[go: up one dir, main page]

JPH02303744A - Vacuum chuck - Google Patents

Vacuum chuck

Info

Publication number
JPH02303744A
JPH02303744A JP1120505A JP12050589A JPH02303744A JP H02303744 A JPH02303744 A JP H02303744A JP 1120505 A JP1120505 A JP 1120505A JP 12050589 A JP12050589 A JP 12050589A JP H02303744 A JPH02303744 A JP H02303744A
Authority
JP
Japan
Prior art keywords
sintered body
vacuum chuck
vacuum
plastic
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1120505A
Other languages
Japanese (ja)
Inventor
Makoto Hiyamizu
冷水 真
Takao Oshima
大島 孝郎
Yasuhiro Tani
泰弘 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Rica Corp
Original Assignee
Nikko Rica Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Rica Corp filed Critical Nikko Rica Corp
Priority to JP1120505A priority Critical patent/JPH02303744A/en
Publication of JPH02303744A publication Critical patent/JPH02303744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Jigs For Machine Tools (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

PURPOSE:To improve the precision of the shape of a workpiece after working by forming a plastic sintered body which has continuous holes and in which the supporting rigity for the workpiece is partially varied, as adsorbing surface. CONSTITUTION:After a metal mold is charged with trifluorinated ethylene chloride resin powder, cold press molding is carried out. After a molding body is heating-sintered in air, a desired sintered body 4 is obtained through turning. A stainless jig is attached onto the sintered body 4, and each porosity of the inside and outside diameter parts of the sintered body 4 is reduced, and Young's modulus and hardness are increased. Then, a desired vacuum chuck is obtained by attaching the sintered body 4 onto the top part 6 of a base plate 1 made of Al alloy. The surface of the vacuum chuck is superfinely turned to form an adsorbing surface, and an Al magnetic disc plate 7 is vacuum-adsorbed, and the both surfaces are superfinely turning-worked. Thus, the precision of the shape of a workpiece after working can be improved by partially varying the supporting rigidity of the vacuum chuck.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、プラスチックス焼結体の連続気孔を利用した
へ空チャックに関するものである1本発明の真空チャッ
クは、焼結体の素材として使用しているプラスチックス
と同程度の硬度を有する物体や、あるいはそのプラスチ
ックスよりも硬度の高い物体の端面を吸着して、加工時
や寸法及び形状などの計測時に保持固定するために使用
される。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a vacuum chuck that utilizes the continuous pores of a sintered plastic body. It is used to adsorb the end face of an object that has the same hardness as the plastic being used, or an object that is harder than the plastic, and hold and fix it during processing or when measuring dimensions and shapes. Ru.

したがって被吸着物としては、プラスチックス。Therefore, the adsorbed material is plastic.

アルミニウムや銅等の軟質金属、鉄、ガラスさらにはシ
リコン、ガリウム、ヒ素等の半導体結晶材料、YAG、
GGG等の結晶材料、炭化ケイ素。
Soft metals such as aluminum and copper, iron, glass, semiconductor crystal materials such as silicon, gallium, arsenic, YAG,
Crystalline materials such as GGG, silicon carbide.

アルミナ等のセラミックス等があげられる。Examples include ceramics such as alumina.

[従来の技術とその課M] 従来よりチャックとして使用されているものには5機械
的なチャック、電磁チャック、a空チャック等が挙げら
れるが、このうち真空チャックは薄物の非磁性体に対し
て使用されてきた。アルミニウム磁気ディスクやフォト
マスク用ガラス、シリコンを始めとする結晶材料のウェ
ハ等が吸着対象としての代表的な例である。
[Conventional technology and its divisions] Types of chucks conventionally used include mechanical chucks, electromagnetic chucks, and empty chucks, among which vacuum chucks are suitable for thin non-magnetic materials. It has been used. Typical examples of suction targets include aluminum magnetic disks, glass for photomasks, and wafers made of crystalline materials such as silicon.

従来の真空チャックの吸着面の形状、構造は、点在する
貫通孔があるいはこの貫通孔を含んだ幾何学的な形状の
連続した真空溝であった。しかし、これらは吸着力が不
均一となるため、吸着面や被吸着物が変形し、超精密加
工においてはその精度に問題があった。そこで吸着力が
、より均一である焼結金屑や焼結セラミックスの多孔質
体が利用されていた。しかし、これらは素材そのものの
硬度が高いため、吸着面に微小な塵が付着した場合。
The shape and structure of the suction surface of a conventional vacuum chuck is a continuous vacuum groove with a geometrical shape containing scattered through holes or through holes. However, since the suction force of these is non-uniform, the suction surface and the object to be suctioned are deformed, which poses a problem in accuracy in ultra-precision machining. Therefore, porous materials such as sintered metal scraps and sintered ceramics, which have more uniform adsorption power, have been used. However, because these materials themselves have high hardness, if minute dust adheres to the suction surface.

