[go: up one dir, main page]

JPH023080B2 - - Google Patents

Info

Publication number
JPH023080B2
JPH023080B2 JP2435783A JP2435783A JPH023080B2 JP H023080 B2 JPH023080 B2 JP H023080B2 JP 2435783 A JP2435783 A JP 2435783A JP 2435783 A JP2435783 A JP 2435783A JP H023080 B2 JPH023080 B2 JP H023080B2
Authority
JP
Japan
Prior art keywords
outer shell
pressure
low thermal
thermal conductivity
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2435783A
Other languages
Japanese (ja)
Other versions
JPS59151695A (en
Inventor
Kosuke Shintani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2435783A priority Critical patent/JPS59151695A/en
Publication of JPS59151695A publication Critical patent/JPS59151695A/en
Publication of JPH023080B2 publication Critical patent/JPH023080B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は外殻体内に低熱伝導性気体を封入して
成る断熱壁体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a method for producing a heat insulating wall body comprising a gas with low thermal conductivity sealed in an outer shell body.

(従来の技術) この種の断熱壁体を製造する際に、外殻体内に
低熱伝導性気体を封入する方法としては、例えば
外殻体に連通管を接続し、この連通管を介して真
空ポンプにより内部から空気を排出し、然る後連
通管を介して低熱伝導性気体を外殻体内に充填す
る方法が考えられる。ところが、上述の方法で
は、外殻体内の空気を排出したときに外殻体に大
気圧が作用してその変形甚しくは破壊に至るとい
う問題がある。そこで、期様な問題に対処すべ
く、従来は次のような製造方法を採つていた。即
ち、まず、内外を連通させる連通孔を形成した外
殻体を耐圧容器内に収納し、その後真空ポンプに
より空気を耐圧容器内ひいては外殻体内から排気
し、然る後耐圧容器内に低熱伝導性気体を流入さ
せ、ひいては連通孔を介して外殻体内に低熱伝導
性気体を流入せしめ、この後耐圧容器内から外殻
体を取出するようにしていた。
(Prior art) When manufacturing this type of heat insulating wall, a method of sealing a low thermal conductivity gas in the outer shell is, for example, by connecting a communicating pipe to the outer shell and passing a vacuum through the communicating pipe. A possible method is to exhaust air from the inside using a pump, and then fill the outer shell with a gas of low thermal conductivity via a communicating pipe. However, the above-mentioned method has a problem in that when the air inside the outer shell is exhausted, atmospheric pressure acts on the outer shell, leading to its deformation and even destruction. Therefore, in order to deal with this particular problem, the following manufacturing method has conventionally been adopted. That is, first, the outer shell, which has a communication hole that communicates the inside and outside, is housed in a pressure-resistant container, and then a vacuum pump is used to exhaust the air from inside the pressure-resistant container and from the outer shell. A high-temperature gas is allowed to flow in, and a low thermal conductive gas is also allowed to flow into the outer shell through the communication hole, and then the outer shell is removed from the pressure-resistant container.

(発明が解決しようとする課題) しかしながら、上述の方法では、耐圧容器内に
も低熱伝導性気体を流入させねばならないから、
高価な低熱伝導性気体が多量に必要となつて製造
コストが高み、しかも外殻体を耐圧容器内から取
出す際に低熱伝導性気体が大気中に流入して作業
環境を汚染するという問題があつた。
(Problem to be Solved by the Invention) However, in the above method, since the low thermal conductivity gas must also be introduced into the pressure-resistant container,
Manufacturing costs are high because a large amount of expensive low thermal conductivity gas is required, and there is also the problem that when the outer shell is removed from the pressure container, low thermal conductivity gas flows into the atmosphere and contaminates the working environment. Ta.

そこで、本発明の目的は、外殻体に大気圧が作
用して外殻体が変形、破壊に至ることを防止でき
ることは勿論のこと、低熱伝導性気体の使用量を
減少させ得、しかも作業環境を汚染する危悁もな
い断熱壁体の製造方法を提供するにある。
Therefore, an object of the present invention is to not only prevent deformation and destruction of the outer shell due to atmospheric pressure acting on the outer shell, but also to reduce the amount of low thermal conductive gas used, and to reduce the amount of gas used in the work. An object of the present invention is to provide a method for manufacturing a heat insulating wall body without any danger of polluting the environment.

