetic gap that is inscribed in and penetrates the magnetic pole surface of each first ring-shaped magnetic pole on the same axis as the fixed magnetic pole.
■軸方向に所定のピッチで配設された所定数の第2のリ
ング状磁極を備えガイドパイプ内を軸方向に摺動自在な
可動磁極と、
からなり、第1および第2のリング状磁極は6[動磁極
が摺動したときもそれぞれ常に軸方向所定周期位置の磁
極同士が対向するように配設されると共に、対向する第
1および第2のリング状磁極においては永久磁石の磁束
と通電制御卸手段による該第1のリング状磁極の磁束と
を相殺させ、対向しでいない両磁極においては両磁束を
相加させて可動1ifi陽をステップ状に順次前方向又
はその逆方向に移動させることを特徴とする電磁ステラ
ピンクアクチュエータである。■A movable magnetic pole that includes a predetermined number of second ring-shaped magnetic poles arranged at a predetermined pitch in the axial direction and is slidable in the axial direction within the guide pipe; and the first and second ring-shaped magnetic poles. 6 [Even when the dynamic magnetic poles slide, the magnetic poles at predetermined periodic positions in the axial direction are always arranged to face each other, and the magnetic flux of the permanent magnet and the magnetic flux of the permanent magnet are The magnetic flux of the first ring-shaped magnetic pole is canceled by the energization control means, and the magnetic fluxes of both magnetic poles that are not facing are added to move the movable 1ifi in a stepwise manner forward or in the opposite direction. This is an electromagnetic Stellar Pink actuator that is characterized by
第2の発明は。The second invention is.
■軸方向に磁化された円筒状永久磁石、永久磁石の両磁
極側に永久磁石と同一軸心に配設された円筒ヨークおよ
び円筒ヨーク内面に円筒ヨークと同一軸心にかつ軸方向
に所定のビ・ソチで配設された所定数の第3のリング状
磁極を備えた固定磁極と。■A cylindrical permanent magnet magnetized in the axial direction, a cylindrical yoke arranged on both magnetic pole sides of the permanent magnet on the same axis as the permanent magnet, and a cylindrical yoke arranged on the inner surface of the cylindrical yoke on the same axis as the cylindrical yoke and in a predetermined axial direction. a fixed magnetic pole comprising a predetermined number of third ring-shaped magnetic poles arranged in Bi-Sochi;
■第3のリング状磁極の各リングの内周面上に所定数等
間隔に配設されると共に凸リング上の配設位置を順次軸
方向に応じて所定角度ずつ回転させた第!の円弧状磁極
片と、
(■円筒ヨークの周り向に巻回され各第1の円弧状磁極
片を通電により磁化するコイルと、■各コイルに所定陽
性の4流を通電すると共に凸電流の陽性を所定の順序に
従って切替え供給する通電制御卸手段と。■A predetermined number of third ring-shaped magnetic poles are arranged at equal intervals on the inner peripheral surface of each ring, and the positions on the convex rings are sequentially rotated by a predetermined angle in accordance with the axial direction. (■A coil that is wound around the cylindrical yoke and is magnetized by energizing each first arc-shaped magnetic pole piece, and ■A convex current is passed through each coil with four predetermined positive currents.) energization control means for switching and supplying positive signals in accordance with a predetermined order;
1(5)固定磁極と同一軸心に6第1の円弧状磁極片の
磁極面に内接して貫設された非磁性ガイドパイプ又は非
磁性間隙と。1 (5) A non-magnetic guide pipe or a non-magnetic gap that is inscribed and penetrated through the magnetic pole surface of the 6 first arc-shaped magnetic pole piece and coaxial with the fixed magnetic pole.
■第3のリング状磁極と同数同ピッチで第3の凸リング
状Fi1極に対向する位置にそれぞれ所定数の第2の円
弧状&B磁極片周設しガイドパイプ内を回動自在な可動
l1fl14と。■A predetermined number of second arc-shaped &B magnetic pole pieces are provided around the circumference of the third convex ring-shaped Fi1 pole at the same number and pitch as the third ring-shaped magnetic pole, respectively, and are movable l1fl14 that can freely rotate within the guide pipe. and.
からなり、第1および第2の円弧状m+片は可動磁極が
回動したときも常に軸方向所定周期位置の磁極片同士が
対向するように配設されると共に、対向する第1および
第2の円弧状磁極片においては永久磁石の磁束と通電制
御和手段による第1の円弧状1if114片の磁束とを
相殺させ、対向していない両l1flF4片においては
両磁束を相加させて可動Mi棲をステップ状に時計回り
又は反時計回りに回転させることを特徴とする電磁ステ
ッピングアクチュエータである。The first and second arc-shaped m+ pieces are arranged so that the magnetic pole pieces at predetermined periodic positions in the axial direction always face each other even when the movable magnetic pole rotates. In the circular arc-shaped magnetic pole piece, the magnetic flux of the permanent magnet and the magnetic flux of the first circular arc-shaped 1if114 piece by the energization control summation means are canceled out, and in the two l1flF4 pieces that are not facing each other, both magnetic fluxes are added to create a movable Mi magnet. This is an electromagnetic stepping actuator that rotates the motor clockwise or counterclockwise in steps.