薄物の被吸着物は変形して吸着され加工後の形状精度の
劣化を招いていた。
Thin objects to be attracted are deformed and attracted, resulting in deterioration of shape accuracy after processing.

またアルミニラ12や銅等の軟質全屈を吸着、保持、脱
離する際に、これらの被吸着物を傷付けることがあった
。さらに被吸着物を加工する時には、これらの焼結体は
支持剛性が高く、振動に対する減衰能が小さいため、自
動振動が起こり易く、精度の高い加工が困難であった。
In addition, when adsorbing, holding, and detaching soft materials such as aluminum 12 and copper, these adsorbed objects may be damaged. Furthermore, when processing an adsorbed object, these sintered bodies have high support rigidity and low damping ability against vibrations, so automatic vibrations are likely to occur, making it difficult to process with high precision.

そこで、硬度が低く5減衰が大きな焼結プラスチックス
による多孔質体が特開昭63−21.0148などで提
案されている。しかし、例えばアルミニウム磁気ディス
ク基板の如き薄物の加工を行う場合、薄物の加工面端部
は支持状態に伴う境界条件が異なるため、プラスチック
スに代表されるヤング率・硬度が低い真空チャックを使
用すると、加工面端部が0.1μ謂のオーダーで平面度
が劣化する現象が顕著に起こってくる。このため磁気デ
ィスクの記録区域は端部を避けなければならず、記録面
積の縮小につながっていた。また、端部の平面度の劣化
はマクロ的にみるとディスクの半径真直度の劣化にもつ
ながっていた。
Therefore, porous bodies made of sintered plastics with low hardness and high attenuation have been proposed in Japanese Patent Laid-Open No. 63-21.0148 and other publications. However, when machining thin objects such as aluminum magnetic disk substrates, the edge of the thin object's machined surface has different boundary conditions depending on the supporting state, so it is difficult to use a vacuum chuck with low Young's modulus and hardness, such as plastics. , a phenomenon in which the flatness of the edge of the machined surface deteriorates significantly on the order of 0.1 μm occurs. For this reason, the recording area of the magnetic disk must avoid the edges, leading to a reduction in the recording area. Furthermore, from a macroscopic perspective, the deterioration in the flatness of the edge also led to the deterioration in the radial straightness of the disk.

別な問題点として、チャック材質にプラスチックスを使
用する場合、耐水、耐油、耐溶剤性が優れていて、寸法
変化が起こらないことが重要であり、かつ、吸着面の精
度を確保するためにプラスチックスチャック部分を剛性
の高い金属ベースに固定したうえで表面加工を行う必要
性から、被接着性が優れていることも必要である。しか
し、耐水、耐油、耐溶剤性と、被接着性は相反する性(
(?であるため、従来の被接着性を有する例えばウレタ
ン樹脂では、耐水、耐油、耐溶剤性が犠牲となり、この
ため吸着面の寸法変化が徐々に起こり、被吸着物の加工
後の面積度の劣化につながっていた。
Another problem is that when using plastic for the chuck material, it is important that it has excellent water, oil, and solvent resistance, and that dimensional changes do not occur, and that it is necessary to ensure the accuracy of the suction surface. Since the plastic chuck part needs to be fixed to a highly rigid metal base and then subjected to surface treatment, it is also necessary to have excellent adhesion properties. However, water resistance, oil resistance, solvent resistance, and adhesion properties are contradictory (
(For example, with conventional urethane resins that have adhesion properties, water resistance, oil resistance, and solvent resistance are sacrificed. As a result, the dimensions of the adsorption surface gradually change, and the area density of the adsorbed object after processing was leading to deterioration.

[課題を解決するための手段] 前記従来の問題点を解決するため1本発明者らは、プラ
スチックス焼結体の連続気孔を利用した真空チャックに
ついて種々検討を進めた結果、被吸着物に対する支持剛
性を部分的に変化させることにより、これが解決できる
ことを見出し本発明を完成した。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present inventors have conducted various studies on vacuum chucks that utilize the continuous pores of a sintered plastic body. It was discovered that this problem could be solved by partially changing the support rigidity, and the present invention was completed.

本発明の要旨は、被吸着物に対する支持剛性を部分的に
変化させた連続気孔をもつプラスチックス焼結体を吸着
面としてなることを特徴とする真空チャックにある。
The gist of the present invention resides in a vacuum chuck characterized in that the suction surface is made of a plastic sintered body with continuous pores whose supporting rigidity for an object to be suctioned is partially changed.