[発明の構成] (課題を解決するための手段) 本発明は、外殻体を耐圧容器内に収納して該外
殻体に連結した連通管を介して内部の空気を排出
し且つこれと同時に前記耐圧容器内の空気を排出
する排出行程と、この後前記連通管を介して前記
外殻体内に前記低熱伝導性気体を充填し且つこれ
と同時に前記耐圧容器内に空気を流入させる充填
行程と、この後前記耐圧容器内から前記外殻体を
取出す取出行程とを順に実行するところに特徴を
有する。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides for housing an outer shell in a pressure-resistant container, discharging internal air through a communication pipe connected to the outer shell, and A discharge process for simultaneously discharging the air in the pressure vessel; and a filling process for filling the outer shell with the low thermal conductivity gas through the communication pipe and simultaneously introducing air into the pressure vessel. The present invention is characterized in that the following steps are sequentially performed: and a step of taking out the outer shell from inside the pressure-resistant container.

(作用) 排気工程において、外殻体内を排気する際、こ
れと同時にその外殻体を収納せる耐圧容器内の空
気も排出するから、外殻体の外も圧力が低下し、
外殻体の内外の圧力差は過剰に大きくならない。
また、外殻体内に低熱伝導性気体を充填する充填
行程には、耐圧容器内にも空気を流入させるか
ら、低熱伝導性気体の充填により外殻体内の圧力
が上昇しても、耐圧容器内の圧力も同様に上昇
し、やはり外殻体の内外の圧力差は過剰に大きく
ならない。これらにより、外殻体の破損が防止さ
れる。
(Function) In the exhaust process, when the inside of the outer shell is exhausted, the air inside the pressure-resistant container housing the outer shell is also exhausted, so the pressure outside the outer shell is also reduced.
The pressure difference between the inside and outside of the outer shell does not become excessively large.
In addition, during the filling process in which low thermal conductivity gas is filled into the outer shell, air also flows into the pressure container, so even if the pressure inside the outer shell increases due to filling with low thermal conductivity gas, the pressure inside the pressure container The pressure also increases in the same way, and the pressure difference between the inside and outside of the outer shell does not become excessively large. These prevent damage to the outer shell.

更に、外殻体内に低熱伝導性気体を充填する際
には、連通管を介して流入させるから、低熱伝導
性気体は外殻体内のみに流入して耐圧容器内へは
流入しないようになり、低熱伝導性気体の浪費や
作業環境の汚染が防止できる。
Furthermore, when filling the outer shell with a low thermal conductivity gas, it flows through the communication pipe, so the low thermal conductivity gas only flows into the outer shell and does not flow into the pressure vessel. Waste of low thermal conductivity gas and contamination of the working environment can be prevented.

(実施例) 以下本発明の一実施例につき第1図乃至第4図
を参照して説明する。まず、完成した断熱壁体の
利用形態を示す第1図において、1は冷蔵庫の扉
であり、2はその外板、4はこれら両板2,3を
所定間隔を置いての対向状態に保持した外枠、5
は該外枠4及び両板2,3内に配設した断熱壁
体、6は扉1内の余剰空間部に充填した硬質ウレ
タンホーム或いはグラスウール等の断熱材、7は
ガスケツトである。さて、上記断熱壁体5は詳細
には第2図に示す如く構成されたもので、同図中
8は気体を通さない例えばエチレン−ビニルアル
コール共重合体や塩化ビニリデン共重合体若しく
はポリエチレン、ナイロン、ポリエステル等の積
層品から構成された支持枠であり、有底の矩形容
器状を成すものにて、その全周辺部には複数例え
ば底面部及び上面部をも含めて計5段の段部9
a,9b,9c,9d,9eを夫々漸開する階段
状にしており、その他該支持枠8には例えばその
上部一簡所に連通孔10を形設している。而して
11a,11b,11c,11d,11eは何れ
も輻射率の小さな例えば金属蒸着フイルム特には
表裏両面に金属を蒸着させたフイルムや或いはア
ルミ箔など金属箔から成る熱反射膜で、これを
夫々前記支持枠8の各段部9a〜9eに貼着せし
めて該支持枠8内を複数例えば四つの空間層12
a,12b,12c,12dに仕切るように設
け、もつて内部に空間層12a乃至12bを備え
た外殻体13を構成している。尚、各熱反射膜1
1a〜11eについてはそのうちの最下部及び最
上部の熱反射膜11a,11eを除く残り中間部
の熱反射膜11b,11c,11dに第3図に示
す様な孔11fを多数有するものを用い、これに
て各空間層12a〜12dを連通させる様にして
いる。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 4. First, in Fig. 1, which shows how the completed heat insulating wall is used, 1 is the door of the refrigerator, 2 is its outer panel, and 4 is the panel 2 and 3 that are held facing each other at a predetermined distance. outer frame, 5
6 is a heat insulating wall disposed within the outer frame 4 and both plates 2 and 3; 6 is a heat insulating material such as hard urethane foam or glass wool filled in the surplus space inside the door 1; and 7 is a gasket. Now, the above-mentioned heat insulating wall 5 is constructed as shown in FIG. 2 in detail, and 8 in the figure is made of a gas-permeable material such as ethylene-vinyl alcohol copolymer, vinylidene chloride copolymer, polyethylene, or nylon. It is a support frame made of a laminated product such as polyester, and is shaped like a rectangular container with a bottom.The entire periphery of the frame has multiple steps, for example, five steps including the bottom and top. 9
a, 9b, 9c, 9d, and 9e each have a step-like shape that gradually opens, and the support frame 8 is also provided with a communication hole 10, for example, at one location in its upper part. Each of 11a, 11b, 11c, 11d, and 11e is a heat reflective film made of a metal-deposited film, particularly a film with metal vapor-deposited on both the front and back sides, or a metal foil such as aluminum foil, which has a low emissivity. A plurality of space layers 12, for example four, are attached to each of the step portions 9a to 9e of the support frame 8 to form a plurality of space layers 12, for example, four space layers within the support frame 8.
a, 12b, 12c, and 12d, which constitute an outer shell 13 having space layers 12a to 12b inside. In addition, each heat reflective film 1
As for 1a to 11e, except for the lowermost and uppermost heat reflective films 11a and 11e, the remaining intermediate heat reflective films 11b, 11c, and 11d have a large number of holes 11f as shown in FIG. This allows each of the spatial layers 12a to 12d to communicate with each other.

