JPH02302436A - Method for producing polyarylene sulfide - Google Patents
Method for producing polyarylene sulfideInfo
- Publication number
- JPH02302436A JPH02302436A JP1122933A JP12293389A JPH02302436A JP H02302436 A JPH02302436 A JP H02302436A JP 1122933 A JP1122933 A JP 1122933A JP 12293389 A JP12293389 A JP 12293389A JP H02302436 A JPH02302436 A JP H02302436A
- Authority
- JP
- Japan
- Prior art keywords
- water
- temperature
- amount
- mol
- reaction mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 title claims description 12
- 229920000412 polyarylene Polymers 0.000 title claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 78
- 239000011541 reaction mixture Substances 0.000 claims description 18
- -1 alkali metal hydrosulfide Chemical class 0.000 claims description 17
- 229910052783 alkali metal Inorganic materials 0.000 claims description 12
- 238000003756 stirring Methods 0.000 claims description 11
- 150000001875 compounds Chemical class 0.000 claims description 9
- 150000003857 carboxamides Chemical class 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 239000002798 polar solvent Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 4
- 239000007791 liquid phase Substances 0.000 claims description 4
- 230000036571 hydration Effects 0.000 claims description 2
- 238000006703 hydration reaction Methods 0.000 claims description 2
- 239000011343 solid material Substances 0.000 claims 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 55
- 238000006116 polymerization reaction Methods 0.000 description 50
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 33
- 229920000642 polymer Polymers 0.000 description 25
- 238000000034 method Methods 0.000 description 20
- 239000007789 gas Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 13
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 239000002002 slurry Substances 0.000 description 9
- 239000004734 Polyphenylene sulfide Substances 0.000 description 8
- 230000018044 dehydration Effects 0.000 description 8
- 238000006297 dehydration reaction Methods 0.000 description 8
- 229920000069 polyphenylene sulfide Polymers 0.000 description 8
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 230000000379 polymerizing effect Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- IHYNKGRWCDKNEG-UHFFFAOYSA-N n-(4-bromophenyl)-2,6-dihydroxybenzamide Chemical compound OC1=CC=CC(O)=C1C(=O)NC1=CC=C(Br)C=C1 IHYNKGRWCDKNEG-UHFFFAOYSA-N 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229940117389 dichlorobenzene Drugs 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- RELMFMZEBKVZJC-UHFFFAOYSA-N 1,2,3-trichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1Cl RELMFMZEBKVZJC-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 101100023124 Schizosaccharomyces pombe (strain 972 / ATCC 24843) mfr2 gene Proteins 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 229920006158 high molecular weight polymer Polymers 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000002954 polymerization reaction product Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 238000006748 scratching Methods 0.000 description 2
- 230000002393 scratching effect Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052979 sodium sulfide Inorganic materials 0.000 description 2
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- GBDZXPJXOMHESU-UHFFFAOYSA-N 1,2,3,4-tetrachlorobenzene Chemical compound ClC1=CC=C(Cl)C(Cl)=C1Cl GBDZXPJXOMHESU-UHFFFAOYSA-N 0.000 description 1
- QEPTXDCPBXMWJC-UHFFFAOYSA-N 1,2,3-trichloronaphthalene Chemical compound C1=CC=C2C(Cl)=C(Cl)C(Cl)=CC2=C1 QEPTXDCPBXMWJC-UHFFFAOYSA-N 0.000 description 1
- RIWAPWDHHMWTRA-UHFFFAOYSA-N 1,2,3-triiodobenzene Chemical compound IC1=CC=CC(I)=C1I RIWAPWDHHMWTRA-UHFFFAOYSA-N 0.000 description 1
- WQONPSCCEXUXTQ-UHFFFAOYSA-N 1,2-dibromobenzene Chemical compound BrC1=CC=CC=C1Br WQONPSCCEXUXTQ-UHFFFAOYSA-N 0.000 description 1
- QGZAUMUFTXCDBD-UHFFFAOYSA-N 1,2-dibromonaphthalene Chemical compound C1=CC=CC2=C(Br)C(Br)=CC=C21 QGZAUMUFTXCDBD-UHFFFAOYSA-N 0.000 description 1
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 1
- ZPQOPVIELGIULI-UHFFFAOYSA-N 1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1 ZPQOPVIELGIULI-UHFFFAOYSA-N 0.000 description 1
- AMCBMCWLCDERHY-UHFFFAOYSA-N 1,3-dichloronaphthalene Chemical compound C1=CC=CC2=CC(Cl)=CC(Cl)=C21 AMCBMCWLCDERHY-UHFFFAOYSA-N 0.000 description 1
- IBRQUKZZBXZOBA-UHFFFAOYSA-N 1-chloro-3-(3-chlorophenyl)sulfonylbenzene Chemical compound ClC1=CC=CC(S(=O)(=O)C=2C=C(Cl)C=CC=2)=C1 IBRQUKZZBXZOBA-UHFFFAOYSA-N 0.000 description 1
- FYELSNVLZVIGTI-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-5-ethylpyrazol-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C=NN(C=1CC)CC(=O)N1CC2=C(CC1)NN=N2 FYELSNVLZVIGTI-UHFFFAOYSA-N 0.000 description 1
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- YTBRNEUEFCNVHC-UHFFFAOYSA-N 4,4'-dichlorobiphenyl Chemical group C1=CC(Cl)=CC=C1C1=CC=C(Cl)C=C1 YTBRNEUEFCNVHC-UHFFFAOYSA-N 0.000 description 1
- GPAPPPVRLPGFEQ-UHFFFAOYSA-N 4,4'-dichlorodiphenyl sulfone Chemical compound C1=CC(Cl)=CC=C1S(=O)(=O)C1=CC=C(Cl)C=C1 GPAPPPVRLPGFEQ-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- ZWXPDGCFMMFNRW-UHFFFAOYSA-N N-methylcaprolactam Chemical compound CN1CCCCCC1=O ZWXPDGCFMMFNRW-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 150000001340 alkali metals Chemical group 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- IBSGAWQJFSDRBJ-UHFFFAOYSA-M cesium sulfanide Chemical compound [SH-].[Cs+] IBSGAWQJFSDRBJ-UHFFFAOYSA-M 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-M hydrosulfide Chemical compound [SH-] RWSOTUBLDIXVET-UHFFFAOYSA-M 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- HXQGSILMFTUKHI-UHFFFAOYSA-M lithium;sulfanide Chemical compound S[Li] HXQGSILMFTUKHI-UHFFFAOYSA-M 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- ZOCLAPYLSUCOGI-UHFFFAOYSA-M potassium hydrosulfide Chemical compound [SH-].[K+] ZOCLAPYLSUCOGI-UHFFFAOYSA-M 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical group O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- LXOXXUIVMOYGST-UHFFFAOYSA-M rubidium(1+);sulfanide Chemical compound [SH-].[Rb+] LXOXXUIVMOYGST-UHFFFAOYSA-M 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はポリアリーレンスルフィドの製造方法に関する
ものである。詳しくは、ガス発生量が少なくかつ高分子
量のポリアリーレンスルフィドの製造方法に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polyarylene sulfide. Specifically, the present invention relates to a method for producing polyarylene sulfide that generates a small amount of gas and has a high molecular weight.
[従来の技術及びその課題]
ポリフェニレンスルフィドを代表とするポリアリーレン
スルフィドは特公昭45−3368号明細書に開示され
ている如き方法で製造されている。即ち、N−メチルピ
ロリドン等の有機アミド掻性溶媒中でp−ジクロルベン
ゼンと硫化ナトリウムとを反応させる方法によって製造
されている。この方法で得られるポリフェニレンスルフ
ィドは極めて低重合度であり、このままでは使用に適さ
ない、工業的には、この低重合度ポリマーを空気中で加
熱し、酸化架橋させ、三次元架橋により高分子量化して
射出成形用などの実用用途に使用されている。[Prior Art and its Problems] Polyarylene sulfide, typified by polyphenylene sulfide, is produced by a method as disclosed in Japanese Patent Publication No. 45-3368. That is, it is produced by a method in which p-dichlorobenzene and sodium sulfide are reacted in an organic amide scratching solvent such as N-methylpyrrolidone. The polyphenylene sulfide obtained by this method has an extremely low degree of polymerization and is not suitable for use as it is.Industrially, this low degree of polymerization is heated in air, oxidatively crosslinked, and the molecular weight is increased by three-dimensional crosslinking. It is used for practical purposes such as injection molding.
