[go: up one dir, main page]

JPH02309526A - Vacuum valve - Google Patents

Vacuum valve

Info

Publication number
JPH02309526A
JPH02309526A JP12895889A JP12895889A JPH02309526A JP H02309526 A JPH02309526 A JP H02309526A JP 12895889 A JP12895889 A JP 12895889A JP 12895889 A JP12895889 A JP 12895889A JP H02309526 A JPH02309526 A JP H02309526A
Authority
JP
Japan
Prior art keywords
vacuum valve
electrodes
magnetic material
vacuum
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12895889A
Other languages
Japanese (ja)
Inventor
Satoru Shioiri
哲 塩入
Hiroshi Murase
洋 村瀬
Tamotsu Inoue
保 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12895889A priority Critical patent/JPH02309526A/en
Publication of JPH02309526A publication Critical patent/JPH02309526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To restrain high-frequency surge during operation effectively and realize a high-reliability, small-size and low-cost product by providing a cylindrical member with magnetism to be concentric to a conductive portion along an axial direction. CONSTITUTION:A fixed current conduction shaft 3 and a movable current conduction shaft 5 are provided with cylindrical structures 11a, 11b of strong- magnetism material. The structures 11a, 11b should be of conductive magnetic material such as iron but may be of high-resistance magnetic material such as ferrite. If such magnetic material is placed in a vacuum valve, the inductance of this part gets significantly big. Such big inductance has the operation of slackening sharp waves which occur between the contacts or between the electrodes 2 of the vacuum valve and rise quickly.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、真空遮断器に係り、特に、真空遮断器を動作
させたときに発生する高周波サージを抑制することがで
きるようにした真空バルブの構造にとするものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a vacuum circuit breaker, and in particular can suppress high frequency surges that occur when the vacuum circuit breaker is operated. The structure of the vacuum valve is as follows.

(従来の技術) 近年真空遮断器を用いる回路の高電圧化が進み、定格電
圧で3.6KV〜84KVの真空遮断器が開発されてい
る。また、最近では、角形の接地金属容器内に低圧力の
SF6ガス等の絶縁性ガスで真空バルブの外部絶縁を行
ったキユービクル形ガス絶縁開閉装置も開発されている
(Prior Art) In recent years, the voltage of circuits using vacuum circuit breakers has been increasing, and vacuum circuit breakers with rated voltages of 3.6 KV to 84 KV have been developed. Recently, a cubicle-type gas insulated switchgear has also been developed in which a vacuum valve is externally insulated with an insulating gas such as low-pressure SF6 gas within a rectangular grounded metal container.

このような真空遮断器の操作により、真空遮断器の内部
や真空遮断器に接続された機器に、高周波サージが発生
することはよく知られた事実である。例えば、真空遮断
器の操作時に数MHIの高周波振動の最大ピーク値が、
常時運転電圧の波高値の2倍以上(2,0pu以上)な
るサージ電圧が発生し得る。この急峻な波頭部分が原因
となって、真空遮断器に接続された変圧器及び電動機が
絶縁破壊事故を起こした例が報告されている。また、こ
れらサージは、真空遮断器の接地系に誘導し、様々な電
波障害や低圧制御回路の破壊事故を引き起こす原因とな
る。従って、真空遮断器で発生する高周波サージを何ら
かの手段で抑える必要がある。
It is a well-known fact that such operation of a vacuum circuit breaker generates high frequency surges inside the vacuum circuit breaker and in equipment connected to the vacuum circuit breaker. For example, when operating a vacuum circuit breaker, the maximum peak value of high frequency vibration of several MHI is
A surge voltage that is twice or more (2.0 pu or more) the peak value of the constant operating voltage may occur. There have been reports of cases where insulation breakdown accidents occurred in transformers and motors connected to vacuum circuit breakers due to this steep wave crest. Furthermore, these surges are induced into the grounding system of the vacuum circuit breaker, causing various radio interference and damage to the low voltage control circuit. Therefore, it is necessary to suppress the high frequency surge generated in the vacuum circuit breaker by some means.

SF6ガス遮断器では、抵抗投入と呼ばれる方法で、遮
断器の電極の先端に抵抗を接続している。
In the SF6 gas circuit breaker, a resistor is connected to the tip of the circuit breaker's electrode using a method called resistance closing.