第3の発明は、
■軸方向に磁化された円筒状永久磁石の一方の磁極面を
固定した根状ヨーク、板状ヨークの永久磁石側に永久磁
石の軸心を中心とする円周上に所定数等間隔に第3の柱
状磁極片を備えた固定Fa極と、
■各第3の柱状磁極片を通電により磁化するコイルと。The third invention is: ■ A root-like yoke that fixes one magnetic pole surface of a cylindrical permanent magnet that is magnetized in the axial direction, and a plate-like yoke that is attached on the circumference around the axis of the permanent magnet on the permanent magnet side of the plate-like yoke. A fixed Fa pole including a predetermined number of third columnar magnetic pole pieces at equal intervals, and (2) a coil that magnetizes each third columnar magnetic pole piece by energizing it.
■各コイルに所定極性の電流を通電すると共に各電流の
極性を所定の順序に従って切替え供給する通電制御卸手
段と。(2) Energization control means for supplying current of a predetermined polarity to each coil and switching the polarity of each current according to a predetermined order.
■円筒状永久磁石の他の面側に容筒3の柱状磁圃片およ
び円筒状永久磁石と所定の間隙を介して対向すると共に
円筒状永久磁石と同一軸心を中心として回動自在に永久
磁石と結合され、かつ、回動軸を中心とする円周上に所
定数等間隔に第4の磁極片を設けた板状回動磁極と、
からなり、容筒3の柱状磁極片および第4の磁極片は、
板状回動磁極が回動したときも常に所定位置関係にある
磁極片同士が対向するように配設されると共に、対向す
る両磁極片には円筒状永久磁石の磁束と通電制御卸手段
による第3の柱状磁極片の磁束とを相殺させ、対向して
いない両磁極片には両磁束を相加させて根状回動&Rr
、Iをステップ状に時計回り又は反時計回りに回転させ
ることを特徴とする電磁ステッピングアクチュエータで
ある。■The other side of the cylindrical permanent magnet faces the columnar magnetic field piece of the container 3 and the cylindrical permanent magnet with a predetermined gap, and is permanently rotatable around the same axis as the cylindrical permanent magnet. a plate-shaped rotating magnetic pole coupled to a magnet and having a predetermined number of fourth magnetic pole pieces arranged at equal intervals on the circumference around the rotation axis; The magnetic pole piece of 4 is
Even when the plate-shaped rotating magnetic pole rotates, the magnetic pole pieces that are always in a predetermined positional relationship are arranged so as to face each other, and both opposing magnetic pole pieces are controlled by the magnetic flux of the cylindrical permanent magnet and the energization control means. The magnetic flux of the third columnar magnetic pole piece is canceled out, and both magnetic fluxes are added to the two magnetic pole pieces that are not facing each other, resulting in root-shaped rotation &Rr.
, I is an electromagnetic stepping actuator characterized by rotating clockwise or counterclockwise in a stepwise manner.
[作用j 本発明は上述のように構成したので。[effect j Since the present invention is configured as described above.
第1の発明では、通電制御卸手段によって各コイルに通
電すると、可動磁極は順次iii方向或はその逆方向(
或は上下)にガイドパイプ内をステップ状に移動させる
ことができる。In the first invention, when each coil is energized by the energization control means, the movable magnetic poles are sequentially moved in the iii direction or the opposite direction (
or vertically) in the guide pipe in a step-like manner.
第2の発明では、通電制御卸手段によって各コイルに通
電すると、可動la極は順次時計回り又は反時計回りに
ガイドパイプ内をステップ状に回転させることかできる
。In the second invention, when each coil is energized by the energization control means, the movable LA pole can be sequentially rotated in a stepwise manner clockwise or counterclockwise within the guide pipe.
第3の発明では、通電制御卸手段によって8コイルに通
電すると1回動磁極は順次ステップ状に時計回り又は反
時計回りに回転させることができる。In the third invention, when the eight coils are energized by the energization control means, the one-turn magnetic pole can be sequentially rotated in a stepwise manner clockwise or counterclockwise.
[実施例] 本発明の実施例を図面によって説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.
(第1の発明)
・ 第1図は第1の発明の第1の実施例の説明図であ
り、第1図(a)、第1図(b)および第1図(c)は
軸方向断面図、第1図(d)は乎面図を示す。第1図(
a)は、軸方向に磁化された円筒状永久磁石l、永久磁
石lの両磁極側に永久磁石lと同一軸心に配設された円
筒ヨーク2および円筒ヨーク2内に円筒ヨーク2と同一
軸心に所定のピッチで配設された4個の第1のリング状
磁極3を備えた固定磁極4と、円筒ヨーク2の周方向に
巻回され容筒1のリング状磁極3を通電により磁化する
コイル5と、固定磁極4と同一軸心に容筒1のリング状
磁極3の磁極面に内接して貫設された非磁性ガイドパイ
プロと、ガイドパイプロ内を摺動自在な4個の第2のリ
ング状磁極7を備えた円筒状可動磁極8とから構成して
いるにの場合第1のリング状磁極3のピッチは、同磁極
片の厚さの3n倍、第2のリング状磁極7のピッチは、
同&B極片の厚さの2n倍としている(第1図ではn=
1である)、nは2以−Fとしてもよいことは勿論であ
る。(First invention) - Fig. 1 is an explanatory diagram of the first embodiment of the first invention, and Fig. 1(a), Fig. 1(b), and Fig. 1(c) are axial direction A sectional view, FIG. 1(d) shows a top view. Figure 1 (
a) consists of a cylindrical permanent magnet l magnetized in the axial direction, a cylindrical yoke 2 disposed on both magnetic pole sides of the permanent magnet l on the same axis as the permanent magnet l, and a cylindrical yoke 2 inside the cylindrical yoke 2 that is identical to the cylindrical yoke 2. A fixed magnetic pole 4 having four first ring-shaped magnetic poles 3 arranged at a predetermined pitch around the axis, and a ring-shaped magnetic pole 3 of the container 1 wound around the circumferential direction of the cylindrical yoke 2 are connected by energizing. A magnetizing coil 5, a non-magnetic guide tube inscribed in and penetrating the magnetic pole surface of the ring-shaped magnetic pole 3 of the container 1 on the same axis as the fixed magnetic pole 4, and a guide tube 4 that is slidable inside the guide tube. In this case, the pitch of the first ring-shaped magnetic pole 3 is 3n times the thickness of the same magnetic pole piece, and the pitch of the first ring-shaped magnetic pole 3 is 3n times the thickness of the second ring-shaped magnetic pole piece. The pitch of the ring-shaped magnetic pole 7 is
The thickness is 2n times the thickness of the &B pole piece (in Figure 1, n=
1), and n may of course be 2 or more -F.