又、上記原料を用いて重合反応により、高重合度化した
ポリアリーレンスルフィドを得る方法も知られている。Also known is a method of obtaining polyarylene sulfide with a high degree of polymerization through a polymerization reaction using the above-mentioned raw materials.
例えば、特公昭63−33775号明細書に示されてい
る如く、前段重合反応終了後に系内に水を添加すると共
に、後段重合反応を行うことにより、高分子量ポリマー
が得られる。しかしながら、この重合工程で得られたポ
リマーは、成形加工時にガス発生量が多く、成形品中に
空孔が残り、成形品の強度低下、成形品のひび割れなど
の問題を有しており、あるいは発生ガスによる金型の腐
食などの問題もあることがわかった。For example, as shown in Japanese Patent Publication No. 63-33775, a high molecular weight polymer can be obtained by adding water to the system after the first stage polymerization reaction and carrying out the second stage polymerization reaction. However, the polymer obtained through this polymerization process has problems such as generating a large amount of gas during molding, leaving voids in the molded product, reducing the strength of the molded product, and cracking the molded product. It was also found that there were problems such as corrosion of the mold due to the generated gas.
また、溶融時の粘度定性にも問題があるため、粘度低下
による射出成形機のノズルからの鼻タレ現象や射出成形
機内での増粘などの問題を有して↓)ることが明らかに
なった。In addition, it has become clear that there are problems with the viscosity quality during melting, resulting in problems such as dripping from the nozzle of the injection molding machine due to the drop in viscosity and thickening inside the injection molding machine (↓). Ta.
本発明は、硫黄源として少なくとも一種のアルカリ金属
水硫化物を使用して成形加工時のガス発生量の少ない高
分子量のポリアリーレンスルフィドを製造する方法を提
供することにある。An object of the present invention is to provide a method for producing a high molecular weight polyarylene sulfide that generates a small amount of gas during molding using at least one alkali metal hydrosulfide as a sulfur source.
(課題を解決する手段〕
本発明は、ポリアリーレンスルフィドの製造に、於いて
、
(A)少なくとも一種のアルカリ金属水硫化物、少なく
とも一種のアルカリ金属水酸化物、及び少なくとも一種
のポリハロ芳香族化合物とを少なくとも一種の有機アミ
ド極性溶媒の存在下で、1000C〜225℃10,1
〜50時間反応させる第一工程、
(B)有機アミド極性溶媒100重量部あたり、水和水
を含めた水5〜40重量部が存在する状態となるように
水を添加すると共に、150℃〜290℃の範囲内であ
り、かつ第一工程時より15℃以上高い温度まで昇温し
て0.5〜20時間反応を維持する第二工程
の二段階で行なうことを特徴とするポリアリーレンスル
フィドの製造方法を提供する。(Means for Solving the Problems) The present invention provides, in the production of polyarylene sulfide, (A) at least one alkali metal hydrosulfide, at least one alkali metal hydroxide, and at least one polyhaloaromatic compound. and at 1000C to 225C in the presence of at least one organic amide polar solvent at 10,1
The first step of reacting for ~50 hours, (B) adding water so that 5 to 40 parts by weight of water including hydration water is present per 100 parts by weight of the organic amide polar solvent, and at 150 ° C. A polyarylene sulfide characterized by being carried out in two steps: a second step in which the temperature is within the range of 290°C and the temperature is raised to a temperature 15°C or more higher than in the first step and the reaction is maintained for 0.5 to 20 hours. Provides a manufacturing method.
本発明で用いるアルカリ金属水硫化物としては、水硫化
リチウム、水硫化ナトリウム、水硫化カリウム、水硫化
ルビジウム、水硫化セシウムおよびこれらの混合物が含
まれる。かかる水硫化アルカリ金属化合物は水和物およ
び/または水性混合物あるいは無水の形で用いることが
でき、形状にも制限はなく、結晶、フレーク状、溶液状
のいずれでもよい。かかる水硫化アルカリ金属化合物と
しては水硫化ナトリウムが好ましい。The alkali metal bisulfides used in the present invention include lithium bisulfide, sodium bisulfide, potassium bisulfide, rubidium bisulfide, cesium bisulfide, and mixtures thereof. Such an alkali metal hydrosulfide compound can be used in the form of a hydrate and/or an aqueous mixture or an anhydrous form, and there are no restrictions on the shape, and it may be in the form of crystals, flakes, or solutions. As such an alkali metal hydrosulfide compound, sodium hydrosulfide is preferable.
本発明で用いるアルカリ金属水酸化物としては、水酸化
カリウム、水酸化ナトリウム、水酸化リチウム、水酸化
ルビジウム、水酸化セシウムおよびこれらの混合物が挙
げられ、水酸化ナトリウムが好ましい。Examples of the alkali metal hydroxide used in the present invention include potassium hydroxide, sodium hydroxide, lithium hydroxide, rubidium hydroxide, cesium hydroxide, and mixtures thereof, with sodium hydroxide being preferred.
本発明で用いるアルカリ金属水酸化物の使用量は、通常
、アルカリ金属水硫化物1モルに対して0.7〜1.3
モル、好ましくは0.9〜1.1モルの範囲である。The amount of alkali metal hydroxide used in the present invention is usually 0.7 to 1.3 per mole of alkali metal hydrosulfide.
mol, preferably in the range of 0.9 to 1.1 mol.
本発明で用いるポリハロ芳香族化合物は芳香核に直接結
合した2個以上のハロゲン原子を有するハロゲン化芳香
族化合物であり、具体的にはp−ジクロルベンゼン、m
−ジクロルベンゼン、0−ジクロルベンゼン、トリクロ
ルベンゼン、テトラクロルベンゼン、ジクロルナフタレ
ン、トリクロルナフタレン、ジブロムベンゼン、トリク
ロルベンゼン、ジブロムナフタレン、ジクロルベンゼン
、トリヨードベンゼン、ジクロルジフェニルスルホン、
ジブロムジフェニルスルホン、ジクロルヘンシフエノン
、ジブロムベンゾフェノン、ジクロルジフェニルエーテ
ル、ジブロムジフェニルエーテル、ジクロルジフェニル
スルフィド、ジブロムジフェニルスルフィド、ジクロル
ビフェニル、ジブロムビフェニル等およびこれらの混合
物が挙げられる。通常はジハロ芳香族化合物が使用され
、好適にはp−ジクロルベンゼンが使用される。尚、分
岐構造によるポリマーの粘度増大を図るために、1分子
中に3個以上のハロゲン置換基をもつポリハロ芳香族化
合物を少量ジハロ芳香族化合物と併用させてもよい。The polyhaloaromatic compound used in the present invention is a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic nucleus, and specifically, p-dichlorobenzene, m
-dichlorobenzene, 0-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dichloronaphthalene, trichloronaphthalene, dibromobenzene, trichlorobenzene, dibromonaphthalene, dichlorobenzene, triiodobenzene, dichlorodiphenylsulfone,
Examples thereof include dibromidiphenyl sulfone, dichlorhensiphenone, dibrombenzophenone, dichlordiphenyl ether, dibromidiphenyl ether, dichlordiphenyl sulfide, dibromidiphenyl sulfide, dichlorbiphenyl, dibrombiphenyl, and mixtures thereof. Usually dihaloaromatic compounds are used, preferably p-dichlorobenzene. Incidentally, in order to increase the viscosity of the polymer due to the branched structure, a polyhaloaromatic compound having three or more halogen substituents in one molecule may be used in combination with a small amount of a dihaloaromatic compound.