遮断器の電極間で再点呼が発生した場合、この高周波電
流が必ず抵抗を通ることになり、サージはこの抵抗によ
ってすぐに吸収されてしまい、伝搬することはない。
When another call occurs between the electrodes of the circuit breaker, this high-frequency current necessarily passes through the resistor, and the surge is immediately absorbed by this resistor and does not propagate.

このような抵抗投入方式を真空遮断器に適用するために
は、ガス遮断器と同じように、通電するための電極とア
ークを遮断するための電極を分離させた構造を用いなけ
ればならない。このような方法を用いると、真空遮断器
を構成する真空バルブの電極構造が複雑になる。
In order to apply such a resistance closing method to a vacuum circuit breaker, it is necessary to use a structure in which the electrode for energizing and the electrode for interrupting the arc are separated, similar to a gas circuit breaker. If such a method is used, the electrode structure of the vacuum valve that constitutes the vacuum circuit breaker becomes complicated.

また、この抵抗には、再点呼が発生する直前の極間電圧
が印加されるので、この電圧による抵抗の絶縁破壊を防
ぐため、かなりの絶縁距離が必要となる。さらに、遮断
器操作時の振動に対する対策も必要となる。構造的にシ
ンプルなことを特徴とする真空遮断器にこのような複雑
な構造を要求するのは得策ではない。
Furthermore, since the voltage between the poles immediately before the re-call occurs is applied to this resistor, a considerable insulation distance is required to prevent dielectric breakdown of the resistor due to this voltage. Furthermore, measures against vibrations during circuit breaker operation are also required. It is not a good idea to require such a complicated structure from a vacuum circuit breaker, which is characterized by its simple structure.

(発明が解決しようとする課題) 前述したように、真空遮断器で発生する高周波サージを
抑制する方法として抵抗投入方式を用いると、電極構造
が非常に複雑となり、抵抗自体にかなりの絶縁距離が必
要となるため、機器そのものが大形化すると同時に、か
なり高価なものとなる。
(Problems to be Solved by the Invention) As mentioned above, if a resistor injection method is used as a method of suppressing high frequency surges generated in a vacuum circuit breaker, the electrode structure becomes extremely complicated and the resistor itself requires a considerable insulation distance. As a result, the equipment itself becomes large and quite expensive.

本発明は、上記事情に鑑みてなされたもので、真空遮断
器操作時の高周波サージを効果的に抑えることができ、
しかも信頼性が高く小形で安価な構造の真空バルブを提
供することを目的としている。
The present invention has been made in view of the above circumstances, and can effectively suppress high frequency surges when operating a vacuum circuit breaker.
Furthermore, the purpose of the present invention is to provide a vacuum valve that is highly reliable, compact, and inexpensive.

[発明の構成] (課題を解決するための手段) 本発明は、絶縁容器と、この絶縁容器の両端開口部をそ
れぞれ閉塞する蓋板とから真空容器内に一対の接離可能
な電極を配設し、この一対の電極の一方はベローズを介
して蓋板の一方に可動に取付けられ、且つ、一対の電極
を取付ける可動通電軸及び固定通電軸を備えた真空バル
ブにおいて、円筒状に形成した磁性を有する部材を、軸
方向に沿った導電部に対し同心となるように配設したも
のである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a pair of electrodes that can be connected to and separated from an insulating container and a lid plate that closes openings at both ends of the insulating container within the vacuum container. One of the pair of electrodes is movably attached to one side of the cover plate via a bellows, and the vacuum valve is equipped with a movable current-carrying shaft and a fixed current-carrying shaft to which the pair of electrodes are attached. A magnetic member is arranged concentrically with respect to a conductive portion along the axial direction.

(作 用) 軸方向に沿った導電部(固定通電軸、可動通電軸及び電
極で形成される)に対し、円筒状に形成された磁性を有
する部材が同心となるように配設されているので、真空
バルブの開閉操作時に電極間に発生する急峻波サージ電
圧が抑制され、接続されている変圧器や電動機等の損傷
を防止することができる。
(Function) A magnetic member formed in a cylindrical shape is arranged so as to be concentric with the conductive part (formed by a fixed current-carrying shaft, a movable current-carrying shaft, and electrodes) along the axial direction. Therefore, the steep wave surge voltage generated between the electrodes when opening and closing the vacuum valve is suppressed, and damage to the connected transformer, electric motor, etc. can be prevented.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。第
1図は、本発明の一実施例を示す断面図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing one embodiment of the present invention.