なお、各コイル5に所定極性の電流を通電すると共に谷
電流の極性を所定の順序に従って切替え供給する通電制
御卸手段は省略している。Note that the energization control means for supplying current of a predetermined polarity to each coil 5 and switching and supplying the polarity of the valley current in accordance with a predetermined order is omitted.
第1図(a)には、コイル5には通電していない状態、
すなわち、円筒状永久磁石【のみによる磁力線(実11
)の状態が示されており、容筒1のリング状磁極3、第
2のリング状磁極7は図示されるような位置関係で安定
している。第1図(b)に示すように、コイル5に通電
すると、第1のリング状磁極3は磁化され点線で示すよ
うに磁力線が発生し永久磁石lの磁力線(実線)と重畳
される。すなわち、実線と点線で示す磁力綿が同−向き
の場合は、第1のリング状磁極3と第2のリング状磁極
間7には吸引力が作用し、実線と点線で示す磁力線が反
対向きの場合は、同M1Ff!間では吸引力が打消され
消滅する。従って、可動磁極8は第1図(C)に示すよ
うに1ステツプ右に移動する。FIG. 1(a) shows a state in which the coil 5 is not energized;
In other words, the lines of magnetic force due to the cylindrical permanent magnet (actual 11
), and the ring-shaped magnetic pole 3 of the container 1 and the second ring-shaped magnetic pole 7 are stable in the illustrated positional relationship. As shown in FIG. 1(b), when the coil 5 is energized, the first ring-shaped magnetic pole 3 is magnetized and lines of magnetic force are generated as shown by dotted lines, which are superimposed on the lines of magnetic force (solid lines) of the permanent magnet l. That is, when the magnetic lines shown by the solid line and the dotted line are in the same direction, an attractive force acts between the first ring-shaped magnetic pole 3 and the second ring-shaped magnetic pole 7, and the magnetic force lines shown by the solid line and the dotted line are in opposite directions. In the case of , the same M1Ff! In between, the attraction force is canceled and disappears. Therefore, the movable magnetic pole 8 moves one step to the right as shown in FIG. 1(C).
同様に、通電制御卸手段によって、各コイル5に第1図
(C)に示すような方向に通電すると、可動磁極8は第
1図(a)に示すように1ステツプ左に移動し元の状態
に復帰する。Similarly, when each coil 5 is energized by the energization control means in the direction shown in FIG. 1(C), the movable magnetic pole 8 moves one step to the left as shown in FIG. 1(a) and returns to its original position. return to the state.
第2図は第1の発明の第2の実施例の説明図であり、第
2図(a)、第2図(b)、第2図(C)、第2図(d
)および、第2図(e)は軸方向断面図、第2図(f)
は平面図を示す0本実施例は6個の第1のリング状磁極
3を備えた固定磁極4と、5個の第2のリング状磁極7
を備えた円筒状可動磁極8とから構成した例である。FIG. 2 is an explanatory diagram of the second embodiment of the first invention, and FIG. 2(a), FIG. 2(b), FIG. 2(C), and FIG.
) and Fig. 2(e) is an axial sectional view, Fig. 2(f)
0 shows a plan view This embodiment includes a fixed magnetic pole 4 having six first ring-shaped magnetic poles 3 and a fixed magnetic pole 4 having five second ring-shaped magnetic poles 7.
This is an example in which a cylindrical movable magnetic pole 8 is provided.
第2図(a)は円筒状永久磁石lのみによる磁力5li
t(実!!9)の状態が示されている。この時、第2図
(b)に示すようにコイル5に通電すると第1のリング
状磁極3は磁化され点線で示すように磁力線が発生し永
久磁石lの磁力!!(実、りと重畳される(第2図(b
))。各磁力線同士の相加および相殺により、可動磁極
8は第2図(C)に示すように左へ1ステツプ移動する
。次いで、第2図(C)に示すようにコイル5に通電す
ると可動磁f4Bは第2図(d)に示すように川に左へ
lステップ移動する。ついで、第2図(d)に示すよう
にコイル5に通電すると可動磁極8は第2図(e)に示
すように重に左へ1ステツプ移動する。Figure 2 (a) shows the magnetic force 5li due to only the cylindrical permanent magnet l.