そして、上述の外殻体13内に低熱伝導性気体
を充填するための充填装置は第4図に示すように
構成している。即ち、この第4図において、14
は例えば円筒状の耐圧容器で、これは内部に外殻
体13を出し入れ可能に収納して密閉できるよう
構成され、排気管15が接続されている。16は
第1の連通管で、これの一端側は耐圧容器14内
に挿入されて端部にカツプリング17が設けられ
ている。18は第2の連通管であり、これの一端
部は外殻体13の連通孔10に着脱可能能且つ気
密に嵌合され、他端部には前記カツプリング17
に着脱可能に連結されるカツプリング19を備
え、両カツプリング17,19を互いに連結する
ことによつて外殻体13内を第2の連通管18を
介して第1の連通管16に連通させ得る様にして
いる。そして、前記排気管15及び第2の連通管
18は、第1乃至第4の弁20乃至23と共に図
示の如く配管されている。また、24は真空ポン
プ、25は低熱伝導性気体例えばフロン、クリプ
トン、キセノン、アルゴン、六フツ化イオウ或い
は二酸化炭素を単独で又は混合して充填したボン
ベ、26及び27は共に圧力計、そして28は第
1の弁20の反排気管15側に設けた大気連通部
である。
The filling device for filling the above-mentioned outer shell 13 with the low thermal conductivity gas is constructed as shown in FIG. 4. That is, in this Figure 4, 14
is, for example, a cylindrical pressure-resistant container, which is constructed so that the outer shell 13 can be removably housed therein and sealed, and an exhaust pipe 15 is connected thereto. Reference numeral 16 denotes a first communication pipe, one end of which is inserted into the pressure vessel 14, and a coupling 17 is provided at the end. 18 is a second communication pipe, one end of which is removably and airtightly fitted into the communication hole 10 of the outer shell 13, and the other end is fitted with the coupling 17.
By connecting both the coupling rings 17 and 19 to each other, the inside of the outer shell 13 can be communicated with the first communication pipe 16 via the second communication pipe 18. I'm doing it like that. The exhaust pipe 15 and the second communication pipe 18 are arranged together with the first to fourth valves 20 to 23 as shown in the figure. Further, 24 is a vacuum pump, 25 is a cylinder filled with a low thermal conductivity gas such as chlorofluorocarbon, krypton, xenon, argon, sulfur hexafluoride, or carbon dioxide, singly or in combination, 26 and 27 are both pressure gauges, and 28 is an atmosphere communication portion provided on the side opposite to the exhaust pipe 15 of the first valve 20.