以ドこれについて詳しく述べると、本発明の真空チャッ
クを得るには、まず粉末状の微細なプラスチックス粒子
を焼結したプラスチックス焼結体を製作する。プラスチ
ックス焼結体は、常法に則り、冷間圧粉成形、無酸化雰
鼎気中での加熱焼結の過程によって、連続気孔を成形し
たものである。
Describing this in detail below, in order to obtain the vacuum chuck of the present invention, first a plastic sintered body is manufactured by sintering fine powdery plastic particles. The plastic sintered body is formed into continuous pores by cold compaction and heating sintering in a non-oxidizing atmosphere according to conventional methods.

次に、前記したアルミニウム磁気ディスク基板の例で示
すように、端部付近の平面度が劣化する問題については
5種々研究の結果、劣化する部分に対応するチャック部
分の支持剛性を高めることによって劣化を防止できた。
Next, as shown in the example of the aluminum magnetic disk substrate mentioned above, as a result of various studies, we found that the problem of flatness deterioration near the edges could be improved by increasing the support rigidity of the chuck part corresponding to the deteriorating part. could be prevented.

すなわち被吸着物を真空吸着した時に吸着面が弾性圧縮
変形したことによる反力を、部分的・意図的に調節する
ことによって劣化を防止することができる。支持剛性を
変えるには、ヤング率・硬度等の物理的性質を変える方
法と、チャックの厚さを変える方法の2通りによってa
■能である。前者はさらに次の2つの方法によってif
能である。(1)粉末成形時に金型による圧縮比を部分
的に変えて高密度化することにより、あるいは、均一な
気孔率の焼結体を部分的に再加熱して、軟化圧縮し気孔
率を減することによりヤング率・硬度を高める。(2)
プラスチックス焼結体の連続気孔に別なプラスチックス
を部分的に含浸固化させて、ヤング率・硬度を高める。
That is, deterioration can be prevented by partially and intentionally adjusting the reaction force caused by the elastic compressive deformation of the suction surface when the suction target is vacuum suctioned. There are two ways to change the support rigidity: change the physical properties such as Young's modulus and hardness, and change the chuck thickness.
■It is Noh. The former can be further determined by the following two methods if
It is Noh. (1) By partially changing the compression ratio of the mold during powder compaction to increase the density, or by partially reheating a sintered body with uniform porosity to soften and compress it and reduce the porosity. This increases Young's modulus and hardness. (2)
The continuous pores of a sintered plastic are partially impregnated with another plastic and solidified to increase Young's modulus and hardness.

上記の本発明に使用されるプラスチックスは、例えば、
フッ素樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂、
ポリプロピレン樹脂、ポリカーボネート樹脂、エポキシ
樹脂等が挙げられ、これらは、耐水、耐油、耐溶剤性が
優れており1寸法変化がきわめて少なく、超精密加工用
として不可欠の性質を持つ樹脂である。しかし、被接着
性が劣るという問題があり、これを解決するために、プ
ラスチックス焼結体の原料粉末粒子径、及び気孔率を調
節して接着剤が連続気孔に適当な深さに侵入するように
した。その結果、固化した接着剤が。
The plastics used in the above-mentioned present invention are, for example,
Fluororesin, polyvinyl chloride resin, polyethylene resin,
Examples include polypropylene resin, polycarbonate resin, epoxy resin, etc. These resins have excellent water resistance, oil resistance, and solvent resistance, and have very little change in one dimension, which is essential for ultra-precision processing. However, there is a problem of poor adhesion, and to solve this problem, the particle size and porosity of the raw material powder of the plastic sintered body are adjusted so that the adhesive penetrates into the continuous pores to an appropriate depth. I did it like that. As a result, the adhesive hardens.

投錨効果を発揮して十分な固定力が得られた。The anchoring effect was demonstrated and sufficient anchoring force was obtained.

[実施例] 次に、実施例により1本発明の真空チャックをさらに具
体的に説明する。
[Example] Next, the vacuum chuck of the present invention will be explained in more detail with reference to an example.

第1図、第2図は本発明の一実施例の、第3図は従来例
の一部破断て示した斜視図である。
FIGS. 1 and 2 are perspective views of an embodiment of the present invention, and FIG. 3 is a partially cutaway perspective view of a conventional example.