The state of t (actual!!9) is shown. At this time, when the coil 5 is energized as shown in FIG. 2(b), the first ring-shaped magnetic pole 3 is magnetized and lines of magnetic force are generated as shown by the dotted line, causing the magnetic force of the permanent magnet l! ! (Fig. 2 (b)
)). Due to the addition and cancellation of the magnetic lines of force, the movable magnetic pole 8 moves one step to the left as shown in FIG. 2(C). Next, when the coil 5 is energized as shown in FIG. 2(C), the movable magnet f4B moves one step to the left as shown in FIG. 2(d). Then, when the coil 5 is energized as shown in FIG. 2(d), the movable magnetic pole 8 moves one step to the left as shown in FIG. 2(e).
二の例は、第1のリング状&R14のピッチを、同磁極
の厚さの2n倍、第2のリング状磁極のピッチを、同磁
極片の厚さの3n倍としているが(第2図ではn=1で
ある)、勿論nは2以トとしてらよい。In the second example, the pitch of the first ring-shaped &R14 is 2n times the thickness of the same magnetic pole, and the pitch of the second ring-shaped magnetic pole is 3n times the thickness of the same magnetic pole piece. In this case, n=1), but of course n may be set to 2 or more.
(第2の発明)
第1の発明が円筒状imT !# 磁極が軸心に沿って
前(Kt(vQは[ニF)に摺動するのに対し1本発明
は、円筒状if IJI fa極が軸心を中心として回
動するように構成したものである。(Second invention) The first invention is a cylindrical imT! # While the magnetic pole slides forward (Kt (vQ is [F)] along the axis, the present invention is constructed so that the cylindrical if IJI fa pole rotates around the axis. It is.
本発明の実施例を第3図〜第6図に示す。第3図(a)
〜第6図(a)は軸方向断面図、第3図(b)〜第6図
(b)、第3図(cl〜第6図fclお紅び第3図(d
)、第4図(d)〜第6図(d)はそれぞれ第3図(a
)、第4図fa)〜第6図(a)のA−A矢視断面図。Examples of the present invention are shown in FIGS. 3 to 6. Figure 3(a)
- Fig. 6 (a) is an axial sectional view, Fig. 3 (b) - Fig. 6 (b), Fig. 3 (cl - Fig. 6 fcl), and Fig. 3 (d).
), Figures 4(d) to 6(d) are respectively similar to Figure 3(a).
), sectional views taken along the line A-A in FIGS. 4(a) to 6(a).
+3−11失視断面図およびC−C矢視断面図である。They are a +3-11 visual loss cross-sectional view and a C-C arrow cross-sectional view.
第3図(a)は、固定It!illに第3のリング状磁
極20を6fkM(3ml囚 但しm=2)軸方向に設
け、容筒3のリング状!1fit4i20には第1の円
弧状bi1帰片9を2@周設している。Ij■動&11
x12には3第3のリング状611極20に対向して、
第2の円弧状磁極片lOを2個ずつ軸方向に6(2n個
山しn=3)個設けている。h第2の円弧状磁極片【
0は周り行に同−向きに配設されているが、3第1の円
弧状磁極片9は第3のリング状磁極20内面に等間隔に
配設されるが、その位置は第3図(bJ、CC)、(d
)に示す上う1こ。FIG. 3(a) shows the fixed It! A third ring-shaped magnetic pole 20 is provided in the axial direction of 6fkM (3ml, where m=2) in the ring-shaped container 3! 1fit4i20 is provided with two first arc-shaped bi1 return pieces 9 around the circumference. Ij■motion&11
x12 has a 3rd ring shape 611 facing the pole 20,
Two second arc-shaped magnetic pole pieces lO are provided in six pieces (2n pieces, n=3) in the axial direction. hSecond arc-shaped magnetic pole piece [
0 are arranged in the same direction in the circumferential row, but the 3rd first arc-shaped magnetic pole pieces 9 are arranged at equal intervals on the inner surface of the third ring-shaped magnetic pole 20, and their positions are as shown in FIG. (bJ, CC), (d
) is shown above.
360 °二6二60゜
すなわち、軸方向に60′°ずつ回転させて配設されて
いる。従って、第2の円弧状磁極片IOが6ステツプ同
一方向に回転すると11[動1ifl極12は1回転す
ることになる。They are arranged so as to be rotated by 360°26260°, that is, by 60'° in the axial direction. Therefore, when the second arcuate pole piece IO rotates six steps in the same direction, the 11 [moving 1ifl pole 12] rotates once.
第3図(a)〜(d)は永久磁石!のみによるEfl力
線(実線)の状態が示されている。この時、第4図(a
)に示すようにコイル5に通電すると3第1の円弧状m
+片9および第2の円弧状磁極片10間の磁力線の状態
は第4図([])〜(dlとなり、可動磁極12は第5
図(b)〜((1)に示すように時計回りに60′°同
転する。次いで、第5図(Fl)に示すようにコイル5
に通電すると同様にして、可動1ifit412は第E
逼図(b)〜((1)に示すように時計回りに川に60
°回転する7次いで、第6図(a)に示すようにコイル
5に通電すると、可動磁1412は川に60”回転する
。Figures 3 (a) to (d) are permanent magnets! The state of the Efl field lines (solid lines) due to only Efl is shown. At this time, Fig. 4 (a
), when the coil 5 is energized, the first arc shape m
The states of the magnetic lines of force between the + piece 9 and the second arc-shaped magnetic pole piece 10 are as shown in FIG.
As shown in Figures (b) to (1), the coil 5 rotates clockwise by 60'°.Then, as shown in Figure 5 (Fl), the coil 5
In the same way, the movable 1ifit 412 is
60 meters clockwise to the river as shown in Figure (b) ~ ((1)
Then, when the coil 5 is energized as shown in FIG. 6(a), the movable magnet 1412 rotates by 60''.