而して、外殻体13に低熱伝導性気体を充填す
るには次のようにする。即ち、まず第4図に示す
ように外殻体13を耐圧容器14内に収納してカ
ツプリング17,19を互いに連結した状態で、
第1及び第4の弁20及び23を閉じ且つ第2及
び第3の弁21及び22を開放し、真空ポンプ2
4を作動させる。これにより、耐圧容器14内の
空気が排気管15を介して排出され、これと同時
に外殻体13内の空気も第1及び第2の連通管1
6及び18を介して排出される(排気行程)。こ
のとき、外殻体13の内外の圧力は同時に低下す
るため、内外に圧力差は生せず、従つて外殻体1
3に変形が生ずることを確実に防止できる。外殻
体13内及び耐圧容器14内の空気を排出した
後、第2及び第3の弁21及び22を閉じて真空
ポンプ24を停止させ、第1及び第4の弁20及
び24を開放する。これにより、耐圧容器14内
には大気連通部28から第1の弁20及び連通管
15を介して空気が流入し、且つこれと同時にボ
ンベ25から第4の弁23並びに第1及び第2の
連通管16及び18を介して低熱伝導性気体が外
殻体13内に流入して充填される(充填行程)。
このときも、外殻体13の内外の圧力は略同時に
上昇するから、内外に圧力差は生ぜず、やはり外
殻体13に変形が生ずることを確実に防止でき
る。しかも、低熱伝導性気体は第1及び第2の連
通管16及び18を通つて外殻体13内に充填さ
れて耐圧容器14内には流入しないから、必要最
小限の量で済ますことができる。この後、耐圧容
器14を開放し、カツプリング17,19を外し
て外殻体13を取出す(取出行程)。この際、前
述した如く耐圧容器14内に低熱伝導性気体は流
入していないから、耐圧容器14の開放により作
業環境が汚染される虞れがないことは勿論であ
る。外殻体13を耐圧容器14から取出した後、
第2の連通管18を連通孔10から抜脱し、連通
孔10を閉塞して低熱伝導性気体を内部に封入す
る構成として断熱壁体5と成し、然る後該断熱壁
体5を前記外板2、内板3及び外枠4内に配設
し、これにて冷蔵庫の扉1が完成する。
In order to fill the outer shell 13 with a gas having low thermal conductivity, the following procedure is performed. That is, first, as shown in FIG. 4, with the outer shell 13 housed in the pressure-resistant container 14 and the coupling rings 17 and 19 connected to each other,
The first and fourth valves 20 and 23 are closed, the second and third valves 21 and 22 are opened, and the vacuum pump 2
Activate 4. As a result, the air inside the pressure vessel 14 is discharged via the exhaust pipe 15, and at the same time, the air inside the outer shell 13 is also discharged through the first and second communication pipes 1.
6 and 18 (exhaust stroke). At this time, the pressure inside and outside the outer shell 13 decreases at the same time, so there is no pressure difference between the inside and outside, and therefore the outer shell 1
3 can be reliably prevented from being deformed. After exhausting the air in the outer shell 13 and the pressure container 14, the second and third valves 21 and 22 are closed to stop the vacuum pump 24, and the first and fourth valves 20 and 24 are opened. . As a result, air flows into the pressure vessel 14 from the atmosphere communication section 28 via the first valve 20 and the communication pipe 15, and at the same time, air flows from the cylinder 25 into the fourth valve 23 and the first and second valves. A low thermal conductivity gas flows into the outer shell 13 through the communication pipes 16 and 18 to fill it (filling process).
At this time, the pressures inside and outside of the outer shell 13 rise almost simultaneously, so no pressure difference occurs between the inside and the outside, and deformation of the outer shell 13 can be reliably prevented. In addition, since the low thermal conductivity gas is filled into the outer shell 13 through the first and second communication pipes 16 and 18 and does not flow into the pressure-resistant container 14, the amount required can be reduced to the minimum required amount. . Thereafter, the pressure container 14 is opened, the coupling rings 17 and 19 are removed, and the outer shell 13 is taken out (removal step). At this time, since no low thermal conductivity gas is flowing into the pressure vessel 14 as described above, there is of course no risk of contaminating the working environment due to the opening of the pressure vessel 14. After removing the outer shell 13 from the pressure container 14,
The second communication pipe 18 is removed from the communication hole 10, the communication hole 10 is closed, and a low thermal conductivity gas is sealed inside to form the heat insulating wall body 5, and then the heat insulating wall body 5 is It is disposed within the outer panel 2, inner panel 3, and outer frame 4, thereby completing the refrigerator door 1.

