[go: up one dir, main page]

JPH02310916A - Manufacture of thin-film semiconductor and thin-film semiconductor structure device - Google Patents

Manufacture of thin-film semiconductor and thin-film semiconductor structure device

Info

Publication number
JPH02310916A
JPH02310916A JP1131370A JP13137089A JPH02310916A JP H02310916 A JPH02310916 A JP H02310916A JP 1131370 A JP1131370 A JP 1131370A JP 13137089 A JP13137089 A JP 13137089A JP H02310916 A JPH02310916 A JP H02310916A
Authority
JP
Japan
Prior art keywords
thin film
film semiconductor
substrate
irradiating
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1131370A
Other languages
Japanese (ja)
Inventor
Hironori Inoue
洋典 井上
Kiyoshi Miyake
三宅 潔
Kenichi Natsui
健一 夏井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1131370A priority Critical patent/JPH02310916A/en
Publication of JPH02310916A publication Critical patent/JPH02310916A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜半導体装置の製造方法及び製造装置に係り
、特にアクティブマトリックス方式の大面積のディスプ
レイの作製に好適な薄膜半導体装置の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for manufacturing a thin film semiconductor device, and more particularly to a method for manufacturing a thin film semiconductor device suitable for manufacturing an active matrix type large area display. .

〔従来の技術〕[Conventional technology]

近年、薄膜半導体装置を、スイッチング素子として備え
たパネル型液晶ディスプレイ装置が広く用いられており
、主要構成要素である薄膜トランジスタ(Thin F
ilm Transistor、略してTPT)の半導
体材料としては、アモルファスシリコンや多結晶シリコ
ンが用いられている。従来、これらのアモルファスシリ
コン、または、多結晶シリコン(Polycrysta
lline 5ilicon、略してPo1y −S 
i )膜は減圧CVD法(LPCVD)やプラズ?CV
D法(PCVD)により形成され、第4図に示すように
、画面となるガラス基板上に全面に堆積させた後、画素
に必要なTPT領域(50μmX50μm)以外は、通
常の写真方式のパターンニングとエツチング法により除
去される。
In recent years, panel-type liquid crystal display devices equipped with thin-film semiconductor devices as switching elements have been widely used, and thin-film transistors (Thin F.
Amorphous silicon and polycrystalline silicon are used as semiconductor materials for the ilm transistor (TPT). Conventionally, these amorphous silicon or polycrystalline silicon (polycrystalline silicon)
Line 5ilicon, abbreviated as Po1y-S
i) Is the membrane low pressure CVD (LPCVD) or plasma? CV
It is formed by the D method (PCVD), and as shown in Figure 4, after being deposited on the entire surface of the glass substrate that will become the screen, patterning is performed using a normal photographic method except for the TPT area (50 μm x 50 μm) required for the pixel. and removed by etching method.

これらに関連するものとして、特開昭62−84563
号公報がある。
As related to these, Japanese Patent Application Laid-Open No. 62-84563
There is a publication.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、ガラス基板上に半導体薄膜を形成する
処理温度が500〜600℃であり、大きさが1000
■xlooo■のような大きなディスプレイ装置を作成
する場合、■大面積にわたり基板と異なる材質の薄膜を
形成するため、冷却時にガラス基板に歪みが発生し基板
の破損を招く、■結晶性が良い多結晶シリコン膜や、高
い電子移動度をもつアモルファスシリコン膜を、大面積
にわたって、均一に形成しようとすると装置が大型化し
、IK造ココスト非常に高くなるなどの問題があった。
In the above conventional technology, the processing temperature for forming a semiconductor thin film on a glass substrate is 500 to 600°C, and the size is 1000°C.
■When creating a large display device such as Attempts to uniformly form a crystalline silicon film or an amorphous silicon film with high electron mobility over a large area have resulted in problems such as an increase in the size of the equipment and an extremely high IK production cost.

このため、この方式で作成するデスプレイの大きさは、
高々対角14インチが限度であった。
Therefore, the size of the display created using this method is
The maximum diagonal limit was 14 inches.