同図において、1は接点、2は電極でこの部分で電流の
遮断が行われる。3は固定通電軸で、固定側蓋板4を貫
通して先端は電極部の一方に接続されている。5は可動
通電軸で、ベローズ6を介して可動側蓋板7と接続され
、先端は電極2の他方に接続されている。8は中間シー
ルドで、電流遮断器時に接点1,1間で発生したアーク
が直接絶縁容器9の内面に接触するのを防いでいる。こ
の中間シールド8は、2個の絶縁容器9の中間に支持す
ることにより、両接点1,1から電気的に絶縁されてい
る。10は端部シールドで、絶縁容器9の封着部を電界
緩和するために設けられている。
In the figure, 1 is a contact, 2 is an electrode, and the current is interrupted at these parts. Reference numeral 3 denotes a fixed current-carrying shaft, which passes through the fixed side cover plate 4 and has its tip connected to one of the electrode sections. Reference numeral 5 denotes a movable current-carrying shaft, which is connected to the movable side cover plate 7 via a bellows 6, and whose tip is connected to the other side of the electrode 2. Reference numeral 8 denotes an intermediate shield that prevents the arc generated between the contacts 1 and 1 from directly contacting the inner surface of the insulating container 9 during the current breaker operation. This intermediate shield 8 is electrically insulated from both contacts 1 by being supported between two insulating containers 9. Reference numeral 10 denotes an end shield, which is provided to relax the electric field at the sealed portion of the insulating container 9.

また、上記した固定通電軸3及び可動通電軸5には、強
磁性材料から円筒状に形成された構造体11a 、 I
lbが設置されている。構造体11a 、 fibは、
鉄などのような導電性の磁性材料を用いることを前提と
しているが、フェライトなどのような高抵抗の磁性材料
を用いてもよい。
Further, the above-described fixed current-carrying shaft 3 and movable current-carrying shaft 5 are provided with structures 11a and I formed in a cylindrical shape from a ferromagnetic material.
lb is installed. The structure 11a and fib are
Although it is assumed that a conductive magnetic material such as iron is used, a high resistance magnetic material such as ferrite may also be used.

次に、以上の構成を有する実施例(以下、第1の実施例
という)の作用を説明する。構造体11a 。
Next, the operation of the embodiment having the above configuration (hereinafter referred to as the first embodiment) will be explained. Structure 11a.

11bを形成する磁性材料は、一般に大きな比透磁率を
有する。例えば、鉄はμ=50Hであり、真空中の50
00倍の磁束が発生することになる。従って、このよう
な磁性材を真空バルブの内部に設置しておけば、この部
分のインダクタンスがかなり太きくなる。例えば、長さ
1mの鉄が持つインダクタンスしは、 L=μOμ/2π・ (dc+/di)・・・(1)た
だし、μO:真空中の透磁率、 μ= 5[10G、 do :磁性材の外径 di :磁性材の内径 In  ()  :自然対数 となる。そうして、do =10an、  di = 
9.6anの場合、インダクタンスしは40.8μHと
いう大きな値となる。この大きなインダクタンスは、真
空バルブの接点間または電極2間で発生する立上がり早
い急峻波を鈍らせる作用を有する。
The magnetic material forming 11b generally has a large relative magnetic permeability. For example, iron has μ=50H, and 50H in vacuum.
00 times the magnetic flux will be generated. Therefore, if such a magnetic material is installed inside the vacuum valve, the inductance of this part will become considerably large. For example, the inductance of iron with a length of 1 m is L=μOμ/2π・(dc+/di)...(1) where, μO: magnetic permeability in vacuum, μ=5[10G, do: magnetic material Outer diameter di: Inner diameter In () of magnetic material: Natural logarithm. Then, do = 10an, di =
In the case of 9.6 an, the inductance becomes a large value of 40.8 μH. This large inductance has the effect of dampening the rapid rise of steep waves generated between the contacts of the vacuum valve or between the electrodes 2.

これを第2図に示す等価回路によって説明する。This will be explained using the equivalent circuit shown in FIG.