本発明で用いる有機アミド極性溶媒としてはN。The organic amide polar solvent used in the present invention is N.
N−ジメチルホルムアミド、N、N−ジメチルアセトア
ミド、N−メチル−2−ピロリドン、N−エチル−2−
ピロリドン、N−メチル−ε−カプロラクタム、ヘキサ
メチルホスホルアミド等あるいはこれらの混合物より選
択される。これらの溶媒のうちではN−メチル−2−ピ
ロリドン(NMP)が特に好ましい。N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-
It is selected from pyrrolidone, N-methyl-ε-caprolactam, hexamethylphosphoramide, etc., or a mixture thereof. Among these solvents, N-methyl-2-pyrrolidone (NMP) is particularly preferred.
本発明で用いるポリハロ芳香族化合物の使用量は、アル
カリ金属水硫化物に対するモル比で好ましくは0.80
〜1.30の範囲で、より好ましくは0.85〜1.2
0の範囲である。また、有機アミド掻性溶媒の使用量は
アルカリ金属水硫化物に対するモル比で1.5〜30の
範囲で、好ましくは2.0〜IOの範囲である。The amount of the polyhaloaromatic compound used in the present invention is preferably 0.80 in molar ratio to the alkali metal hydrosulfide.
~1.30, more preferably 0.85~1.2
It is in the range of 0. The amount of the organic amide scratching solvent to be used is in a molar ratio of 1.5 to 30, preferably 2.0 to IO, relative to the alkali metal hydrosulfide.
本発明の方法による第一工程の重合反応に於いて、系内
の水の間は、アルカリ金属水硫化物1モルあたり2.0
モル以下である必要がある。系内の水の量がアルカリ金
属水硫化物1モルあたり、2.0モルを越える場合には
、重合反応時の溶媒の分解やポリマー鎖の伸長の阻害等
が起きやすく好ましくない。In the first step of the polymerization reaction according to the method of the present invention, the amount of water in the system is 2.0 per mole of alkali metal hydrosulfide.
Must be less than mol. If the amount of water in the system exceeds 2.0 moles per mole of alkali metal hydrosulfide, this is not preferable because decomposition of the solvent during the polymerization reaction and inhibition of polymer chain elongation are likely to occur.
本発明の方法に於いて、第一工程の重合反応温度は使用
するモノマーの種類によって異なるが、一般に1000
C〜255℃であり、例えば、水硫化ナトリウムとp−
ジクロルベンゼンの組合せの場合、好ましくは190℃
〜230℃である。圧力は重合溶媒および重合モノマー
であるポリハロ芳香族化合物を実質的に液相に保持する
ような範囲内であるべきであり、使用する七ツマ−の種
類によって異なるが、一般にOkg/cs” 〜200
kg/cm”であり、例えば、水硫化ナトリウムとp
−ジクロルベンゼンの組合せの場合、好ましくは0、5
kg/cab” 〜100 kg/cm”の範囲より
選択される。In the method of the present invention, the polymerization reaction temperature in the first step varies depending on the type of monomer used, but generally 1000
C to 255°C, for example, sodium hydrosulfide and p-
In case of dichlorobenzene combination, preferably 190°C
~230°C. The pressure should be within a range that substantially maintains the polymerization solvent and the polyhaloaromatic compound as the polymerization monomer in the liquid phase, and generally varies depending on the type of 7-mer used, but is generally between 200 kg/cs'' and 200 kg/cs.
kg/cm”, for example, sodium hydrosulfide and p
- in the case of dichlorobenzene combinations, preferably 0,5
kg/cab" to 100 kg/cm".
反応時間は温度および圧力によって異なるが、一般に0
.1時間ないし50時間の範囲内であり、例えば、水硫
化ナトリウムとp−ジクロルベンゼンの組合せの場合、
望ましくは1時間ないし20時間であり、好ましくは不
活性ガス雰囲気下で加熱することにより製造されうる。Reaction time varies depending on temperature and pressure, but is generally 0.
.. Within the range of 1 hour to 50 hours, for example, in the case of a combination of sodium hydrosulfide and p-dichlorobenzene,
The heating time is desirably 1 hour to 20 hours, and can be produced by heating preferably under an inert gas atmosphere.
各成分の混合の順序には特に制限はなく、第一工程に際
して上記成分を部分的に少量ずつあるいは一時に添加す
ることにより行なわれる。There is no particular restriction on the order in which the components are mixed, and the mixing may be carried out by adding the above-mentioned components in portions in small amounts or all at once during the first step.
本発明で用いる水の添加量は第一工程終了時の反応系内
の溶媒に溶解する範囲内で使用することが好ましく、溶
解限度以上に使用しても分離を促進しない。水の添加量
は有機アミド極性溶媒に対して、5〜40重量%、好ま
しくは5〜20重量%の範囲である。The amount of water used in the present invention is preferably within a range that dissolves in the solvent in the reaction system at the end of the first step, and separation will not be promoted even if it is used in an amount exceeding the solubility limit. The amount of water added is in the range of 5 to 40% by weight, preferably 5 to 20% by weight, based on the organic amide polar solvent.
水の添加方法は特に限定しないが、水単独または重合溶
媒にて水を分散または溶解し、添加してもよい。The method of adding water is not particularly limited, but water may be added alone or after water is dispersed or dissolved in a polymerization solvent.
上記の水の添加時期は第一工程終了後であり、水を添加
すると共に、第二工程重合反応時の温度まで昇温して、
反応を維持する。The above water addition time is after the first step, and while adding water, the temperature is raised to the temperature during the second step polymerization reaction.
Stay responsive.
ここで述べる水の添加時期は、第二工程重合反応時の温
度に昇温する前、昇温途中、あるいは昇温後のいずれの
場合であってもよい。The timing of adding water mentioned here may be before the temperature is raised to the temperature for the second step polymerization reaction, during the temperature rise, or after the temperature rise.
本発明の方法に於いて、第二工程の重合反応温度は使用
するモノマーの種類によって異なるが、一般に150℃
〜290℃の範囲内、かつ第一工程時より15℃以上高
い温度であり、例えば、水硫化ナトリウムとp−ジクロ
ルベンゼンの組合せの場合、好ましくは230℃〜27
0℃である。In the method of the present invention, the polymerization reaction temperature in the second step varies depending on the type of monomer used, but is generally 150°C.
The temperature is within the range of ~290°C and 15°C or more higher than that in the first step, for example, in the case of a combination of sodium hydrosulfide and p-dichlorobenzene, it is preferably 230°C ~ 27°C.
It is 0°C.
圧力は、反応物を実質的に液相に保持するような範囲で
あるべきであり、使用するモノマーによって異なるが、
一般に0.5 kg/cs+” 〜300 kg/cm
”の範囲内であり、例えば、水硫化ナトリウムとP−ジ
クロルベンゼンの組合せの場合、好ましくは2、5 k
g/cm2〜100 kg/ cm”である。反応時間
は、温度および圧力によって異なるが、一般に0.5時
間ないし20時間の範囲内であり、好ましくは不活性ガ
ス雰囲気下で加熱することにより製造されうる。The pressure should be in a range that keeps the reactants substantially in the liquid phase and will vary depending on the monomers used;
Generally 0.5 kg/cs+" ~ 300 kg/cm
For example, in the case of a combination of sodium hydrosulfide and P-dichlorobenzene, it is preferably within the range of 2.5 k
g/cm2 to 100 kg/cm".The reaction time varies depending on the temperature and pressure, but is generally within the range of 0.5 to 20 hours, and is preferably produced by heating under an inert gas atmosphere. It can be done.
本発明の方法に於いて重合反応は一般に重合反応条件以
下の温度へ降温することにより終了する。In the method of the present invention, the polymerization reaction is generally terminated by lowering the temperature to a temperature below the polymerization reaction conditions.