更に、上記従来技術には、各々の素子特性の均質化を図
るためにガラス基板全面に均一に形成した半導体薄膜を
一部を残し通常のホトエッチでおよそ90%以上を除去
する工程を有するので、プロセスコストが大きいという
欠点もあった。
Furthermore, in order to homogenize the characteristics of each element, the above-mentioned conventional technology includes a step of removing approximately 90% or more of the semiconductor thin film formed uniformly over the entire surface of the glass substrate by normal photoetching, leaving only a portion. Another disadvantage was that the process cost was high.

前述従来例の欠点を改善するために、応用物理第56巻
第9号(1987)、p、1190に記載されているよ
うに、基板上を冷却することにより半導体化合物ガスを
吸着せしめ、電子ビームなどのビームエネルギーを局所
的に付加し、表面反応によってその領域のみに半導体層
を形成する方法も検討が進められている。しかしながら
、この方法によれば、所望の膜厚を有する半導体層を短
い反応時間で得るには、大きなガラス基板全体を非常に
低温(−100’c以下)に冷却することが必要で、連
続生産化などによる製造コストの低減には難点がある。
In order to improve the drawbacks of the conventional example, as described in Applied Physics Vol. 56, No. 9 (1987), p. 1190, the semiconductor compound gas is adsorbed by cooling the substrate, and the electron beam A method of applying beam energy such as locally and forming a semiconductor layer only in that region through a surface reaction is also being considered. However, according to this method, in order to obtain a semiconductor layer with a desired film thickness in a short reaction time, it is necessary to cool the entire large glass substrate to a very low temperature (below -100'C), making continuous production possible. There are drawbacks to reducing manufacturing costs through methods such as oxidation.

また、低温形成のため形成する薄膜に不純物も同時に混
入しやすいこと、さらに。
In addition, impurities are likely to be mixed into the thin film formed due to low temperature formation.

結晶性が低く、このため高品質化プロセスを付加する必
要があるなどが難点ある6 本発明の目的は、大面積基板上に高品質の薄膜半導体を
、低コストで作成する手段と方法を提供することにある
There are drawbacks such as low crystallinity and the need to add a quality improvement process.6 The purpose of the present invention is to provide a means and method for producing high-quality thin film semiconductors on large-area substrates at low cost. It's about doing.

〔IIMを解決するための手段〕[Means to solve IIM]

上記目的は、シリコンなどの半導体を含む、常温、常圧
下で液体気体状の原料物質を固化させ、該固化物質にイ
オンビームや電子ビーム等の粒子線を照射し、固化物質
のスパッタリングを起こさせ、スパッタリングによって
発生するスパッタ粒子をガラス基板上に堆積させるのと
同時に、シリコン膜などの半導体膜を堆積したい所望の
位置に。
The above purpose is to solidify a liquid gas source material containing a semiconductor such as silicon at room temperature and normal pressure, and to irradiate the solidified material with a particle beam such as an ion beam or an electron beam to cause sputtering of the solidified material. At the same time as sputtering particles generated by sputtering are deposited on the glass substrate, at the desired position where you want to deposit a semiconductor film such as a silicon film.

イオンビーム、電子ビーム、あるいは、レーザビームな
どを局所的に照射することにより、スパッタ粒子の分解
反応を起こさしめ半導体薄膜を形成することにより達成
される。
This is achieved by locally irradiating an ion beam, electron beam, or laser beam to cause a decomposition reaction of sputtered particles and form a semiconductor thin film.

〔作用〕[Effect]

半導体化合物ガス(例えば、5iHa)の固化物質のス
パッタによって、低エネルギーで解離可能な半導体化合
物分子(例えば、 S I H、S x H2+S i
 Ha、 ate、 )を基板上に大量に輸送すること
により、大きなガラス基板を高温に加熱することなく高
品質の半導体薄膜を高速で形成することができる。また
、基板自体を極端に冷却する必要がなく、不純物の混入
や結晶性の低下が生ぜず、高品質の半導体薄膜を形成で
きる。
Semiconductor compound molecules that can be dissociated at low energy (e.g. S I H, S x H2 + S i
By transporting a large amount of Ha, ate, ) onto a substrate, a high-quality semiconductor thin film can be formed at high speed without heating a large glass substrate to high temperatures. Furthermore, it is not necessary to extremely cool the substrate itself, and a high quality semiconductor thin film can be formed without contamination with impurities or deterioration of crystallinity.