実施例1 平均粒子径100μ請の三フッ化塩化エチレン樹脂粉末
を成形金型に充填し、所要圧力120kgf/dにて冷
間プレス成形を行い、成形体を空気中にて215℃、3
時間、加熱焼結した後、旋削して外径96m、内径24
銅、厚さ3+mの焼結体4を製作した(第1図、第2図
参照)。この焼結体は、気孔率40%、気孔の平均直径
20μm、ヤング率40kgf/an”、シヨアD硬度
55であった。次に、この焼結体の外径部分、内径部分
のヤング率、硬度を高めろべく、400℃のステンレス
鋼製治具を圧力30kgf/dで3秒間接触させて軟化
圧縮し、気孔率を減少させた。この操作により外径を9
4.6ny+i、内径を25.4mmとした。気孔率の
減少が認められる部分5は1表面から1mの深さの範囲
であり、表面から0.4mmの深さの範囲は気孔率O%
であった。気孔率0%の部分はヤング率200kgf/
mm2、シヨアD硬度87であった。
Example 1 Trifluorochloroethylene resin powder with an average particle size of 100 μm was filled into a mold, cold press molded at a required pressure of 120 kgf/d, and the molded body was heated in air at 215° C. for 3
After heating and sintering for an hour, it is turned and has an outer diameter of 96 m and an inner diameter of 24 m.
A sintered body 4 made of copper and having a thickness of 3+m was manufactured (see FIGS. 1 and 2). This sintered body had a porosity of 40%, an average pore diameter of 20 μm, a Young's modulus of 40 kgf/an'', and a Shore D hardness of 55. In order to increase the hardness, the porosity was reduced by softening and compressing by contacting a stainless steel jig at 400°C with a pressure of 30 kgf/d for 3 seconds.This operation reduced the outer diameter to 9.
4.6ny+i, and the inner diameter was 25.4mm. The region 5 where a decrease in porosity is observed is within a depth of 1 m from the surface, and the range within a depth of 0.4 mm from the surface has a porosity of 0%.
Met. The part with 0% porosity has a Young's modulus of 200 kgf/
mm2, and Shore D hardness was 87.

次にアルミニウム合金製ベース板1の山部分6にエポキ
シ樹脂系接着剤を塗布し、焼゛結体4を接着して真空チ
ャックとした。この時接着剤は焼結体の連続気孔に0.
2mmの深さで侵入しており、剥離試験の結果、接着部
は剥離せず、焼結体部の破壊であって接着強度が十分で
あることが確認された。
Next, an epoxy resin adhesive was applied to the peak portion 6 of the aluminum alloy base plate 1, and the sintered body 4 was adhered to form a vacuum chuck. At this time, the adhesive is applied to the continuous pores of the sintered body.
The adhesive penetrated to a depth of 2 mm, and as a result of a peel test, it was confirmed that the adhesive part did not peel off, indicating that the sintered body was destroyed and that the adhesive strength was sufficient.

以上のように製作された真空チャックは、第2図には図
示していない真空用配管を内蔵した超精密旋盤に取り付
け、焼結体の表面を超精密旋削して吸着面とした。これ
に3.5インチのアルミニウム磁気ディスク板7を真空
孔2、真空溝3、焼結体4の連続気孔により真空吸着し
てダイヤモンドバイトにより片面ずつ、両面の超精密旋
削を行った。ディスク板の大きさは、外径95鵬、内径
25am、厚さ1.27n+w+、内・外径の面取り0
.35011である。旋削の結果を第1表に示す。
The vacuum chuck manufactured as described above was attached to an ultra-precision lathe equipped with vacuum piping (not shown in FIG. 2), and the surface of the sintered body was turned with ultra-precision to form a suction surface. A 3.5-inch aluminum magnetic disk plate 7 was vacuum-adsorbed using the vacuum holes 2, vacuum grooves 3, and continuous pores of the sintered body 4, and ultra-precision turning was performed on one side and both sides using a diamond cutting tool. The size of the disc plate is 95mm outer diameter, 25mm inner diameter, 1.27n+w+ thickness, and 0 chamfers on the inner and outer diameters.
.. It is 35011. The results of turning are shown in Table 1.

第1表 3.5インチアルミニウム磁気ディスク基板の外周部平
面度と半径真直度 加工条件 回転数 : 3000rpm送り量 :lO
μ謬/ rev 送り方向:内周から外周へ 切り込み=10μm 切削油 :白灯油スプレー バイト :単結晶ダイヤモンドバ イト 2m幅フラットバイト 真空度 : 360mm Hg 実施例2 平均粒子径250μ墓の四フッ化エチレン樹脂粉末を成
形金型に充填し5所要圧力100kgf/cdにて冷間
ブレス成形を行い、成形体を空気中にて380℃。
Table 1: Outer peripheral flatness and radius straightness of 3.5-inch aluminum magnetic disk substrate Machining conditions Rotation speed: 3000 rpm Feed amount: 1O
μ error/rev Feed direction: Depth of cut from inner circumference to outer circumference = 10 μm Cutting oil: White kerosene spray Bit: Single crystal diamond bit 2m wide flat bite Vacuum degree: 360 mm Hg Example 2 Tetrafluoroethylene resin with average particle size of 250 μm The powder was filled into a mold, cold press molded at a required pressure of 100 kgf/cd, and the molded product was heated in air at 380°C.