なお、本実施例のm、n(i適宜選定することができる
。Note that m and n(i in this embodiment can be selected as appropriate.
(第3の発明)
第7図および第8図は第3の発明の説明図であり、第7
図は第1の実施例を示し、第7図(a)は軸方向断面図
、第7図(b)は第7図(a)のD −1)失視図、第
7図(c)は第7図(a)のIE −E失視図、第8図
は第2の実施例であり、第8図(a)は軸方向断面図、
第8図(blは第8図(a)のF−F失視図、第8図(
cJは第8図(a)の回動磁極のG−G天視図である。(Third invention) FIG. 7 and FIG. 8 are explanatory diagrams of the third invention.
The figures show the first embodiment, and FIG. 7(a) is an axial cross-sectional view, FIG. 7(b) is a D-1) asymmetrical view of FIG. 7(a), and FIG. 7(c) is an axial sectional view. is an IE-E blind view of FIG. 7(a), FIG. 8 is a second embodiment, and FIG. 8(a) is an axial sectional view;
Figure 8 (bl is the F-F dysopia view of Figure 8 (a), Figure 8 (
cJ is a GG sky view of the rotating magnetic pole in FIG. 8(a).
第7図に示すように、軸方向に磁化された円部状永久磁
石lの一方の磁極面を固定した板状ヨーク14および、
板状ヨーク14の永久磁石側に永久磁石lの軸心を中心
とする円周ヒに31P4(3n個 ([i l、 n
= 1 )の等間隔に設けた第3の柱状6R14i片」
3(本実施例では円柱状に構成している)を備えた固定
Mi極16と、4個(2n個(f、i l、 n =
l )の第4の磁極片15を設けた回動Vi14i17
からなり1回動磁極17は回動可能に固定磁!4i16
と結合されている。As shown in FIG. 7, a plate-shaped yoke 14 fixed to one magnetic pole surface of a circular permanent magnet l magnetized in the axial direction;
On the permanent magnet side of the plate-shaped yoke 14, 31P4 (3n pieces ([i l, n
= 1) third columnar 6R14i pieces provided at equal intervals.
Fixed Mi poles 16 with 3 (in this example, configured in a cylindrical shape) and 4 (2n (f, i l, n =
l) Rotating Vi14i17 with the fourth magnetic pole piece 15
Consisting of one rotating magnetic pole 17 is a fixed magnetic that can rotate! 4i16
is combined with
8コイル5に所定の極性の電流を通電すると、永久磁石
1と、円筒状1ifiI4i片13に’tじろ磁力線と
の相r1作用により第4のm+片15はlステップずつ
時計回り或は反時計回りに移動する。第;3の柱状磁極
片【3および第4の6R極片[5の個数のnは適宜選定
することができる。When a current of a predetermined polarity is applied to the 8 coil 5, the fourth m+ piece 15 rotates clockwise or counterclockwise by l steps due to the phase r1 action of the permanent magnet 1 and the cylindrical 1ifiI4i piece 13 with the 't diagonal magnetic field lines. Move clockwise. 3rd columnar magnetic pole piece [3rd and 4th 6R pole piece [n of the number of 5 pieces can be selected as appropriate.
第8図は、第2の実施例であり、板状ヨークの代わりに
円板状ヨークを用い、固定磁極16側に6 ffAlの
第3の柱状磁極片13を備え、また、永久6R石■は回
動M1極17側に設けた例を示している。FIG. 8 shows a second embodiment, in which a disk-shaped yoke is used instead of the plate-shaped yoke, a third columnar magnetic pole piece 13 of 6 ff Al is provided on the fixed magnetic pole 16 side, and a permanent 6R stone shows an example provided on the rotating M1 pole 17 side.
すなわち、第7図および第8図において永久磁石lは固
定磁極」6側叉は同動磁極17側の何れの側に説けても
よい。That is, in FIGS. 7 and 8, the permanent magnet l may be placed on either side of the fixed magnetic pole 6 or on the co-moving magnetic pole 17 side.
以り1本発明のh実施例について訝明したが。I have been wondering about the first embodiment of the present invention.
第1のリング状&aMi3と第2のリング状磁極7゜第
1の円弧状lifiMi片9と第2の円弧状6n極片1
0および第3の柱状&1t4i片13と第4の&[II
5の夫)(の対向面は周囲を面取りして磁極面を小さく
すれば、8磁極面を通過する磁束密度を人きくすること
ができるので、移動磁極側の凸ステップ移動距離を正確
にすることができる。First ring-shaped &aMi3 and second ring-shaped magnetic pole 7゜First arc-shaped lifiMi piece 9 and second arc-shaped 6n pole piece 1
0 and the third columnar &1t4i piece 13 and the fourth &[II
5) By chamfering the periphery of the opposing surface to make the magnetic pole surface smaller, the magnetic flux density passing through the 8 magnetic pole surfaces can be increased, so the convex step movement distance on the moving magnetic pole side can be made more accurate. be able to.
〔発明の効果] 本発明は、次のような優れた効果を奏する。〔Effect of the invention] The present invention has the following excellent effects.
■小型、高感度の電磁ステッピングアクチュエータを(
lることができる。■Small, highly sensitive electromagnetic stepping actuator (
I can do it.
■(1i純で頑丈な構造であり、永久磁石の磁化方向お
よびコイルの巻線の巻回方法を改潜したために大量生産
に好適である。(1i) It has a pure and sturdy structure, and is suitable for mass production because the magnetization direction of the permanent magnet and the winding method of the coil have been changed.