イオンビー11、レーザビームなどを基板に局所的に照
射することにより所望の領域のみに選択的に半導体薄膜
を形成することができる。
By locally irradiating the substrate with an ion beam 11, a laser beam, or the like, a semiconductor thin film can be selectively formed only in desired regions.

〔実施例〕〔Example〕

以下、本発明の実施例を第1図、第2図にしたがって説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は基板1上に多結晶シリコン膜2を選択的に成長
させる方式を模式的に表わしたものである。厚みが1c
a+のSiH4モノシランガスの固化層3に、加速エネ
ルギー5keVの水素イオンビーム4を照射し、スパッ
タ粒子5 (S i H,5it(z。
FIG. 1 schematically shows a method for selectively growing a polycrystalline silicon film 2 on a substrate 1. In FIG. Thickness is 1c
The solidified layer 3 of a+ SiH4 monosilane gas is irradiated with a hydrogen ion beam 4 with an acceleration energy of 5 keV, and sputtered particles 5 (S i H,5it(z.

S i Hs、 S i H4など)を発生させる。次
いで、該スパッタ粒子を基板1上に付着させた領域6の
1部に1局所的に励起ビーム(光、電子、イオンなど)
7を照射させ、その照射領域にのみの付着スパッタ粒子
の分解反応を進めることで、多結晶シリコンllI2を
基板1表面に選択的に析出することが実現できる。励起
ビーム7の未照射領域はガス化し飛散する。
S i Hs, S i H4, etc.). Next, an excitation beam (light, electron, ion, etc.) is applied locally to a part of the region 6 where the sputtered particles are deposited on the substrate 1.
Polycrystalline silicon llI2 can be selectively deposited on the surface of the substrate 1 by irradiating the substrate 1 with 7 and proceeding with the decomposition reaction of the adhering sputtered particles only in the irradiated area. The region not irradiated with the excitation beam 7 is gasified and scattered.

次に、大画面デスプレイを製作するための半導体薄膜を
大面積のガラス基板上に形成する場合の具体的実施例を
第2図により説明する。
Next, a specific example of forming a semiconductor thin film on a large-area glass substrate for manufacturing a large-screen display will be described with reference to FIG.

真空容器10内に、直径101m、長さ1200Inの
銅製冷却へラド11を水平な位置で配置し、該冷却ヘッ
ド11の温度を液体窒素によりモノシランの融点(−1
90℃)以下の一196℃に保持した。該冷却ヘッド1
1を、回転数1orpmで回転しながら、モノシランガ
ス12を、ライン状ガス吹き出し口13より、10cc
/win 、の流入速度で10分間供給し、モノシラン
ガスの固化物3を銅製冷却ヘッド11の外周に作成した
6次に、モノシランガス12を、ライン状ガス吹き出し
口13より、ice/sin 、の流入速度で連続的に
供給するのと同時に、イオン源14より、シート状水素
イオンビーム4を10keVの加速エネルギーで引出し
、第2図に示すように、該モノシランガスの固化層3の
表面に照射した。その時の水素イオンビーム4の電流密
度は、lOμA/dで、イオンビームの照射領域の大き
さはIIIIII×1100画であった。
A copper cooling head 11 with a diameter of 101 m and a length of 1200 In is placed in a horizontal position in the vacuum vessel 10, and the temperature of the cooling head 11 is adjusted to the melting point of monosilane (-1) using liquid nitrogen.
The temperature was maintained at 196°C below 90°C. The cooling head 1
1 at a rotational speed of 1 orpm, 10 cc of monosilane gas 12 was supplied from the line gas outlet 13.
A solidified monosilane gas 3 was created on the outer periphery of the copper cooling head 11 by supplying the monosilane gas 12 for 10 minutes at an inflow rate of ice/sin from the line gas outlet 13 for 10 minutes. At the same time, a sheet-shaped hydrogen ion beam 4 was extracted from the ion source 14 with an acceleration energy of 10 keV, and was irradiated onto the surface of the solidified layer 3 of the monosilane gas, as shown in FIG. The current density of the hydrogen ion beam 4 at that time was lOμA/d, and the size of the ion beam irradiation area was IIIIII×1100 pixels.