尚、第5図は本発明の異なる実施例を示すもの
で、前記実施例と相違するところは、排気管15
と第2の連通管18との間に差圧計29を設けて
この差圧計29の検出値により第1の弁20の開
度調節を成し得るよう構成し、且つ第3及び第4
の両弁22及び23間に切換弁30を設けて第2
の連通管18を第3の弁22及び第4の弁23の
何れかに選択的に連通させ得るように構成したと
ころにある。このように構成すれば、充填行程に
おいて耐圧容器14内に流入する空気量を調節で
きるので、外殻体13内のそれと同一にできて内
外の圧力差が生じることを一層確実に防止でき、
ひいては外殻体13の変形防止上一層効果的とな
る。また、排気行程においても、切換弁30を第
2の連通管18と第3の弁22とが連通するよう
切換えておくことにより、万一第4の弁23に漏
れが発生した場合でも低熱伝導性気体が真空ポン
プ24側に流入して作業環境が汚染されてしまう
ことを確実に防止できる。
Incidentally, FIG. 5 shows a different embodiment of the present invention, and the difference from the above embodiment is that the exhaust pipe 15
A differential pressure gauge 29 is provided between the first valve 20 and the second communicating pipe 18, and the opening degree of the first valve 20 can be adjusted based on the detected value of the differential pressure gauge 29.
A switching valve 30 is provided between both valves 22 and 23 of the second valve.
The communication pipe 18 is configured to be able to selectively communicate with either the third valve 22 or the fourth valve 23. With this configuration, the amount of air flowing into the pressure container 14 during the filling process can be adjusted, so that it can be made the same as that in the outer shell 13, and it is possible to more reliably prevent a pressure difference between the inside and outside.
In turn, this becomes even more effective in preventing deformation of the outer shell 13. In addition, even in the exhaust stroke, by switching the switching valve 30 so that the second communication pipe 18 and the third valve 22 communicate with each other, even if a leak occurs in the fourth valve 23, the heat conduction is reduced. It is possible to reliably prevent the work environment from being contaminated due to the inflow of gas into the vacuum pump 24 side.

〔発明の効果〕〔Effect of the invention〕

本発明は以上述べたように、外殻体を耐圧容器
内に収納して外殻体及び耐圧容器内から排気し、
この後外殻体内に低熱伝導性気体を充填すると同
時に耐圧容器内に空気を流入させるようにしたと
ころに特徴を有するもので、この結果、排気行程
や充填行程において外殻体の内外に圧力差が生じ
て外殻体の変形に至ることを未然に防止できるこ
とは勿論のこと、低熱伝導性気体は外殻体内にの
み流入させれば済むから、その使用量を低減でき
て無駄がなく、しかも低熱伝導性気体により作業
環境を汚染する虞れもないという優れた効果を奏
する。
As described above, the present invention stores the outer shell in a pressure-resistant container and exhausts air from the outer shell and the pressure-resistant container,
It is characterized by the fact that the outer shell is then filled with a gas with low thermal conductivity, and at the same time air is allowed to flow into the pressure container, resulting in a pressure difference between the inside and outside of the outer shell during the exhaust and filling strokes. Not only can this prevent the occurrence of gas that leads to deformation of the outer shell, but since the low thermal conductivity gas only needs to flow into the outer shell, the amount used can be reduced and there is no waste. This provides an excellent effect in that there is no risk of contaminating the working environment with low thermal conductivity gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の一実施例を示し、
第1図は冷蔵庫の扉の部分縦断面図、第2図は断
熱壁体全体の断面図、第3図は熱反射膜の平面
図、第4図は充填装置の概略構成図であり、第5
図は本発明の他の実施例を示す第4図相当図であ
る。 図中、1は冷蔵庫の扉、5は断熱壁体、10は
連通孔、13は外殻体、14は耐圧容器、15は
排気管、16及び18は第1及び第2の連通管、
24は真空ポンプ、25はボンベである。
1 to 4 show an embodiment of the present invention,
Fig. 1 is a partial longitudinal sectional view of the refrigerator door, Fig. 2 is a sectional view of the entire heat insulating wall, Fig. 3 is a plan view of the heat reflective film, Fig. 4 is a schematic diagram of the filling device, and Fig. 4 is a schematic diagram of the filling device. 5
This figure is a diagram corresponding to FIG. 4 showing another embodiment of the present invention. In the figure, 1 is a refrigerator door, 5 is a heat insulating wall, 10 is a communication hole, 13 is an outer shell, 14 is a pressure container, 15 is an exhaust pipe, 16 and 18 are first and second communication pipes,
24 is a vacuum pump, and 25 is a cylinder.