即ち、図中12は、(1)式で与えられる強磁性材の等
価インダクタンス、13は真空バルブの特性インピーダ
ンスで、この等価的な抵抗に流れる電流が、真空バルブ
を伝搬するサージを表している。
That is, in the figure, 12 is the equivalent inductance of the ferromagnetic material given by equation (1), 13 is the characteristic impedance of the vacuum valve, and the current flowing through this equivalent resistance represents the surge propagating through the vacuum valve. .

また、14は真空バルブの接点1間または電極2間で発
生する急峻波サージの発生源を示している。
Further, 14 indicates a source of a steep wave surge generated between the contacts 1 or between the electrodes 2 of the vacuum valve.

このような等価回路において、発生源14のサージ波形
として単純なステップ波を考え、t=0でステップ波が
発生したとして、次の回路方程式(2)を解けば、等価
的な抵抗13に流れる電流iが求められる。
In such an equivalent circuit, consider a simple step wave as the surge waveform of the source 14, and assuming that the step wave is generated at t = 0, by solving the following circuit equation (2), the flow will flow through the equivalent resistor 13. Current i is determined.

Lφ (di /dt ) +Ri =V   ・・・
(2)1=0でf=0なる初期条件を満足する(2)式
の解は、 i=V/R・(1−e 1:t)   −(3)で与え
られる。ここで、Rは等価的な抵抗13の値、Lは等価
インダクタンス12の値を表わしている。
Lφ (di/dt) +Ri =V...
(2) The solution to equation (2) that satisfies the initial conditions of 1=0 and f=0 is given by i=V/R・(1−e 1:t)−(3). Here, R represents the value of the equivalent resistance 13, and L represents the value of the equivalent inductance 12.

この電流iの変化を第3図に示す。即ち、縦軸に電流(
A)を、横軸に時間(秒)をとると、電流iは曲線■の
ように変化する。
FIG. 3 shows this change in current i. In other words, the vertical axis represents the current (
When time (seconds) is plotted on the horizontal axis in A), the current i changes as shown by the curve ■.

このように、真空バルブの通電軸と同心的に磁性材を設
けることにより、真空バルブで発生するサージ電圧をか
なりにぶらせることができるため、真空バルブに接続さ
れた変圧器や電動機等へ侵入するサージ電圧を低減する
ことができる。
In this way, by placing a magnetic material concentrically with the current-carrying shaft of the vacuum valve, the surge voltage generated by the vacuum valve can be significantly fluctuated, which prevents it from penetrating the transformer or motor connected to the vacuum valve. The surge voltage can be reduced.

従って、以上説明した第1の実施例によれば、真空遮断
器用の真空バルブの通電軸を包囲するように強磁性材料
からリング状に形成された構造体を設置することにより
、真空バルブの電極間を発生する急峻波サージ電圧を抑
制することができ、真空遮断器に接続された機器のサー
ジ電圧による損傷を防止し、信頼性が高く、製造コスト
も低く、小形簡略な構成の真空バルブを提供できる。
Therefore, according to the first embodiment described above, by installing a ring-shaped structure made of a ferromagnetic material so as to surround the current-carrying shaft of a vacuum valve for a vacuum circuit breaker, the electrode of the vacuum valve is This vacuum valve is highly reliable, has low manufacturing costs, and has a small and simple configuration. Can be provided.

なお、本発明は、上述した第1の実施例に限定されるも
のではなく、種々変形実施できる。即ち、第4図は、通
電軸に強磁性材フィルムを多層に巻回して形成した構造
体15a 、 15bを、固定通電軸3と可動通電軸5
にそれぞれ設置した実施例(以下、第2の実施例という
)を示す。この第2の実施例も、上述した第1の実施例
と同様の効果が得られる。
Note that the present invention is not limited to the first embodiment described above, and can be implemented in various modifications. That is, FIG. 4 shows structures 15a and 15b formed by winding a ferromagnetic material film in multiple layers around a current-carrying shaft, and a fixed current-carrying shaft 3 and a movable current-carrying shaft 5.
An example (hereinafter referred to as the second example) in which each of the two is installed is shown below. This second embodiment also provides the same effects as the first embodiment described above.