その結果、モノシランガスの同化fi3より、スパッタ
粒子5 (S i H,S i H2,S i Ha、
 5il14など)が発生し、固化層3の下方5C11
の位置に置かれた、大きさが1000mmX10100
O、厚みが3noのガラス基板1上には、該スパッタ粒
子が付着した。その領域6は幅10++aX100Om
mの範囲にわたった。
As a result, from the assimilation fi3 of monosilane gas, sputtered particles 5 (S i H, S i H2, S i Ha,
5il14 etc.) occurs, and 5C11 below the solidified layer 3
The size is 1000mm x 10100, placed at the position of
The sputtered particles were attached to the glass substrate 1 having a thickness of 3 mm. The area 6 has a width of 10++aX100Om
over a range of m.

それと同時に、エキシマレーザ15より4波長246n
mのKrFZキシマレーザ光16を、光学系17により
、集光、走査して、上記ガラス基板上のスパッタ粒子付
着領域6の局所領域18に照射させた。その結果、Kr
Fエキシマレーザ光16の照射領域18では付着スパッ
タ粒子5の分解反応が進み、多結晶シリコンが選択的に
析出した。この時、照射エキシマレーザ光のスポツト径
は、70μmで、パルスエネルギーは0.5  J/d
であった。析出した多結晶シリコンの面積は、およそ5
0μmX50μmで、膜厚は300 n mであった。
At the same time, 4 wavelengths of 246n from excimer laser 15
The KrFZ ximer laser beam 16 of m was condensed and scanned by an optical system 17 to irradiate a local region 18 of the sputtered particle adhesion region 6 on the glass substrate. As a result, Kr
In the irradiation area 18 of the F excimer laser beam 16, the decomposition reaction of the attached sputtered particles 5 progressed, and polycrystalline silicon was selectively precipitated. At this time, the spot diameter of the irradiated excimer laser beam was 70 μm, and the pulse energy was 0.5 J/d.
Met. The area of the deposited polycrystalline silicon is approximately 5
The dimensions were 0 μm×50 μm, and the film thickness was 300 nm.

なお、膜厚の制御はスパッタイオンビームの電流密度を
制御することにより、全面積での均一性は±5%以下に
できた。
The film thickness was controlled by controlling the current density of the sputtering ion beam, so that the uniformity over the entire area could be kept within ±5%.

次に、ガラス基板1を、矢印の方向に、ステップモータ
ーによる直線駆動でピッチ1.5ffI++ で移動し
、上記の同じ操作により、次の新たな場所でさらに50
0ケ所の多結晶シリコン2を形成した。
Next, the glass substrate 1 is moved in the direction of the arrow at a pitch of 1.5ffI++ by linear drive by a step motor, and then moved to the next new location by the same operation as described above.
Polycrystalline silicon 2 was formed at zero locations.

この時、新たなモノシラン固化物層3がスパッタされる
ように、冷却へラド11を11500回転した。
At this time, the cooling rad 11 was rotated at 11,500 revolutions so that a new monosilane solidified material layer 3 was sputtered.

次いで、各画素に対応する位置に形成した半導体薄膜に
、従来のTPT形成プロセスの酸化、拡散、ホトリソ工
程を行ってTPTを形成した。
Next, a TPT was formed on the semiconductor thin film formed at a position corresponding to each pixel by performing oxidation, diffusion, and photolithography steps of the conventional TPT formation process.

TPT形成後、透明電極の形成、AIによる各素子間の
配線を行い、デスプレイ用基板を作成することができた
After forming the TPT, transparent electrodes were formed and wiring between each element was performed using AI, and a display substrate was successfully created.

以上の方法により、基板破損のない高歩留まりで、また
、高スループツトで更にまた、半導体薄膜の品質が優れ
ていることから、TPT特性の優れたディスプレイ用基
板を製作することが出来た。
By the above method, it was possible to produce a display substrate with excellent TPT characteristics due to the high yield without substrate damage, high throughput, and excellent quality of the semiconductor thin film.