(j)比例制御用による位置決めなど多種多様なメカト
ロニクス手段に応用することができる。(j) It can be applied to a wide variety of mechatronic means such as positioning using proportional control.
第1図〜第8図は本発明の詳細な説明図であり、第1図
は第1の発明の第1の実施例の説明図であり、第1図(
a)、第1図(b)および第1図(c)は軸方向断面図
、第1図(d)は平面図、第2図は第1の発明の第2の
実施例の説明図であり、第2図(a)、第2図(b)、
第2図(C)、第2図(d)および、第2図(e)は軸
方向断面図、第2図(r)は平面図、第3図〜第6図は
第2の発明の一実施例の説明図であり、第:3図(a)
〜第6図(alは軸li向断面図、第:3図(b)〜第
6図(b)、第;3図(c)〜第E3図(c)および第
3図(d)〜第6図((i)はそれぞれ第3図(a)〜
第6図(a)のA−A矢視断面図、U−B矢視断面図お
よびc−c矢視断面図、第7図および第8図は第3の発
明の説明図であり、第7図は第1の実施例を示し、第7
図(FX)は軸方向断面図、第7IQ(b)は第7図(
ト1)のD−D失視図、第7図(c)は第7図(a )
のE−E失視図、第8図は第2の実施例であり、第8図
(a)は軸方向断面図、第8図(b)は第8図(a)の
I’−F失視図、第81図(c)は第8図(a)の回動
&HhのG’ G失視図である。
l・−・永久M1石 2・・・ヨークコ3・・・
第1のリング状磁極 4・−・固定Mi極5・・・コ
イル 6・・・ガイドパイプ7・・・第2のリ
ング状6R極 8・・・[111M磁極1〕・・−第1
の円弧状1ifl極片
10−−・第2の円弧状&B磁極
11・・・固定磁極 12−・・可動M1t+13
・・・第3の柱状&B陽極
片4・・・根状ヨーク
15・・−第4の&1114片
16・−・固定磁極
17・・・回動磁極
20・・・第3のリング状磁極
出 願 人 三菱鉱業セメント株式会社ミック工業株
式会社
代 理 人 弁理上 小 杉 佳 月(C)
第1 図
菓2図
ffl itセ ブー−
(a)
第3図
(a)
(b) (c) (d)(a)
(a)
第6図
(b)
(C)
第7図
FG
、 「、1″7
FG
(a) (C)
第8図1 to 8 are detailed explanatory diagrams of the present invention, FIG. 1 is an explanatory diagram of a first embodiment of the first invention, and FIG.
a), FIG. 1(b) and FIG. 1(c) are axial sectional views, FIG. 1(d) is a plan view, and FIG. 2 is an explanatory diagram of the second embodiment of the first invention. Yes, Figure 2 (a), Figure 2 (b),
Figure 2(C), Figure 2(d) and Figure 2(e) are axial sectional views, Figure 2(r) is a plan view, and Figures 3 to 6 are of the second invention. FIG. 3(a) is an explanatory diagram of one embodiment.
~Figure 6 (al is a sectional view in the direction of axis li, Figure 3(b)~Figure 6(b), Figure 3(c)~Figure E3(c) and Figure 3(d)~ Fig. 6 ((i) is respectively Fig. 3(a) -
A sectional view taken along the line A-A, a sectional view taken along the line U-B, and a sectional view taken along the line C-c in FIG. 6(a), FIGS. 7 and 8 are explanatory views of the third invention, and Figure 7 shows the first embodiment;
Figure (FX) is an axial sectional view, and 7IQ (b) is Figure 7 (
Figure 7(c) is the DD dysopia diagram of Figure 1), Figure 7(a)
FIG. 8 is a second embodiment, FIG. 8(a) is an axial sectional view, and FIG. 8(b) is an I'-F view of FIG. 8(a). Loss of vision, FIG. 81(c) is a view of G'G loss of vision of rotation &Hh in FIG. 8(a). l・-・permanent M1 stone 2...Yoko 3...