3時間、加熱焼結して気孔率50%、気孔の平均直径5
5μ翔、ヤング率20kgf、/’、、、”、ショア[
〕硬度48の焼結体を製作した。焼結体の大きさは、外
径92゜6晴、内径27.4nn、厚さ3mとした。こ
の焼結体の外径部分、内径部分のヤング率・硬度を高め
るべく、射出成形機を使用し、常法に則って三フッ化塩
化エチレン樹脂を焼結体の外径面、内径面にアウトサー
ト射出成形を行った。射出条件は、射出圧力800kg
f/cm、金型及び焼結体温度は80℃、シリンダ一温
度260℃、ノズル温度310℃である。
After heating and sintering for 3 hours, the porosity is 50% and the average diameter of the pores is 5.
5μ SHOR, Young's modulus 20kgf,
] A sintered body with a hardness of 48 was produced. The size of the sintered body was an outer diameter of 92°6 mm, an inner diameter of 27.4 nn, and a thickness of 3 m. In order to increase the Young's modulus and hardness of the outer and inner diameter portions of this sintered body, an injection molding machine is used to apply trifluorochloride ethylene resin to the outer and inner diameter surfaces of the sintered body using a conventional method. Outsert injection molding was performed. Injection conditions are injection pressure 800kg.
f/cm, the mold and sintered body temperatures were 80°C, the cylinder temperature was 260°C, and the nozzle temperature was 310°C.

射出成形の後、tgo℃で2時間ひずみ取り焼鈍を行っ
た。この結果、射出された樹脂は、焼結体の連続気孔に
0.2m侵入して強固に固着していた。
After injection molding, strain relief annealing was performed at tgo°C for 2 hours. As a result, the injected resin entered the continuous pores of the sintered body by 0.2 m and was firmly fixed.

射出部分はヤング率210kgf / mm” 、シヨ
アD硬度88であった0次に余分の射出成形部分を旋削
して、外径94.6mm、内径25.4mm、射出成形
部分5の厚さ1mとした。これを実施例1と同様の方法
により焼結体をチャック板に接着して真空チャックとし
、3.5インチのアルミニウム磁気ディスク板の超精密
旋削を行った。その結果を第1表に示す。
The injection part had a Young's modulus of 210 kgf/mm" and a shore D hardness of 88. The extra injection molded part of the 0th order was turned, and the outer diameter was 94.6 mm, the inner diameter was 25.4 mm, and the thickness of the injection molded part 5 was 1 m. Using the same method as in Example 1, the sintered body was bonded to a chuck plate to form a vacuum chuck, and a 3.5-inch aluminum magnetic disk plate was subjected to ultra-precision turning.The results are shown in Table 1. show.

実施例3 平均粒径130μ踵のポリ塩化ビニル樹脂粉末を成形金
型に充填し、所要圧力180kgf/adにて冷間ブレ
ス成形を行い、成形体を、窒素ガス雰囲気中にて115
℃、3時間加熱焼結した後、旋削して第2図に示す如く
外径94.6■、内径25.4m、厚さ3■、鍔状部分
10の厚さIIm、幅1.5mの焼結体を製作した。こ
の焼結体は、気孔率30%、気孔の平均1■径15μm
、ヤング率60kgf/■2.ショアD硬度58であっ
た・ 次にアルミニウム合金製チャック板1の山部分6にエポ
キシ系接着剤を塗布し焼結体4を接着して真空チャック
とした。この時、接着剤は焼結体の連続気孔に0.3m
の深さで侵入しており、接着強度が十分であることが確
認された。
Example 3 Polyvinyl chloride resin powder with an average particle size of 130 μm was filled into a mold, cold press molding was performed at a required pressure of 180 kgf/ad, and the molded product was heated to 115 μm in a nitrogen gas atmosphere.
After heating and sintering at 10°C for 3 hours, it was turned to form a piece with an outer diameter of 94.6 cm, an inner diameter of 25.4 m, a thickness of 3 cm, a flange-shaped portion 10 of a thickness of II m, and a width of 1.5 m as shown in Fig. 2. A sintered body was produced. This sintered body has a porosity of 30% and an average pore diameter of 15 μm.
, Young's modulus 60kgf/■2. The Shore D hardness was 58.Next, epoxy adhesive was applied to the peak portions 6 of the aluminum alloy chuck plate 1, and the sintered body 4 was adhered to form a vacuum chuck. At this time, the adhesive was applied to the continuous pores of the sintered body by 0.3 m.
It was confirmed that the adhesive strength was sufficient.