第3図は本方式を連続プロセスに適用した場合の実施例
を示す。基板を低温にする必要がなく、前室20.後室
21を設置することで、容易に、反応室への基板の連綺
搬入が達成できる。また、多数の反応室101,102
を接続して、基板への半導体膜形成を分担させることで
高スループツト化が図られ、大幅なコストダウンが達成
できた。
FIG. 3 shows an example in which this method is applied to a continuous process. There is no need to keep the substrate at a low temperature, and the front chamber 20. By installing the rear chamber 21, continuous loading of substrates into the reaction chamber can be easily achieved. In addition, a large number of reaction chambers 101, 102
By connecting these two systems and sharing the task of forming a semiconductor film on the substrate, we were able to increase throughput and achieve significant cost reductions.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、大面積のガラス基板の上にでも、容易
に、且つ、安価に、キャリアの移動度が大きい薄膜半導
体装置を得ることが出来る。
According to the present invention, a thin film semiconductor device with high carrier mobility can be easily and inexpensively obtained even on a large-area glass substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理を表す図、第2図は本発明のを具
体化した薄膜半導体製造装置の一例、第3図は液晶を即
動するための薄膜半導体装置の一例、第4図は本発明の
原理を用いた連続的な薄膜半導体II造装置の一例であ
る。 l・・・基板、2・・・多結晶シリコン膜、3・・・固
化層、4・・・イオンビーム、5・・・スパッタ粒子、
6・・・スパッタ粒子付着領域、7・・・励起ビーム、
10・・・真空容器、11・・・冷却ヘッド、12・・
・モノシランガス、13・・・ガス吹き出し口、14・
・・イオン源、15・・・エキシマレーザ、16・・・
エキシマレーザ光、17・・・光学系、18・・・エキ
シマレーザ光照射領域、19・・・局所領域、20・・
・前室、21・・・後室、101尾1日 苓2図
Fig. 1 is a diagram showing the principle of the present invention, Fig. 2 is an example of a thin film semiconductor manufacturing device embodying the present invention, Fig. 3 is an example of a thin film semiconductor device for instantaneous operation of liquid crystal, and Fig. 4 is an example of a thin film semiconductor manufacturing device embodying the present invention. is an example of a continuous thin film semiconductor II manufacturing apparatus using the principles of the present invention. l... Substrate, 2... Polycrystalline silicon film, 3... Solidified layer, 4... Ion beam, 5... Sputtered particles,
6... Sputtered particle attachment area, 7... Excitation beam,
10... Vacuum container, 11... Cooling head, 12...
・Monosilane gas, 13... Gas outlet, 14.
...Ion source, 15...Excimer laser, 16...
Excimer laser light, 17... Optical system, 18... Excimer laser light irradiation area, 19... Local area, 20...
・Anterior chamber, 21... Back chamber, 101 1st day locusts 2 drawings

Claims (1)

【特許請求の範囲】 1、半導体元素を含み常温常圧下で液体あるいは気体状
の原料物質を固化状態で保持する手段、粒子線を上記原
料物質へ照射し、スパッタ粒子を生ずる手段、上記スパ
ッタ粒子が入射される基板を保持する手段、上記基板の
所定領域に粒子ビームを照射する手段とを有することを
特徴とする薄膜半導体製造装置。 2、半導体元素を含み常温常圧下で液体あるいは気体状
の原料物質の固化物質に、イオンビームや電子ビーム等
の粒子線を照射し、固化物質のスパッタリングを起こさ
せ、スパッタリングによつて発生するスパッタ粒子をガ
ラス等の基板上に堆積させるのと同時に、イオンビーム
、電子ビーム、あるいは、レーザビームを、所望の位置
に局所的に照射することにより、該照射領域で付着した
スパッタ粒子の分解反応を起こさしめ、半導体膜を堆積
させることを特徴とする薄膜半導体装置の製造方法。
[Claims] 1. Means for maintaining a liquid or gaseous raw material containing a semiconductor element in a solidified state at room temperature and normal pressure, means for irradiating the raw material with a particle beam to generate sputtered particles, and the above sputtered particles. 1. A thin film semiconductor manufacturing apparatus comprising means for holding a substrate onto which particle beams are incident, and means for irradiating a predetermined region of the substrate with a particle beam. 2. Sputtering generated by sputtering by irradiating particle beams such as ion beams or electron beams to a solidified substance containing a semiconductor element and being a liquid or gaseous raw material at room temperature and normal pressure to cause sputtering of the solidified substance. At the same time as depositing particles on a substrate such as glass, by locally irradiating desired positions with an ion beam, electron beam, or laser beam, a decomposition reaction of sputtered particles adhering to the irradiated area is caused. 1. A method for manufacturing a thin film semiconductor device, which comprises stacking the thin film semiconductor device and depositing a semiconductor film.
JP1131370A 1989-05-26 1989-05-26 Manufacture of thin-film semiconductor and thin-film semiconductor structure device Pending JPH02310916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131370A JPH02310916A (en) 1989-05-26 1989-05-26 Manufacture of thin-film semiconductor and thin-film semiconductor structure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131370A JPH02310916A (en) 1989-05-26 1989-05-26 Manufacture of thin-film semiconductor and thin-film semiconductor structure device