また、第5図は、絶縁容器9,9間に、磁性体からなる
中間シールド16を電極2を包囲するように設置した実
施例(以下、第3の実施例という)を示す。その他の構
成は、第1実施例と同様である。この中間シールド16
は、例えば鉄を主成分とするアモルファス合金等の磁性
材料を複数板積層したものを用いるが、これ以外に、フ
ェライト等のような高抵抗の磁性材料を用いてもよく、
さらに、μの大きい他の磁性材料、例えばパーマロイ(
μ= 10[1,000) 、純鉄(μ= 1000.
000)等を用いれば、より以上に小さい円筒状構造物
とすることができる。この第3の実施例(ただし、各種
の磁性材料からシールド16を形成したものを含む)も
、上述した各実施例と同様の効果が得られる。
Further, FIG. 5 shows an embodiment (hereinafter referred to as a third embodiment) in which an intermediate shield 16 made of a magnetic material is installed between the insulating containers 9, 9 so as to surround the electrode 2. The other configurations are the same as in the first embodiment. This intermediate shield 16
For example, a multi-layered magnetic material such as an amorphous alloy containing iron as a main component is used, but other than this, a high-resistance magnetic material such as ferrite may also be used.
In addition, other magnetic materials with large μ such as permalloy (
μ = 10 [1,000), pure iron (μ = 1000.
000) etc., it is possible to make the cylindrical structure even smaller. This third embodiment (including one in which the shield 16 is made of various magnetic materials) also provides the same effects as the above-mentioned embodiments.

第6図は、絶縁容器9.9間に、磁性体からなる中間シ
ールド17を電極部を包囲するように設置した実施例(
以下、第4の実施例という)を示す。
FIG. 6 shows an embodiment in which an intermediate shield 17 made of a magnetic material is installed between the insulating containers 9 and 9 so as to surround the electrode part.
Hereinafter, a fourth embodiment) will be shown.

その他の構成は、第1の実施例と同様である。この中間
シールド17は、磁性体の粉末を充填した絶縁材料から
形成したもので、外周面を導電性を有する金属で構成し
てもよい。この第4の実施例も、上述した各実施例と同
様の効果が得られる。
The other configurations are the same as in the first embodiment. The intermediate shield 17 is made of an insulating material filled with magnetic powder, and the outer peripheral surface may be made of conductive metal. This fourth embodiment also provides the same effects as the above-described embodiments.

第7図は、絶縁容器18をアモルファス金属等の磁性体
の粉末を充填した絶縁材料から形成した実施例(以下、
第5の実施例という)を示す。その他の構成は、第1の
実施例と同様である。この第5の実施例も、上述した各
実施例と同様の効果が得られる。
FIG. 7 shows an example (hereinafter referred to as
Embodiment 5) is shown. The other configurations are the same as in the first embodiment. This fifth embodiment also provides the same effects as each of the above-described embodiments.

[発明の効果コ 以上説明したように本発明によれば、電極間で発生する
急峻波サージ電圧が抑制され、真空遮断器に接続された
機器のサージ電圧による損傷を防止し、しかも信頼性が
高く、製造コストも低く、小形で簡易な構成の真空バル
ブを提供することができる。
[Effects of the Invention] As explained above, according to the present invention, the steep wave surge voltage generated between the electrodes is suppressed, the damage to equipment connected to the vacuum circuit breaker due to the surge voltage is prevented, and the reliability is improved. It is possible to provide a vacuum valve with a small and simple configuration, which has a low manufacturing cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図、第2図は本発
明の作用を示す等価回路図、第3図は本発明の効果を示
すためのステップ波応答波形図、第4図は本発明の他の
実施例を示す断面図、第5図は本発明のさらに異なる他
の実施例を示す断面図、第6図は本発明のさらに異なる
他の実施例を示す断面図、第7図は本発明のさらに異な
る他の実施例を示す断面図である。 1・・・接点 2・・・電極 3・・・固定通電軸 5・・・可動通電軸 8、16.17・・・中間シールド 9.11・・・絶縁容器 11a 、 Ilb 、 15a 、 15b −−−
構造体(8733)代理人 弁理士 猪 股 祥 晃(
ほか 1名) 羊 1  図 電ンL(A) 第 3 回 茅 411ffi $ 5 図 箒 61!I # 7 田
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram showing the effect of the present invention, FIG. 3 is a step wave response waveform diagram showing the effect of the present invention, and FIG. 5 is a sectional view showing another embodiment of the invention, FIG. 6 is a sectional view showing another embodiment of the invention, and FIG. FIG. 7 is a sectional view showing still another embodiment of the present invention. 1... Contact 2... Electrode 3... Fixed energizing shaft 5... Movable energizing shaft 8, 16.17... Intermediate shield 9.11... Insulating container 11a, Ilb, 15a, 15b - ---
Structure (8733) Agent Patent Attorney Yoshiaki Inomata (
1 other person) Sheep 1 Zuden L (A) 3rd Kaya 411ffi $ 5 Zuhoki 61! I #7 Field