たとえば実質的に溶媒が液相を維持している重合反応生
成物を常圧・乃至は減圧した容器にフラッシュ取出し同
時に降温する方法が好ましい。また重合反応容器ごと冷
却し重合反応を終了せしめる方法もある。For example, it is preferable to flash the polymerization reaction product, in which the solvent substantially maintains a liquid phase, into a container under normal pressure or reduced pressure, and simultaneously lower the temperature. There is also a method of cooling the entire polymerization reaction vessel to complete the polymerization reaction.
本発明の方法において、重合反応途中あるいは重合終了
時に二酸化炭素を添加することも好ましく、これはポリ
マーの分解を防止し、生成ポリマーの高分子量化に寄与
するのみならず、N−メチルピロリドンの如き重合溶媒
の分解防止にも効果がある。In the method of the present invention, it is also preferable to add carbon dioxide during the polymerization reaction or at the end of the polymerization reaction, which not only prevents decomposition of the polymer and contributes to increasing the molecular weight of the resulting polymer, but also It is also effective in preventing decomposition of polymerization solvents.
更に、本発明の方法において低分子量アリーレンスルフ
ィドポリマーの存在下で脱水および重合を実施すること
も可能である。使用しうる低分子量ポリマーの代表例と
しては固有粘度〔η〕が0.2以下のポリフェニレンス
ルフィドがあり、その使用層はアルカリ金属水硫化物1
モルに対して0、O1〜30グラム、好ましくは0.0
5〜20グラムとなる範囲である。Furthermore, it is also possible to carry out the dehydration and polymerization in the presence of low molecular weight arylene sulfide polymers in the process of the invention. A typical example of a low molecular weight polymer that can be used is polyphenylene sulfide with an intrinsic viscosity [η] of 0.2 or less, and the layer used is alkali metal hydrosulfide 1
0, O1 to 30 grams per mole, preferably 0.0
It is in the range of 5 to 20 grams.
本発明の方法によって得られるアリーレンスルフィドポ
リマーは通常の方法、例えば、重合反応終了後反応混合
物のが過、引続く水洗により、又は反応混合物の水によ
る希釈、引続く濾過および水洗する方法、あるいは溶媒
を常圧又は減圧にて蒸留回収してから水洗および濾過す
ることによって、反応混合物から分離させることができ
る。The arylene sulfide polymer obtained by the method of the present invention can be produced by a conventional method, for example, after the completion of the polymerization reaction, the reaction mixture is filtered and then washed with water, or the reaction mixture is diluted with water, then filtered and washed with water, or a solvent is used. It can be separated from the reaction mixture by distilling and recovering it at normal pressure or reduced pressure, followed by washing with water and filtration.
本発明の方法によって製造されるアリーレンスルフィド
ポリマーの具体例として、代表的にはポリフェニレンス
ルフィドが挙げられ、他に位を有するアリーレンスルフ
ィドポリマーが挙げられる。もちろんこれらのポリマー
の共重合体も挙げられる。これらのアリーレンスルフィ
ドポリマーは射出成形用、圧縮成形用、フィルム・繊維
・シート・管・チューブなどの押出成形品およびブロー
成形品、トランジスター、コンデンサー、IC等の電子
部品の封止に用いることができる。Specific examples of arylene sulfide polymers produced by the method of the present invention typically include polyphenylene sulfide, including arylene sulfide polymers having other positions. Of course, copolymers of these polymers can also be mentioned. These arylene sulfide polymers can be used for injection molding, compression molding, extrusion molded products such as films, fibers, sheets, tubes, and blow molded products, and for sealing electronic components such as transistors, capacitors, and ICs. .
また、必要ならばこのポリマーに充填剤、顔料、難燃剤
、安定化剤および他のポリマーを配合することも好適で
ある。例えば、機械強度および耐熱性を向上させるため
に、ガラス繊維あるいは炭素繊維を配合することもでき
る。It is also suitable to incorporate fillers, pigments, flame retardants, stabilizers and other polymers into this polymer if necessary. For example, glass fiber or carbon fiber may be added to improve mechanical strength and heat resistance.
〔実施例] 以下本発明の方法を実施例に従って説明する。〔Example] The method of the present invention will be explained below according to examples.
215リアリーレンスルフイドのメルトフローレート(
以下MFRと略す)は、315.6°c(600°F)
、5kgの荷重下に予熱時間5分での溶融ポリマーが規
定のオリフィス(j2:8.00■−1R:9.50m
m、r : 2.095mta)を通して流出する速
度を表わした数値を言い、式:
L:ピストンが規定距離移動するに要した時間(秒)
Wet秒間に流出した試料重量(g)
に従い算出した値である。215 Really Renesulfide Melt Flow Rate (
(hereinafter abbreviated as MFR) is 315.6°c (600°F)
, under a load of 5 kg with a preheating time of 5 minutes, the molten polymer was
(m, r: 2.095mta) is a numerical value that represents the speed at which the sample flows out through the following formula: L: Time required for the piston to move a specified distance (seconds) Weight of sample flowing out in wet seconds (g) Value calculated according to the formula: It is.
溶融時の粘度安定性(MFR2015)は、予熱時間2
0分でのMFR(VFR20)を測定し、予熱時間5分
のMFRとの粘度変化を定量したものであり、弐:
M I′I N
に従い算出した値である。The viscosity stability (MFR2015) during melting is determined by preheating time 2.
The MFR (VFR20) at 0 minutes was measured, and the viscosity change from the MFR at a preheating time of 5 minutes was quantified, and the value was calculated according to 2: M I'I N .
ガス発生量は、図1に示す如(ASTM型メルトインデ
クサ−を使用する測定方法を用い、315.6℃(60
0°F)、345gの荷重下に予熱時間二分後8分間に
発生するガス量を表わした数値を言い、式:
1:荷重が上部移動した距離(mm)
W:測定に使用した試料重量(g)
に従い算出した値である。The amount of gas generated was determined as shown in Figure 1 (using the measurement method using an ASTM type melt indexer,
0°F), the amount of gas generated in 8 minutes after 2 minutes of preheating under a load of 345 g, and is expressed by the formula: 1: Distance the load has moved upward (mm) W: Weight of the sample used for measurement ( g) This is the value calculated according to.
(実施例1〕
底弁を有する撹拌機付4.51オートクレーブに水硫化
ナトリウム1.08水和物335.3 g (NaSH
換算で4.271モル)を仕込み、次いで、N M P
(1500gを仕込み、さらに48.0%水酸化ナト
リウム水溶液327.9 g (NaOH喚算で3.9
35モル)を仕込み、N2雰囲気下に200℃まで2時
間かけ°ζ約150rpmで攪拌しながら徐々に昇温し
、水及び若干のNMPの混合物を留出させて最終的に留
出分245.9gを得た。本留出分中の水分を定量した
ところ、243.5 gを含み(理論留出水量249.
7g) 、脱水工程終了時の系内残存水量は0.08モ
ル対Na5H1モルであった。(Example 1) 335.3 g of sodium bisulfide 1.08 hydrate (NaSH
(4.271 mol in terms of conversion), then N M P
(Prepare 1500g, and add 327.9g of 48.0% sodium hydroxide aqueous solution (3.9g including NaOH)
35 mol) was charged, and the temperature was gradually raised to 200°C under N2 atmosphere for 2 hours while stirring at about 150 rpm, and a mixture of water and some NMP was distilled out, resulting in a final distillate of 245. 9g was obtained. When the water content in the main distillate was determined, it contained 243.5 g (theoretical amount of distilled water was 249.5 g).
7g), the amount of water remaining in the system at the end of the dehydration step was 0.08 mol to 1 mol of Na5H.
次いで、この系にp−ジクロルヘンゼン646.6g
(4,398モル)及びNMP 348.4gを加え、
220℃で4.5時間重合させた後、水79.0g(全
水量としてH20/ NMP = 8.7 wt%)を
添加し、255℃に昇温して3時間重合させた。重合反
応終了時の内圧は13.2 kg/cab”であった。Next, 646.6 g of p-dichlorohenzene was added to this system.