以上のように製作された真空チャックを実施例1と同様
に超精密旋盤に取り付け、焼結体の表面を超精密旋削し
て、平面の吸着面とし、3.5インチのアルミニウム磁
気ディスク板の超精密加工を行った。その結果を第1表
に示す。
The vacuum chuck manufactured as described above was mounted on an ultra-precision lathe in the same manner as in Example 1, and the surface of the sintered body was ultra-precision turned to form a flat suction surface, and a 3.5-inch aluminum magnetic disk plate was attached. Performed ultra-precision processing. The results are shown in Table 1.

従来例 硬質ポリウレタン樹脂製の真空チャックを次のように製
作した。液状である主剤ポリエステル50gを加熱して
85℃とし、これに硬化剤のメチレンビスオルソクロロ
アニリン6.35 gを120℃に加熱溶解して加え、
混合脱泡した後、適当な型枠に流し込んで120℃、5
時間加熱硬化させ、外径100+m、厚さ3膣の硬質ポ
リウレタン樹脂を製作した。この樹脂はヤング率1.7
kgf/=2、シヨアD硬度42であった。
Conventional Example A vacuum chuck made of hard polyurethane resin was manufactured as follows. 50 g of liquid base polyester was heated to 85°C, and 6.35 g of methylene bis-orthochloroaniline as a hardening agent was heated and dissolved at 120°C and added thereto.
After mixing and defoaming, pour into a suitable mold and heat at 120℃ for 5 minutes.
By heating and curing for a period of time, a hard polyurethane resin with an outer diameter of 100+ m and a thickness of 3 mm was produced. This resin has a Young's modulus of 1.7
kgf/=2, and shore D hardness was 42.

次に、この樹脂8を剛性ゴム系接着剤を使用して、第3
図のチャックベース板1に接着した後、旋削して外径9
4.6.内径25.4++aとし、さらに真空孔2と真
空溝9を加工して真空チャックとした。
Next, this resin 8 is bonded to a third layer using a rigid rubber adhesive.
After adhering to the chuck base plate 1 shown in the figure, turn the outer diameter to 9.
4.6. The inner diameter was set to 25.4++a, and vacuum holes 2 and vacuum grooves 9 were further processed to form a vacuum chuck.

このように製作した従来例の真空チャックを超精密旋盤
に取り付は吸着面を加工した後、アルミニウム磁気ディ
スク板を加工した。その結果を第1表に示す。
The conventional vacuum chuck manufactured in this way was mounted on an ultra-precision lathe, and the suction surface was machined, and then the aluminum magnetic disk plate was machined. The results are shown in Table 1.

従来例の外周部平面度は0.05〜0.22μm/3a
mであるのに対し、実施例1,2の外周部平面度は0゜
1μ蓮/3閣以内に抑えることができた。半径真直度に
関しても従来例が0.8〜2.1μl/35mであるの
に対し、実施例では1μs+/35■以内に抑えること
ができた。なお、本発明の実施例1に示すプラスチック
ス焼結体を使用し、チャック外径を92.5mとしてデ
ィスク外端部をチャックより0.9mオーバーハングさ
せて支持剛性の作用を無くした場合は。
The flatness of the outer peripheral part of the conventional example is 0.05 to 0.22 μm/3a
m, whereas the flatness of the outer peripheral portion of Examples 1 and 2 could be suppressed to within 0°1μ lotus/3 squares. Regarding the radius straightness, the conventional example had a value of 0.8 to 2.1 .mu.l/35 m, whereas the example was able to suppress the radius to within 1 .mu.s+/35 m. In addition, when the plastic sintered body shown in Example 1 of the present invention is used, the outer diameter of the chuck is 92.5 m, and the outer end of the disk is made to overhang the chuck by 0.9 m to eliminate the effect of supporting rigidity. .

ディスク加工後の外周部平面度は0.2〜0.5μm1
/3■であって、効果は認められなかった。したがって
、アルミニウム磁気ディスク基板の例では、外周部はヤ
ング率100kgf/a++以上2.シヨアD硬度45
以上が望ましい。ここで実施例1,2の如く、真空チャ
ックの外周部、内周部に気孔0%の部分を設けることは
、チャックからの真空漏れを減少する効果もある。
The flatness of the outer periphery after disk processing is 0.2 to 0.5 μm1
/3■, and no effect was observed. Therefore, in the example of an aluminum magnetic disk substrate, the outer peripheral portion has a Young's modulus of 100 kgf/a++ or more and 2. Shore D hardness 45
The above is desirable. Here, as in Examples 1 and 2, providing portions with 0% porosity on the outer and inner peripheries of the vacuum chuck also has the effect of reducing vacuum leakage from the chuck.