Publications (1)

Publication Number Publication Date
JPH02310916A true JPH02310916A (en) 1990-12-26

Family

ID=15056351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131370A Pending JPH02310916A (en) 1989-05-26 1989-05-26 Manufacture of thin-film semiconductor and thin-film semiconductor structure device

Country Status (1)

Country Link
JP (1) JPH02310916A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766342A (en) * 1994-10-19 1998-06-16 Matsushita Electric Industrial Co., Ltd. Method for forming silicon film and silicon film forming apparatus
WO2008104346A2 (en) 2007-02-27 2008-09-04 Carl Zeiss Laser Optics Gmbh Continuous coating installation and methods for producing crystalline thin films and solar cells

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766342A (en) * 1994-10-19 1998-06-16 Matsushita Electric Industrial Co., Ltd. Method for forming silicon film and silicon film forming apparatus
WO2008104346A2 (en) 2007-02-27 2008-09-04 Carl Zeiss Laser Optics Gmbh Continuous coating installation and methods for producing crystalline thin films and solar cells
WO2008104346A3 (en) * 2007-02-27 2008-12-31 Zeiss Carl Laser Optics Gmbh Continuous coating installation and methods for producing crystalline thin films and solar cells

Similar Documents

Publication Publication Date Title
Sposili et al. Sequential lateral solidification of thin silicon films on SiO2
JP4211967B2 (en) Method for crystallizing silicon using mask
JP3204986B2 (en) Crystallization of semiconductor film region on substrate and device manufactured by this method
US5956581A (en) Method of manufacturing a semiconductor device
JP2002289525A (en) Method for controlling crystallographic orientation in polysilicon film annealed by laser
US6933182B1 (en) Method of manufacturing a semiconductor device and manufacturing system thereof
US7767558B2 (en) Method of crystallizing amorphous silicon and device fabricated using the same
KR100493156B1 (en) Crystallization of amorphous silicon by using nanoparticles
US7482552B2 (en) Laser crystallizing device and method for crystallizing silicon
JPH0433327A (en) Method for forming semiconductor crystallized film
JPH02310916A (en) Manufacture of thin-film semiconductor and thin-film semiconductor structure device
JPH0692280B2 (en) Crystal thin film manufacturing method
KR100518922B1 (en) Formation method of crystalline film and manufacturing method of thin film electronic device
JP3797229B2 (en) Thin film semiconductor manufacturing equipment
JP2000012461A (en) Manufacture of crystalline semiconductor thin film
JP3024543B2 (en) Crystalline silicon film and method of manufacturing the same
KR20040061795A (en) fabrication method of a poly crystal silicon film
JPH02259076A (en) Formation of deposited film
JPH02184594A (en) Production of single crystal thin film
JP3168655B2 (en) Method for manufacturing polycrystalline silicon thin film
JPH11186165A (en) Manufacture of polycrystalline thin film and manufacture of semiconductor device
JPH10256164A (en) Manufacture of crystalline film
JP3078101B2 (en) Large area polysilicon thin film and its low temperature formation method.
JP3224312B2 (en) Method for forming microcrystalline silicon
JPH01320291A (en) Production of single crystal thin film