(4,398 mol) and 348.4 g of NMP were added,
After polymerizing at 220°C for 4.5 hours, 79.0 g of water (H20/NMP = 8.7 wt% as a total amount of water) was added, the temperature was raised to 255°C, and polymerization was performed for 3 hours. The internal pressure at the end of the polymerization reaction was 13.2 kg/cab''.
重合反応は底弁を経由して202の常圧のステンレス容
器にフラッシュ移槽し、反応混合物スラリーの温度を1
00〜120℃に降温することにより終了せしめた。The polymerization reaction was flash transferred via the bottom valve to a stainless steel container at normal pressure of 202, and the temperature of the reaction mixture slurry was lowered to 1.
The process was terminated by lowering the temperature to 00-120°C.
反応混合物スラリーを常法に従い多量の温水で希釈後、
水洗洗浄、乾燥して微褐色のポリフェニレンスルフィド
429.6g (収率93.2%)を得た。After diluting the reaction mixture slurry with a large amount of hot water according to a conventional method,
After washing with water and drying, 429.6 g (yield: 93.2%) of slightly brown polyphenylene sulfide was obtained.
本ポリマーのMFRは182(g/10分)、M F
R2015は93%であった。The MFR of this polymer is 182 (g/10 min), M F
R2015 was 93%.
ガス発生量は49.6(μl / g )であった。The amount of gas generated was 49.6 (μl/g).
〔実施例2〜7及び比較例1〜2〕
水硫化ナトリウムに対するNMPの使用量と水の添加量
を変更する以外は実施例1と同様にして製造した。それ
らの使用量は物性とともに表1に記載する。[Examples 2 to 7 and Comparative Examples 1 to 2] They were produced in the same manner as in Example 1 except that the amount of NMP used and the amount of water added to sodium hydrosulfide were changed. The amounts used are listed in Table 1 along with their physical properties.
明らかに第二工程のはじめに水を添加して重合を行なっ
た。実施例2〜7の方が水無添加の比較例1〜2よりも
分子量がアップし、また溶融時の粘度安定性も高いこと
が判る。Apparently water was added at the beginning of the second step to carry out the polymerization. It can be seen that Examples 2 to 7 have higher molecular weights than Comparative Examples 1 to 2 in which no water is added, and also have higher viscosity stability during melting.
またガス発生量についても同様にして比較例よりも実施
例の方が大幅に低減していることが明らかである。It is also clear that the amount of gas generated is also significantly lower in the example than in the comparative example.
〔実施例8〕
底弁を有する攪拌機付4.5℃オートクレーブに48.
0%水酸化ナトリウム水溶液327.9 g (Na
0111A算で3.935モル)を仕込み、次いでN
M P 1500gを仕込み、さらに水硫化ナトリウム
1.08水和物335.3 g (NaS)I換算で
4.271モル)を仕込み、N2雰囲気下に160 ’
Cまで40分かけて約150rp+*で攪拌しながら徐
々に昇温し、水及び若干のNMPの混合物を留出させて
最終的に留出分228.9gを得た。本留出分中の水分
を定量としたところ、226.6 gを含み(理論留出
水量249.7g) 、脱水工程終了時の系内残存水量
は0.30モル対Na5H1モルであった。[Example 8] A 4.5°C autoclave equipped with a stirrer and a bottom valve was heated to 48°C.
327.9 g of 0% sodium hydroxide aqueous solution (Na
0111A (calculated as 3.935 mol), then N
1500 g of M P was charged, and 335.3 g of sodium hydrosulfide 1.08 hydrate (4.271 mol in terms of NaS)I) was charged, and the mixture was heated for 160' under N2 atmosphere.
The temperature was gradually raised to C over 40 minutes while stirring at about 150 rpm+*, and a mixture of water and a small amount of NMP was distilled out to finally obtain 228.9 g of distillate. When the water content in the main distillate was quantified, it contained 226.6 g (theoretical amount of distilled water: 249.7 g), and the amount of water remaining in the system at the end of the dehydration step was 0.30 mol to 1 mol of Na5H.
次いで、この系にp−ジクロルベンゼン646.6g
(4,398モル)及びNMP 348.4gを加え、
200℃で6時間重合させた後、水79.0g(全水量
として11□0/ NMP = 8.7 wL%)を添
加し、230℃に昇温して3時間重合させた。重合反応
終了時の内圧は9.2 kg/cm2であった。Next, 646.6 g of p-dichlorobenzene was added to this system.
(4,398 mol) and 348.4 g of NMP were added,
After polymerizing at 200°C for 6 hours, 79.0 g of water (11□0/NMP = 8.7 wL% as a total amount of water) was added, and the temperature was raised to 230°C and polymerization was performed for 3 hours. The internal pressure at the end of the polymerization reaction was 9.2 kg/cm2.
これより後の処理は実施例1と同様である。The subsequent processing is the same as in the first embodiment.
得られたポリマーの物性は、表2に実施例9、比較例3
〜6の結果と併記する。The physical properties of the obtained polymers are shown in Table 2 for Example 9 and Comparative Example 3.
The results from 6 to 6 are also listed.
〔実施例9および比較例3〜6〕
第一工程重合温度と時間、および第二工程重合温度を変
更する以外は実施例8と同様にして製造した。それらの
条件は物性とともに表2に記載する。[Example 9 and Comparative Examples 3 to 6] Produced in the same manner as Example 8 except that the first step polymerization temperature and time and the second step polymerization temperature were changed. Those conditions are listed in Table 2 along with the physical properties.
第一工程重合温度と時間、特に温度が本重合反応におい
て重要であり、比較例3、比較例4に示すように本発明
の範囲以下の温度では重合反応が十分に進まず、また比
較例5、比較例6に示すように本請求範囲以上では、副
反応が起こっているため、ガス発生量が多くなり、他の
実施例・比較例に比べて異臭が感じられた。The first step polymerization temperature and time, especially the temperature, are important in the main polymerization reaction, and as shown in Comparative Examples 3 and 4, the polymerization reaction does not proceed sufficiently at temperatures below the range of the present invention, and Comparative Example 5 As shown in Comparative Example 6, since side reactions occurred above the claimed range, the amount of gas generated increased, and a strange odor was felt compared to other Examples and Comparative Examples.
p−ジクロルベンゼンの未反応率の分析は、重合反応生
成物の液分のガスクロマトグラフィーで行なった。The unreacted rate of p-dichlorobenzene was analyzed by gas chromatography of the liquid fraction of the polymerization reaction product.
とつ
〔比較例7〕
水の添加時期を第一工程終了後から第二工程終了直後に
変更する以外は実施例1と同様にして製造した。Comparative Example 7 A product was produced in the same manner as in Example 1, except that the timing of adding water was changed from after the first step to immediately after the second step.
重合反応後得られたポリマーは収量430.6 g(収
率93,2%) 、V F R1800(g/10分)
、MFR201598(%)であった、また、ガス発生
量は340.2 (μil/g)であった。The yield of the polymer obtained after the polymerization reaction was 430.6 g (yield 93.2%), V F R 1800 (g/10 min)
, MFR was 201598 (%), and the amount of gas generated was 340.2 (μil/g).
水の添加時期を第一工程終了後以外にした時は、分子量
が増大しておらず、またガス発生量が多くなることも判
る。It can be seen that when water is added at a time other than after the first step, the molecular weight does not increase and the amount of gas generated increases.