また、実施例3の如く、焼結体の外周部厚さを薄くする
方法でも外周部平面度を0.1μm/3m以内、半径真
直度を1μl/35−以内に抑えることができた。これ
に対し、焼結体の外周部厚さを変えずに3mmlのまま
とすると、外周部の平面度は0゜08〜0.25μm/
3mであり、劣化が起こっていた。
Further, even by reducing the thickness of the outer peripheral part of the sintered body as in Example 3, it was possible to suppress the flatness of the outer peripheral part to within 0.1 μm/3 m and the radius straightness to within 1 μl/35-. On the other hand, if the thickness of the outer periphery of the sintered body remains unchanged at 3 mm, the flatness of the outer periphery will be 0°08 to 0.25 μm/
It was 3m long and had deteriorated.

以上はアルミニウム磁気ディスク基盤を加工した場合の
実施例であるが、つぎに半導体結晶材料であるシリコン
ウェハのラッピング加工について説明する。
The above is an example in which an aluminum magnetic disk substrate is processed. Next, lapping processing of a silicon wafer, which is a semiconductor crystal material, will be explained.

実施例4 真空チャックを構成する多孔質焼結体及び外周部のヤン
グ率、硬度を高めた部分の製造方法、材質1機械的強度
は実施例1で示したものと同一である。真空チャックの
断面構成も実施例1と同一であるが、直径は102■の
円盤状である。この真空チャックをラッピング機に取り
付は焼結体をラッピングすることによって吸着面とした
。これに直径102+mのシリコンウェハを真空度50
0nn Ilgで真空チャックし、水に分散させた平均
粒子径16μsのアルミナ砥粒を、アルミナ製ラップ板
に適当量滴下しながら、加工圧力0.07kgf/d、
ラップ速度4011/l1in、加工速度44/+mi
nで加工代50umのラッピング加工を行った。
Example 4 The manufacturing method and material 1 mechanical strength of the porous sintered body constituting the vacuum chuck and the portion with increased Young's modulus and hardness of the outer periphery were the same as those shown in Example 1. The cross-sectional configuration of the vacuum chuck is also the same as in Example 1, but it has a disc shape with a diameter of 102 cm. This vacuum chuck was attached to a lapping machine and the sintered body was wrapped to form a suction surface. A silicon wafer with a diameter of 102+m was placed on top of this at a vacuum level of 50.
Alumina abrasive grains with an average particle diameter of 16 μs, which were vacuum chucked with 0nn Ilg and dispersed in water, were dropped in an appropriate amount onto an alumina lap plate while processing at a processing pressure of 0.07 kgf/d.
Wrap speed 4011/l1in, processing speed 44/+mi
Wrapping processing was performed with a processing allowance of 50 um.

この加工の結果、シリコンウェハの外周部平面度は0.
05〜0.08pm/ 3m++であった。
As a result of this processing, the flatness of the outer peripheral part of the silicon wafer is 0.
05-0.08pm/3m++.

これに対し、チャックの外周部ヤング率、硬度を高めな
い場合で、同様のラッピング加工を行ったシリコンウェ
ハの外周部平面度は0.11〜0.15μm73mであ
り劣っていた。
On the other hand, when the Young's modulus and hardness of the outer circumferential portion of the chuck were not increased, the outer circumferential flatness of a silicon wafer subjected to similar lapping was 0.11 to 0.15 μm and 73 m, which was poor.