First ring-shaped magnetic pole 4...Fixed Mi pole 5...Coil 6...Guide pipe 7...Second ring-shaped 6R pole 8...[111M magnetic pole 1]...-1st
Arc-shaped 1ifl pole piece 10--Second arc-shaped &B magnetic pole 11...Fixed magnetic pole 12-...Movable M1t+13
...Third columnar &B anode piece 4...Root-like yoke 15...-Fourth &1114 piece 16--Fixed magnetic pole 17...Rotating magnetic pole 20...Third ring-shaped magnetic pole exit Applicant Mitsubishi Mining Cement Co., Ltd. Mick Industry Co., Ltd. Agent Attorney Yoshizuki Kosugi (C) d) (a) (a) Fig. 6 (b) (C) Fig. 7 FG, ",1"7 FG (a) (C) Fig. 8
Claims (1)
石の両磁極側に該永久磁石と同一軸心に配設された円筒
ヨーク並びに該円筒ヨーク内面に該円筒ヨークと同一軸
心にかつ軸方向に所定のピッチで配設された所定数の第 1のリング状磁極を備えた固定磁極と、該円筒ヨークの
周方向に巻回され該各第1のリング状磁極を通電により
磁化するコイルと、該各コイルに所定極性の電流を通電
すると共に該各電流の極性を所定の順序に従って切替え
供給する通電制御手段と、該固定磁極と同一軸心に該各
第1のリング状磁極の磁極面に内接して貫設された非磁
性ガイドパイプ又は非磁性間隙と、軸方向に所定のピッ
チで配設された所定数の第2のリング状磁極を備え該ガ
イドパイプ内を軸方向に摺動自在な可動磁極とからなり
、該第1および第2のリング状磁極は該可動磁極が摺動
したときもそれぞれ常に軸方向所定周期位置の磁極同士
が対向するように配設されると共に、対向する該第 1および第2のリング状磁極においては 前記永久磁石の磁束と前記通電制御手段による該第1の
リング状磁極の磁束と相殺さ せ、対向していない該両磁極においては該両磁束を相加
させて該可動磁極をステップ状に順次前方向又はその逆
方向に移動させることを特徴とする電磁ステッピングア
クチユエータ。 2 軸方向に磁化された円筒状永久磁石および該永久磁
石の両磁極側に該永久磁石と同一軸心に配設された円筒
ヨーク並びに該円筒ヨーク内面に該円筒ヨークと同一軸
心にかつ軸方向に所定のピッチで配設された所定数の第 3のリング状磁極を備えた固定磁極と、該第3のリング
状磁極の各リングの内周面上に所定数等間隔に配設され
ると共に各リング上の配設位置を順次軸方向に応じて所
定角度ずつ回転させた第1の円弧状磁極片と、該円筒 ヨークの周方向に巻回され該各第1の円弧状磁極片を通
電により磁化するコイルと、該 各コイルに所定極性の電流を通電すると共に該各電流の
極性を所定の順序に従って切替え供給する通電制御手段
と、該固定磁極と同一軸心に該各第1の円弧状磁極片の
磁極面に 内接して貫設された非磁性ガイドパイプ又は非磁性間隙
と、該第3のリング状磁極と同数同ピッチで該第3の各
リング状磁極に対向 する位置にそれぞれ所定数の第2の円弧状 磁極片を周設し該ガイドパイプ内を回動自在な可動磁極
とからなり、該第1および第2の円弧状磁極片は該可動
磁極が回動したときも常に軸方向所定周期位置の磁極片
同士が対向するように配設されると共に、対向する該 第1および第2の円弧状磁極片においては 前記永久磁石の磁束と前記通電制御卸手段による該第1
の円弧状磁極片の磁束とを相殺さ せ、対向していない該両磁極片においては該両磁束を相
加させて該可動磁極をステップ状に時計回り又は反時計
回りに回転させることを特徴とする電磁ステッピングア
クチュエータ。 3 軸方向に磁化された円筒状永久磁石の一方の磁極面
を固定した板状ヨークおよび該板状ヨークの該永久磁石
側に該永久磁石の軸心を中心とする円周上に所定数等間
隔に第3の柱状磁極片を備えた固定磁極と、該各第3の
柱状磁極片を通電により磁化するコイルと、該各コイル
に所定極性の電流を通電すると共に該各電流の極性を所
定の順序に従って切替え供給する通電制御手段と、該円
筒状永久磁石の他の面側に該各第3の柱状磁極片および
該円筒状永久磁石と所定の間隙を介して対向すると共に
該円筒状永久磁石と同一軸心を中心として回動自在に該
永久磁石と結合され、かつ、該回動軸を中心とする円周
上に所定数等間隔に第4の磁極片を設けた板状回動磁極
とからなり、該各第3の柱状磁極片および該第4の磁極
片は、該板状回動磁極が回動したときも常に所定位置関
係にある磁極片同士が対向するように配設されると共に
、対向する両磁極片には該円筒状永久磁石の磁束と前記
通電制御手段による該第3の柱状磁極片の磁束とを相殺
させ、対向していない該両磁極片には該両磁束を相加さ
せて該板状回動磁極をステップ状に時計回り又は反時計
回りに回転させることを特徴とする電磁ステッピングア
クチュエータ。[Claims] 1. A cylindrical permanent magnet magnetized in the axial direction, a cylindrical yoke disposed on both magnetic pole sides of the permanent magnet on the same axis as the permanent magnet, and an inner surface of the cylindrical yoke. A fixed magnetic pole including a predetermined number of first ring-shaped magnetic poles arranged on the same axis and at a predetermined pitch in the axial direction, and each of the first ring-shaped magnetic poles wound in the circumferential direction of the cylindrical yoke. a coil that is magnetized by energization; an energization control means that applies a current of a predetermined polarity to each coil and switches and supplies the polarity of each current according to a predetermined order; a non-magnetic guide pipe or a non-magnetic gap inscribed in and penetrating the magnetic pole surface of the ring-shaped magnetic pole; and a predetermined number of second ring-shaped magnetic poles arranged at a predetermined pitch in the axial direction. The first and second ring-shaped magnetic poles are arranged such that the magnetic poles at predetermined periodic positions in the axial direction always face each other even when the movable magnetic pole slides. The magnetic flux of the permanent magnet and the magnetic flux of the first ring-shaped magnetic pole caused by the energization control means are canceled out in the first and second ring-shaped magnetic poles that are opposed to each other, and the magnetic flux of the first ring-shaped magnetic pole that is not opposed to each other is An electromagnetic stepping actuator characterized in that the two magnetic fluxes are added to each other in a magnetic pole to sequentially move the movable magnetic pole in a stepwise manner in the forward direction or in the opposite direction. 2. A cylindrical permanent magnet magnetized in the axial direction, a cylindrical yoke disposed on both magnetic pole sides of the permanent magnet on the same axis as the permanent magnet, and a cylindrical yoke disposed on the inner surface of the cylindrical yoke on the same axis as the cylindrical yoke and on the same axis as the cylindrical yoke. a fixed magnetic pole including a predetermined number of third ring-shaped magnetic poles arranged at a predetermined pitch in the direction; a first arc-shaped magnetic pole piece whose arrangement position on each ring is sequentially rotated by a predetermined angle in accordance with the axial direction; and each first arc-shaped magnetic pole piece which is wound in the circumferential direction of the cylindrical yoke. a coil that is magnetized by energization; an energization control means that applies a current of a predetermined polarity to each coil and switches and supplies the polarity of each current according to a predetermined order; A non-magnetic guide pipe or a non-magnetic gap inscribed in and penetrating the magnetic pole surface of the arc-shaped magnetic pole piece, and a position facing each of the third ring-shaped magnetic poles at the same number and pitch as the third ring-shaped magnetic poles. a movable magnetic pole having a predetermined number of second arc-shaped magnetic pole pieces arranged around each of the guide pipes and rotatable within the guide pipe; At the same time, the magnetic pole pieces at predetermined periodic positions in the axial direction are always arranged to face each other, and in the opposing first and second arc-shaped magnetic pole pieces, the magnetic flux of the permanent magnet and the energization control means are arranged to oppose each other. The first