[実施例10]
底弁を有する攪拌機付4.51オートクレーブに水硫化
ナトリウム1.08水和物335.3 g (NaS
H換算で4.271モル)を仕込み、次いで48.0%
水酸化ナトリウム水溶液327.9 g (llaO
H換算で3.935モル)を仕込み、さらにNMP15
00gを仕込み、N2雰囲気下に200℃まで2時間か
けて約15Orpmで撹拌しながら徐々に昇温し、水及
び若干のNMPの混合物を留出させて最終的に留出分2
58.7gを得た0本留出分中の水分を定量したところ
、237.4 gを含み(理論留出水量249.7g)
、脱水工程終了時の系内残存水量は0.16モル対N
a5H1モルであった。[Example 10] 335.3 g of sodium bisulfide 1.08 hydrate (NaS
4.271 mol (calculated as H), then 48.0%
327.9 g of sodium hydroxide aqueous solution (llaO
3.935 mol (calculated as H), and further NMP15
00g was charged, and the temperature was gradually raised to 200°C under N2 atmosphere with stirring at about 15 Orpm over 2 hours, and a mixture of water and some NMP was distilled out, and finally distillate fraction 2
When the water content in the 0 distillate fraction obtained was 58.7g, it was determined that it contained 237.4g (theoretical distillate water amount: 249.7g).
, the amount of water remaining in the system at the end of the dehydration process is 0.16 mol vs. N
It was 1 mol of a5H.
次いで、この系にp−ジクロルベンゼン646.6g
(4,398モル)及びNMP 34B、4gを加え、
220℃で4.5時間重合させた後、水79.0g(全
水量としてHtO/ NMP = 8.7 wt%)を
添加し、255℃に昇温して3時間重合させた0重合反
応終了時の内圧は9.2kg/cm”であった。Next, 646.6 g of p-dichlorobenzene was added to this system.
(4,398 mol) and 4 g of NMP 34B were added,
After polymerizing at 220°C for 4.5 hours, 79.0 g of water (HtO/NMP = 8.7 wt% as total water amount) was added, the temperature was raised to 255°C, and polymerization was performed for 3 hours. 0 Polymerization reaction completed. The internal pressure at that time was 9.2 kg/cm''.
これより後の処理は実施例1と同様である。The subsequent processing is the same as in the first embodiment.
得られたポリマーの物性は、表3に実施例11、比較例
8〜9の結果と併記する。The physical properties of the obtained polymer are listed in Table 3 together with the results of Example 11 and Comparative Examples 8-9.
〔実施例11および比較例8〜9]
第二工程重合温度と時間を変更する以外は実施例1Oと
同様にして製造した。それらの条件は物性とともに表3
に記載する。[Example 11 and Comparative Examples 8 to 9] Produced in the same manner as in Example 1O except for changing the second step polymerization temperature and time. Those conditions are shown in Table 3 along with the physical properties.
Describe it in
どつ
〔比較例10〕
水硫化ナトリウム1.08水和物の代わりに硫化ナトリ
ウム2.6水和物549.6 g (l(aslI換算
で4.271モル)を用い、それに共なって48%水酸
化ナトリウム水溶液使用量を327.9 gから1.2
gに変更する以外は実施例1と同様にして製造した。Dotsu [Comparative Example 10] 549.6 g (l (4.271 mol in aslI conversion) of sodium sulfide 2.6 hydrate was used instead of sodium hydrosulfide 1.08 hydrate, and along with 48 % sodium hydroxide aqueous solution used from 327.9 g to 1.2
It was produced in the same manner as in Example 1 except for changing to g.
重合反応後得られたポリマーは収1t428.7g(収
率92,8%)、MFR260(g/10分)、MFR
2015133(%)であった。また、ガス発生量は2
83.5 (μm/g)であった。The polymer obtained after the polymerization reaction had a yield of 1t428.7g (yield 92.8%), an MFR of 260 (g/10 min), an MFR of
It was 2015133 (%). Also, the amount of gas generated is 2
It was 83.5 (μm/g).
[実施例12]
底弁を有する撹拌機付4.51オートクレーブにN M
P 1935 gを仕込み、次いで水硫化ナトリウム
1.08水和物液79.6 g (HaSH換算で1
.014モル)を仕込み、さらに48.0%水酸化ナト
リウム水溶液77.8 g (HaOH換算で0.9
93モル)を仕込み、N2雰囲気下に200℃まで2時
間かけて約150rp+*で撹拌しながら徐々に昇温し
、水及び若干のNMPの混合物を留出させて最終的に留
出分61.1gを得た。本留出分中の水分を定量したと
ころ、57、1 gを含み(理論留出水159.3g)
、脱水工程終了時の系内残存水量は0.12モル対Na
5H1モルであった。[Example 12] NM in a 4.51 autoclave with a stirrer and a bottom valve.
P 1935 g was charged, and then 79.6 g of sodium hydrosulfide 1.08 hydrate solution (1935 g in terms of HaSH) was charged.
.. 014 mol) and further added 77.8 g of 48.0% aqueous sodium hydroxide solution (0.9 mol in terms of HaOH).
93 mol) was charged, and the temperature was gradually raised to 200°C under N2 atmosphere over 2 hours while stirring at about 150 rp++, and a mixture of water and some NMP was distilled out, resulting in a final distillate of 61. 1g was obtained. When the water content in the main distillate was determined, it contained 57.1 g (theoretical distilled water 159.3 g).
, the amount of water remaining in the system at the end of the dehydration process is 0.12 mol vs. Na
It was 1 mol of 5H.
次いで、この系に4.4′ −ジクロルジフェニルスル
ホン291.1 g (1,014モル)及びNMP
5B2.3gを加え、180℃で1時間重合させた後、
水140.5 g (全水量としてH,0/NMP =
6.4重量%)を添加し、200℃に昇温して、2時
間重合させた。This system was then charged with 291.1 g (1,014 moles) of 4,4'-dichlorodiphenylsulfone and NMP.
After adding 2.3 g of 5B and polymerizing at 180°C for 1 hour,
140.5 g of water (H,0/NMP = total amount of water)
6.4% by weight) was added, the temperature was raised to 200°C, and polymerization was carried out for 2 hours.
重合反応終了時の内圧は3.5kg/cm’であった。The internal pressure at the end of the polymerization reaction was 3.5 kg/cm'.
これより後の処理は実施例1と同様である。The subsequent processing is the same as in the first embodiment.
得られたポリマーの物性は、表4に実施例13、比較例
11−12の結果と併記する。The physical properties of the obtained polymer are listed in Table 4 together with the results of Example 13 and Comparative Examples 11-12.
〔実施例13および比較例11〜12〕各種ポリハロ芳
香族化合物の種類、および表4に記載する条件を変更す
る以外は実施例12と同様にして製造した。[Example 13 and Comparative Examples 11-12] Production was performed in the same manner as in Example 12, except that the types of various polyhaloaromatic compounds and the conditions listed in Table 4 were changed.
水無添加の比較例11−1’2よりも水を添加した実施
例12〜13の方が分子量が大幅にアップしており、ガ
ス発生量も低減している。In Examples 12 to 13 in which water was added, the molecular weight was significantly higher than in Comparative Example 11-1'2 in which no water was added, and the amount of gas generated was also reduced.
〔実施例14)
底弁を有する攪拌機付4.52オートクレーブに水硫化
ナトリウム1.08水和物335.3 g (NaS
H換算で4.271モル)を仕込み、次いで、N M
P 1500gを仕込み、さらに48.0%水酸化ナト
リウム水溶液327.9 g (HaOH換算で3.
935モル)を仕込み、N2雰囲気下に200℃まで2
時間かけて約15Orpmで攪拌しながら徐々に昇温し
、水及び若干のNMPの混合物を留出させて最終的に留
出分255.6gを得た。本留出分中の水分を定量した
ところ、238.9 gを含み(理論留出水1249.
7g) 、脱水工程終了時の系内残存水量は0.14モ
ル対Na5H1モルであった。[Example 14] 335.3 g of sodium bisulfide 1.08 hydrate (NaS
4.271 mol (calculated as H), then N M
1,500 g of P was charged, and 327.9 g of a 48.0% aqueous sodium hydroxide solution (3.0 g in terms of HaOH) was added.
935 mol) and heated to 200℃ under N2 atmosphere.
The temperature was gradually raised over time while stirring at about 15 Orpm, and a mixture of water and some NMP was distilled out to finally obtain 255.6 g of distillate. When the water content in the main distillate was determined, it contained 238.9 g (theoretical distillate water was 1249.9 g).