[作用、効果] 本発明のプラスチックス焼結体を用いた真空チャックは
1部分的に支持剛性を変えることにより被吸着物の加工
後の形状精度をより優れたものとすることができた。さ
らに、被接着性を有しないプラスチックス材料であって
も、プラスチックス焼結体の気孔の大きさと気孔率を調
節することにより2接着剤が気孔に侵入して、投錨効果
を発揮し、真空チャックのベース板に接着することがで
きる。このため、耐水、耐油、耐溶剤性の優れたプラス
チックス焼結材料を使用でき、吸着面の形状精度を長期
間維持できる。
[Operations and Effects] The vacuum chuck using the plastic sintered body of the present invention was able to improve the accuracy of the shape of the object to be attracted after processing by partially changing the support rigidity. Furthermore, even if the plastic material does not have adhesive properties, by adjusting the size and porosity of the pores in the plastic sintered body, the two adhesives can enter the pores, exert an anchoring effect, and create a vacuum. Can be glued to the base plate of the chuck. Therefore, a plastic sintered material with excellent water resistance, oil resistance, and solvent resistance can be used, and the shape accuracy of the suction surface can be maintained for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例、第3図は従来例であ
り、それぞれ一部破断で示した斜視図である。 1・・・べ・−ス板、 2・・・真空孔、 3・・・真
空溝。 4・・・プラスチックス焼結体、 7・・・被吸着物、
8・・・硬質ウレタン樹脂、  9・・・真空溝。 第1図 第2図 第3図
1 and 2 show an embodiment of the present invention, and FIG. 3 shows a conventional example, each of which is a partially cutaway perspective view. 1...Base plate, 2...Vacuum hole, 3...Vacuum groove. 4... Plastic sintered body, 7... Adsorbed object,
8...Hard urethane resin, 9...Vacuum groove. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1)被吸着物に対する支持剛性を部分的に変化させた、
連続気孔をもつプラスチックス焼結体を吸着面としてな
ることを特徴とする真空チャック。 2)プラスチックス焼結体の連続気孔に別なプラスチッ
クスを部分的に含浸固化させ、投錨効果により被吸着性
を改良した吸着面をもつ請求項1に記載の真空チャック
[Claims] 1) partially changing the support rigidity for the adsorbed object;
A vacuum chuck characterized by a suction surface made of a sintered plastic body with continuous pores. 2) The vacuum chuck according to claim 1, wherein the continuous pores of the plastic sintered body are partially impregnated with another plastic and solidified, and the vacuum chuck has an adsorption surface whose adsorption property is improved by an anchoring effect.
JP1120505A 1989-05-16 1989-05-16 Vacuum chuck Pending JPH02303744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1120505A JPH02303744A (en) 1989-05-16 1989-05-16 Vacuum chuck

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120505A JPH02303744A (en) 1989-05-16 1989-05-16 Vacuum chuck

Publications (1)

Publication Number Publication Date
JPH02303744A true JPH02303744A (en) 1990-12-17

Family

ID=14787859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120505A Pending JPH02303744A (en) 1989-05-16 1989-05-16 Vacuum chuck

Country Status (1)

Country Link
JP (1) JPH02303744A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156035A (en) * 1993-11-17 1995-06-20 Ckd Corp Adsorbing plate of vacuum chuck and manufacture thereof
US5695600A (en) * 1994-10-03 1997-12-09 Goin; Bobby Gene Vacuum table for decal weeding
JP2005199380A (en) * 2004-01-15 2005-07-28 Fujikura Rubber Ltd Buffer material for sucking and holding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07156035A (en) * 1993-11-17 1995-06-20 Ckd Corp Adsorbing plate of vacuum chuck and manufacture thereof
US5695600A (en) * 1994-10-03 1997-12-09 Goin; Bobby Gene Vacuum table for decal weeding
JP2005199380A (en) * 2004-01-15 2005-07-28 Fujikura Rubber Ltd Buffer material for sucking and holding

Similar Documents

Publication Publication Date Title
US4663890A (en) Method for machining workpieces of brittle hard material into wafers
US5951374A (en) Method of polishing semiconductor wafers
KR101267461B1 (en) Multifunction abrasive tool with hybrid bond
EP0454362B1 (en) Backing pad and method of forming the backing pad by precision surface machining
JPS63210148A (en) Plastic sinter for vacuum chuck
JPH0426982B2 (en)
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
JPS6224964A (en) Double polishing working method of discoid type workpiece and discoid carrier
CN101500755A (en) Grindstone
CN1169654C (en) Multilayer retaining ring for chemical mechanical polishing
JPH02303744A (en) Vacuum chuck
WO2010119606A1 (en) Method of preparing polishing head and polishng apparatus
JP2001341042A (en) Vacuum chuck and method for manufacturing the same
JPH0265974A (en) Super abrasive grain vitrified grindstone having ceramic sintered holding body part
JPH0825213A (en) Polishing surface plate for lapping device
JP2010209371A (en) Carbon film coated member, method for forming carbon film, and cmp pad conditioner
JP2007180102A (en) Suction body and manufacturing method thereof
JP3239048U (en) Processing equipment for crystals
JPS59166464A (en) Polishing surface plate and method of manufacturing it
JP4202703B2 (en) Polishing equipment
JPH09180389A (en) Magnetic head slider production device and magnetic head slider production
JPH08174395A (en) Manufacture of high flat glass base plate
JPS6299064A (en) Mirror-surface polishing for metal and polishing surface plate used therefor
JP3047151B2 (en) Grinding wheel and method of manufacturing the same
JPH1044027A (en) Double lapping machine and its manufacture