The movable magnetic pole is rotated clockwise or counterclockwise in a stepwise manner by canceling out the magnetic flux of the arc-shaped magnetic pole pieces, and adding the magnetic fluxes in the two magnetic pole pieces that are not facing each other. electromagnetic stepping actuator. 3. A plate-like yoke to which one magnetic pole surface of a cylindrical permanent magnet magnetized in the axial direction is fixed, and a predetermined number of magnets arranged on a circumference centered on the axis of the permanent magnet on the permanent magnet side of the plate-like yoke. a fixed magnetic pole having third columnar magnetic pole pieces at intervals; a coil that magnetizes each of the third columnar magnetic pole pieces by energization; a current of a predetermined polarity is passed through each coil, and the polarity of each current is set to a predetermined value; energization control means that switches and supplies current in accordance with the order of the following; A rotating plate that is rotatably coupled to the permanent magnet about the same axis as the magnet, and has a predetermined number of fourth magnetic pole pieces arranged at equal intervals on the circumference about the rotation axis. each third columnar magnetic pole piece and the fourth magnetic pole piece are arranged so that the magnetic pole pieces always in a predetermined positional relationship face each other even when the plate-shaped rotating magnetic pole rotates. At the same time, the magnetic flux of the cylindrical permanent magnet is caused to cancel out the magnetic flux of the cylindrical permanent magnet and the magnetic flux of the third columnar magnetic pole piece by the energization control means, and the magnetic flux of the third columnar magnetic pole piece is canceled out for both of the magnetic pole pieces that are not facing each other. An electromagnetic stepping actuator characterized in that the plate-shaped rotating magnetic pole is rotated in a stepwise manner clockwise or counterclockwise by adding magnetic flux.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12888589A JPH02311159A (en) | 1989-05-24 | 1989-05-24 | Electromagnetic stepping actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12888589A JPH02311159A (en) | 1989-05-24 | 1989-05-24 | Electromagnetic stepping actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02311159A true JPH02311159A (en) | 1990-12-26 |
Family
ID=14995762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12888589A Pending JPH02311159A (en) | 1989-05-24 | 1989-05-24 | Electromagnetic stepping actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02311159A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6812599B2 (en) * | 2002-10-24 | 2004-11-02 | Minebea Co., Ltd. | Low-profile stepping motor with two coils arranged flush with each other horizontally |
-
1989
- 1989-05-24 JP JP12888589A patent/JPH02311159A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6812599B2 (en) * | 2002-10-24 | 2004-11-02 | Minebea Co., Ltd. | Low-profile stepping motor with two coils arranged flush with each other horizontally |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4918345A (en) | Magnetic bearing for active centering of a body movable relative to a static body with respect to at least one axis | |
US4335338A (en) | Linear motor | |
US4355236A (en) | Variable strength beam line multipole permanent magnets and methods for their use | |
US5481147A (en) | Synchronous inductor electric motor | |
US4859975A (en) | Electromagnetic actuator | |
JPH0315415B2 (en) | ||
GB1586513A (en) | Synchronous motor | |
US3434082A (en) | Limited rotation transducer having permanently magnetized rotor | |
US4429229A (en) | Variable strength focusing of permanent magnet quadrupoles while eliminating x-y coupling | |
JP2000032721A (en) | Small-size single-phase electromagnetic driver | |
GB1263386A (en) | Improvements in or relating to a motor device whose magnetic circuit comprises a thin layer of hard magnetic material | |
US3638550A (en) | Rotary electromagnetic actuator | |
US4857782A (en) | Step motor | |
US4755703A (en) | Electric motor | |
JPH02311159A (en) | Electromagnetic stepping actuator | |
JPH04217851A (en) | Linear drive motor | |
EP0052651A1 (en) | Linear solenoid device | |
US4546277A (en) | Linear motor | |
JPS63182808A (en) | Manufacture of magnet for magnetic encoder | |
GB1559373A (en) | Magnetic actuators for spool and sleeve valves | |
US3118076A (en) | Magneto-electric system to maintain the oscillations of a balance wheel in a clock-work | |
JPH03195343A (en) | Magnetizer for step motor | |
WO2019171369A1 (en) | Skipping and rolo-skip electrical motors | |
JPH10225082A (en) | Linear solenoid | |
JPH0342657Y2 (en) |