Claims (1)

【特許請求の範囲】[Claims] 1 外殻体内に低熱伝導性気体を封入して成る断
熱壁体を製造するものであつて、前記外殻体を耐
圧容器内に収納して該外殻体に連結した連通管を
介して内部の空気を排出し且つこれと同時に前記
耐圧容器内の空気を排出する排気行程と、この後
前記連通管を介して前記外殻体内に前記低熱伝導
性気体を充填し且つこれと同時に前記耐圧容器内
に空気を流入させる充填行程と、この後前記耐圧
容器内から前記外殻体を取出す取出行程とから成
る断熱壁体の製造方法。
1 A heat insulating wall body is manufactured by sealing a low thermal conductivity gas in an outer shell body, the outer shell body is housed in a pressure-resistant container, and the interior is and at the same time exhausting the air inside the pressure vessel, and then filling the outer shell with the low thermal conductivity gas through the communication pipe, and at the same time discharging the air inside the pressure vessel. A method for producing a heat insulating wall body, comprising a filling process in which air is introduced into the container, and a removal process in which the outer shell is taken out from inside the pressure-resistant container.
JP2435783A 1983-02-16 1983-02-16 Manufacture of heat-insulating wall body Granted JPS59151695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2435783A JPS59151695A (en) 1983-02-16 1983-02-16 Manufacture of heat-insulating wall body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2435783A JPS59151695A (en) 1983-02-16 1983-02-16 Manufacture of heat-insulating wall body

Publications (2)

Publication Number Publication Date
JPS59151695A JPS59151695A (en) 1984-08-30
JPH023080B2 true JPH023080B2 (en) 1990-01-22

Family

ID=12135938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2435783A Granted JPS59151695A (en) 1983-02-16 1983-02-16 Manufacture of heat-insulating wall body

Country Status (1)

Country Link
JP (1) JPS59151695A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021361A1 (en) * 1994-02-03 1995-08-10 Nippon Sanso Corporation Cold/hot/storage and method of production thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742473U (en) * 1993-12-29 1995-08-04 リエン−チン チャン Water tank heated by solar energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021361A1 (en) * 1994-02-03 1995-08-10 Nippon Sanso Corporation Cold/hot/storage and method of production thereof

Also Published As

Publication number Publication date
JPS59151695A (en) 1984-08-30

Similar Documents

Publication Publication Date Title
EP0645576B1 (en) Method for filling and packing insulating powder in the walls of a cabinet body
US5207607A (en) Plasma display panel and a process for producing the same
JP4922913B2 (en) Vacuum tight-binding gas packaging bag and packaging method thereof
JP4410854B2 (en) Inspection of sealing properties of packaging materials
KR900005610Y1 (en) Dula vacuum system
JP2007238177A (en) Air seal with continuous pump, and its manufacturing method
US4905501A (en) Jig for leak check
JPH023080B2 (en)
JPH07139690A (en) Vacuum heat insulation material
JPH09506317A (en) Vacuum stabilizer and manufacturing method thereof
JPH05142075A (en) Pressure inspection method for vacuum heat insulation panel
CN217302159U (en) Lower film of vacuum insulation panel, vacuum insulation panel and heat insulation product
US20050132669A1 (en) Vacuum packaging method and mechanism
CN111981249A (en) Thermally insulated enclosure containing equipment intended to operate at temperatures below 0 ℃
JPH0684798B2 (en) Method for accommodating adsorbent in the insulating space of a vacuum-insulated double-walled container for storing low-boiling liquefied gas and vacuum-insulated double-walled container
US3224277A (en) Environmental apparatus
CN213930382U (en) High-efficiency cryogenic sorbent tank and cryogenic storage tank based on high-efficiency cryogenic sorbent tank
JP2838961B2 (en) Method of closing the opening of a vacuum insulated container
US3913776A (en) Vacuum-insulated vessel
JP2002293581A (en) Device and method for gas filling of double layered glass
JPH07293783A (en) Heat insulating material and heat insulating box using it
CN222702547U (en) A double-layer sealing plugging mechanism for sealing detection
JPH049582A (en) Manufacture of vacuum insulation wall body
JPS62179699A (en) Storage vessel for spent fuel
JPH0725517Y2 (en) Double shell tank manhole cool structure