7g), the amount of water remaining in the system at the end of the dehydration step was 0.14 mol to 1 mol of Na5H.
次いで、この系にP−ジクロルベンゼン646.6g
(4,398モル)及びNMP 348.4gを加え、
220℃で4.5時間重合させた後、水79.0g(全
水量として11□0/NMP = 8.7重量%)を添
加し、255℃に昇温して3時間重合させた。重合反応
終了時の内圧は13.1 kg/cn+2であった。Next, 646.6 g of P-dichlorobenzene was added to this system.
(4,398 mol) and 348.4 g of NMP were added,
After polymerizing at 220° C. for 4.5 hours, 79.0 g of water (11□0/NMP = 8.7% by weight as a total amount of water) was added, and the temperature was raised to 255° C. and polymerization was performed for 3 hours. The internal pressure at the end of the polymerization reaction was 13.1 kg/cn+2.
その後、反応混合物スラリーの撹拌を停止し、反応混合
物スラリーの1/3量を底弁を経由して2Ofの常圧の
ステンレス容器にフラッシュ移槽し、50〜80■Hg
、100〜120℃の条件下でNMPを蒸発除去した。After that, stirring of the reaction mixture slurry was stopped, and 1/3 of the reaction mixture slurry was flash-transferred via the bottom valve to a stainless steel container at normal pressure of 50 to 80 μHg.
, NMP was removed by evaporation under conditions of 100 to 120°C.
この反応混合物を常法に従い多量の温水で希釈後、水洗
洗浄し、乾燥して微褐色のポリフェニレンスルフィド3
79.7 g ヲ得た。This reaction mixture was diluted with a large amount of warm water according to a conventional method, washed with water, and dried to form a slightly brown polyphenylene sulfide 3.
I got 79.7 g.
本ポリマーのMFRは90(g/10分) 、MFR2
015は90%であった。The MFR of this polymer is 90 (g/10 min), MFR2
015 was 90%.
又、ガス発生量は49.6(827g)であった。Further, the amount of gas generated was 49.6 (827 g).
〔実施例15)
底弁を有する攪拌機付4.51オートクレーブに水硫化
ナトリウム1.08水和物335.3 g (NaSt
l換算で4.271モル)を仕込み、次いで、N M
P 1500gを仕込み、さらに48.0%水酸化ナト
リウム水溶液327.9 g (HaO)1換算で3
.935モル)を仕込み、N2雰囲気下に200℃まで
2時間かけて約15゜rpmで攪拌しながら徐々に昇温
し、水及び若干のNMPの混合物を留出させて最終的に
留出分257.3gを得た。本留出分中の水分を定量し
たところ、242.7 gを含み(理論留出水量249
.7g) 、脱水工程終了時の系内残存水量は0.09
モル対Na5H1モルであった。[Example 15] 335.3 g of sodium bisulfide 1.08 hydrate (NaSt
4.271 mol in terms of liter), then N M
Prepare 1500 g of P, and then add 327.9 g (HaO) of 48.0% aqueous sodium hydroxide solution.
.. 935 mol) was charged, and the temperature was gradually raised to 200°C under N2 atmosphere over 2 hours while stirring at about 15° rpm, and a mixture of water and a small amount of NMP was distilled out, resulting in a final distillate of 257 mol). .3g was obtained. When the water content in the main distillate fraction was determined, it contained 242.7 g (theoretical distillate water amount: 249 g).
.. 7g), the amount of water remaining in the system at the end of the dehydration process is 0.09
mole to 1 mole of Na5H.
次いで、この系にp−ジクロルベンゼン646.6g
(4,398モル)及びNMP 348.4gを加え、
220℃で4.5時間重合させた後、水79.0g(全
水量としてHzO/ NMP = 8.7 wt%)を
添加し、255℃に昇温して3時間重合させた0重合反
応終了時の内圧は13.2 kg/cs”であった。Next, 646.6 g of p-dichlorobenzene was added to this system.
(4,398 mol) and 348.4 g of NMP were added,
After polymerizing at 220°C for 4.5 hours, 79.0 g of water (HzO/NMP = 8.7 wt% as total water amount) was added, and the temperature was raised to 255°C and polymerization was performed for 3 hours. 0 Polymerization reaction completed. The internal pressure at that time was 13.2 kg/cs''.
その後、反応混合物スラリーの攪拌速度を重合反応時の
1/10のスピードに落とし、反応混合物スラリーの1
/3量を底弁を経由して2ONの常圧のステンレス容器
にフラッシュ移槽し、50〜80anHg、100〜1
20℃の条件下でNMPを蒸発除去した。この反応混合
物を常法に従い多量の温水で希釈後、水洗洗浄し、乾燥
して微褐色のポリフェニレンスルフィド388.1gヲ
lた。After that, the stirring speed of the reaction mixture slurry was reduced to 1/10 of the speed of the polymerization reaction, and 1/1 of the reaction mixture slurry was stirred.
/3 quantity was flash transferred to a stainless steel container at normal pressure of 2ON via the bottom valve, and 50 to 80 anHg, 100 to 1
NMP was removed by evaporation at 20°C. The reaction mixture was diluted with a large amount of warm water in a conventional manner, washed with water, and dried to obtain 388.1 g of slightly brown polyphenylene sulfide.
本ポリマーのVFRは131(g/10分)、M F
R2015は102%であった。The VFR of this polymer is 131 (g/10 min), M F
R2015 was 102%.
ガス発生量は63.8(μl/g)であった。The amount of gas generated was 63.8 (μl/g).
〔実施例16〕
底弁を有する攪拌機付4.542オートクレーブに水硫
化ナトリウム1.08水和物335.3 g (NaS
H換算で4.271モル)を仕込み、次いで、N M
P 1500gを仕込み、さらに48.0%水酸化ナト
リウム水溶液327.9 g (HaOH換算で3.
935モル)を仕込み、N2雰囲気下に200℃まで2
時間かけて約15゜rpmで攪拌しながら徐々に昇温し
、水及び若干のNMPの混合物を留出させて最終的に留
出分260.5gを得た。本留出分中の水分を定量した
ところ、241.2 gを含み(理論留出水量249.
7g) 、脱水工程終了時の系内残存水量は0.11モ
ル対Na5H1モルであった。[Example 16] 335.3 g of sodium bisulfide 1.08 hydrate (NaS
4.271 mol (calculated as H), then N M
1,500 g of P was charged, and 327.9 g of a 48.0% aqueous sodium hydroxide solution (3.0 g in terms of HaOH) was added.
935 mol) and heated to 200℃ under N2 atmosphere.
The temperature was gradually raised over time while stirring at about 15° rpm, and a mixture of water and a small amount of NMP was distilled out to finally obtain 260.5 g of distillate. When the water content in the main distillate was determined, it contained 241.2 g (theoretical distilled water amount: 249.2 g).
7g), the amount of water remaining in the system at the end of the dehydration step was 0.11 mol to 1 mol of Na5H.
次いで、この系にp−ジクロルベンゼン646.6g
(4,398モル)及びNMP 348.4gを加え、
220℃で4.5時間重合させた後、水79.0g(全
水量としてH!0/NMP = 8.7重量%)を添加
し、255℃に昇温して3時間重合させた。重合反応終
了時の内圧は13.4 kg/cm”であった。Next, 646.6 g of p-dichlorobenzene was added to this system.
(4,398 mol) and 348.4 g of NMP were added,
After polymerizing at 220°C for 4.5 hours, 79.0 g of water (H!0/NMP = 8.7% by weight as the total amount of water) was added, the temperature was raised to 255°C, and polymerization was performed for 3 hours. The internal pressure at the end of the polymerization reaction was 13.4 kg/cm''.