Claims (1)

【特許請求の範囲】[Claims] 絶縁容器と、この絶縁容器の両端開口部をそれぞれ閉塞
する蓋板とからなる真空容器内に一対の接離可能な電極
を配設し、この一対の電極の一方はベローズを介して前
記蓋板の一方に可動に取付けられ、且つ、前記一対の電
極を取付ける可動通電軸及び固定通電軸を備えた真空バ
ルブにおいて、円筒状に形成した磁性を有する部材を、
軸方向に沿った導電部に対し同心となるように配設した
ことを特徴とする真空バルブ。
A pair of detachable electrodes is arranged in a vacuum container consisting of an insulating container and a lid plate that closes openings at both ends of the insulating container, and one of the pair of electrodes is connected to the lid plate through a bellows. In a vacuum valve that is movably attached to one of the electrodes and has a movable current-carrying shaft and a fixed current-carrying shaft to which the pair of electrodes are attached, a magnetic member formed in a cylindrical shape,
A vacuum valve characterized by being arranged concentrically with respect to a conductive part along the axial direction.
JP12895889A 1989-05-24 1989-05-24 Vacuum valve Pending JPH02309526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12895889A JPH02309526A (en) 1989-05-24 1989-05-24 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12895889A JPH02309526A (en) 1989-05-24 1989-05-24 Vacuum valve

Publications (1)

Publication Number Publication Date
JPH02309526A true JPH02309526A (en) 1990-12-25

Family

ID=14997621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12895889A Pending JPH02309526A (en) 1989-05-24 1989-05-24 Vacuum valve

Country Status (1)

Country Link
JP (1) JPH02309526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989822A1 (en) * 2012-04-23 2013-10-25 Alstom Technology Ltd Circuit interrupting electrical appliance e.g. disconnecting switch for use in metal-clad substation in metal casing filled with electrically insulating gas, has ring made of magnetic material and placed around arcing contact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206726A (en) * 1986-03-05 1987-09-11 三菱電機株式会社 Vacuum breaker

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206726A (en) * 1986-03-05 1987-09-11 三菱電機株式会社 Vacuum breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2989822A1 (en) * 2012-04-23 2013-10-25 Alstom Technology Ltd Circuit interrupting electrical appliance e.g. disconnecting switch for use in metal-clad substation in metal casing filled with electrically insulating gas, has ring made of magnetic material and placed around arcing contact

Similar Documents

Publication Publication Date Title
KR101072518B1 (en) Disconnecting switch
US4845453A (en) High-voltage voltage transformer with shields
JPH02309526A (en) Vacuum valve
JPH02262312A (en) High voltage pushing for oil-cooled electrical equipment
JPH04106827A (en) Vacuum circuit-breaker
JP2918060B2 (en) Gas insulated electrical equipment
JPH0265019A (en) Gas insulating switching device
JPH0382305A (en) Gas-insulated switchgear
JP3099919B2 (en) Gas insulated switchgear
JPH0970115A (en) Bushing for transformer
JPH02247926A (en) Gas insulation electric equipment
JPH01308114A (en) Gas insulated electric apparatus
JPH077623B2 (en) Gas insulated disconnector
JPH038231A (en) Circuit breaker
JPH01278210A (en) Gas insulated switchgear
JPH05336625A (en) Gas-insulated switching device
JPH0336908A (en) Gas insulated unit
JPH02164208A (en) Gas insulated switchgear
JPH02159707A (en) Through type current transformer
JPH01304627A (en) Gas insulation electric equipment
JPH0224927A (en) Disconnecting switch
JPH04308421A (en) Surge damping device for electric equipment
JPH02276404A (en) Compressed-gas-insulated switchgear
JPH0917288A (en) Gas-disconnector
JPS6166510A (en) gas insulated electrical equipment