その後、反応混合物スラリーの攪拌を停止し、反応混合
物スラリーの1ooo gを底弁を経由して202の常
圧のステンレス容器にフラッシュ移槽し、温度を約80
℃に降温せしめた。この反応混合物スラリーに温水40
0gを添加し、フィルタープレスを用いて炉遇した後、
炉残を水洗、洗浄、乾燥して微褐色のポリフェニレンス
ルフィド378.3gを得た。Thereafter, stirring of the reaction mixture slurry was stopped, and 100 g of the reaction mixture slurry was flash transferred to a stainless steel container at normal pressure of 202 via the bottom valve, and the temperature was adjusted to about 80℃.
The temperature was lowered to ℃. Add 40 ml of warm water to this reaction mixture slurry.
After adding 0g and heating using a filter press,
The furnace residue was washed with water, washed and dried to obtain 378.3 g of slightly brown polyphenylene sulfide.
本ポリマーのVFRは9B(g/10分) 、MFR2
015は101%であった。VFR of this polymer is 9B (g/10 min), MFR2
015 was 101%.
又、ガス発生量は56.7(μ!/g)であった。Further, the amount of gas generated was 56.7 (μ!/g).
本発明の方法により製造される高分子量ポリマーは従来
の製造法に比べて揮発性成分、ガス発生量が大幅に低減
されており、また、溶融時の粘度安定性が著しく改良さ
れている。これは、ポリマー中の低分子量成分が低減さ
れているためであろうと考えられる。またこれに伴なっ
て溶融成形時の発泡、金型の腐食、製品の熱安定性及び
機械的物性等が著しく改良される。The high molecular weight polymer produced by the method of the present invention has significantly lower volatile components and gas generation than conventional production methods, and also has significantly improved viscosity stability when melted. This is considered to be because the low molecular weight components in the polymer are reduced. Further, along with this, foaming during melt molding, mold corrosion, thermal stability of the product, mechanical properties, etc. are significantly improved.
図1はガス発生量測定時のメルトインデクサ−の模式図
である。FIG. 1 is a schematic diagram of a melt indexer when measuring the amount of gas generated.
Claims (5)
)少なくとも一種のアルカリ金属水硫化物、少なくとも
一種のアルカリ金属水酸化物、及び少なくとも一種のポ
リハロ芳香族化合物とを少なくとも一種の有機アミド極
性溶媒の存在下で、1000C〜225℃、0.1〜5
0時間反応させる第一工程、 (B)有機アミド極性溶媒100重量部あたり、水和水
を含めた水5〜40重量部が存在する状態となるように
水を添加すると共に、150℃〜290℃の範囲内であ
り、かつ第一工程時より15℃以上高い温度まで昇温し
て0.5〜20時間反応を維持する第二工程 の二段階で行なうことを特徴とするポリアリーレンスル
フィドの製造方法。(1) In the production of polyarylene sulfide, (A
) At least one alkali metal hydrosulfide, at least one alkali metal hydroxide, and at least one polyhaloaromatic compound in the presence of at least one organic amide polar solvent at 1000 C to 225 C, 0.1 to 5
First step of reacting for 0 hours, (B) Water is added so that 5 to 40 parts by weight of water including hydration water is present per 100 parts by weight of organic amide polar solvent, and at 150 ° C. to 290 ° C. of polyarylene sulfide, which is carried out in two steps: a second step in which the temperature is raised to a temperature 15 degrees Celsius or more higher than in the first step and the reaction is maintained for 0.5 to 20 hours. Production method.
温、加熱下で常圧又は減圧の取り出し容器へ取り出す請
求項第1項記載の製造方法。(2) The production method according to claim 1, wherein the reaction mixture obtained is taken out into a takeout container at normal pressure or reduced pressure under heating at a high temperature in which the obtained reaction mixture is substantially in a liquid phase state.
が塊状にならない程度に攪拌しながら取り出す請求項第
2項記載の製造方法。(3) The manufacturing method according to claim 2, wherein the solid material produced in the take-out container under normal pressure or reduced pressure is taken out while stirring to such an extent that it does not form into lumps.
部を取り出す請求項第2項記載の製造方法。(4) The manufacturing method according to claim 2, wherein a part of the lower layer is taken out from the reaction mixture which is substantially separated into two layers.
部を取り出し、その残分を次の反応に用いる請求項第2
項記載の製造方法。(5) Claim 2: A portion of the reaction mixture that has been substantially separated into two layers is taken out from the lower layer, and the remainder is used for the next reaction.
Manufacturing method described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1122933A JPH02302436A (en) | 1989-05-18 | 1989-05-18 | Method for producing polyarylene sulfide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1122933A JPH02302436A (en) | 1989-05-18 | 1989-05-18 | Method for producing polyarylene sulfide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02302436A true JPH02302436A (en) | 1990-12-14 |
Family
ID=14848205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1122933A Pending JPH02302436A (en) | 1989-05-18 | 1989-05-18 | Method for producing polyarylene sulfide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02302436A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005078006A1 (en) | 2004-02-12 | 2005-08-25 | Kureha Corporation | Polyarylene sulfide and process for producing the same |
US7504476B2 (en) | 2003-01-21 | 2009-03-17 | Kureha Corporation | Poly(arylene sulfide) and production process thereof |
US7517946B2 (en) | 2002-12-27 | 2009-04-14 | Kureha Corporation | Production process of poly(arylene sulfide) |
US7754848B2 (en) | 2003-12-26 | 2010-07-13 | Kureha Corporation | Poly (arylene sulfide) and production process thereof |
US7834133B2 (en) | 2004-10-29 | 2010-11-16 | Kureha Corporation | Production process of poly(arylene sulfide) |
US8138302B2 (en) | 2002-12-27 | 2012-03-20 | Kureha Corporation | Polyarylene sulfide and process for producing the same |
WO2015152032A1 (en) * | 2014-03-31 | 2015-10-08 | 株式会社クレハ | Process for producing polyarylene sulfide |
US9809681B2 (en) | 2015-02-19 | 2017-11-07 | Ticona Llc | Method for forming a low viscosity polyarylene sulfide |
US9815942B2 (en) | 2015-03-25 | 2017-11-14 | Ticona Llc | Technique for forming a high melt viscosity polyarylene sulfide |
US9988494B2 (en) | 2015-02-19 | 2018-06-05 | Ticona Llc | Method for forming a high molecular weight polyarylene sulfide |
JP2018154693A (en) * | 2017-03-16 | 2018-10-04 | Dic株式会社 | Method for producing polyarylene sulfide resin |
US10106654B2 (en) | 2015-02-19 | 2018-10-23 | Ticona Llc | Method of polyarylene sulfide precipitation |
JP2021521313A (en) * | 2018-07-04 | 2021-08-26 | エルジー・ケム・リミテッド | Method for producing polyarylene sulfide |
US11319441B2 (en) | 2019-12-20 | 2022-05-03 | Ticona Llc | Method for forming a polyarylene sulfide |
US11407861B2 (en) | 2019-06-28 | 2022-08-09 | Ticona Llc | Method for forming a polyarylene sulfide |
-
1989
- 1989-05-18 JP JP1122933A patent/JPH02302436A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7517946B2 (en) | 2002-12-27 | 2009-04-14 | Kureha Corporation | Production process of poly(arylene sulfide) |
US8138302B2 (en) | 2002-12-27 | 2012-03-20 | Kureha Corporation | Polyarylene sulfide and process for producing the same |
US7504476B2 (en) | 2003-01-21 | 2009-03-17 | Kureha Corporation | Poly(arylene sulfide) and production process thereof |
US7767783B2 (en) | 2003-01-21 | 2010-08-03 | Kureha Corporation | Poly (arylene sulfide) and production process thereof |
US7754848B2 (en) | 2003-12-26 | 2010-07-13 | Kureha Corporation | Poly (arylene sulfide) and production process thereof |
US8183336B2 (en) | 2003-12-26 | 2012-05-22 | Kureha Corporation | Poly (arylene sulfide) |
WO2005078006A1 (en) | 2004-02-12 | 2005-08-25 | Kureha Corporation | Polyarylene sulfide and process for producing the same |
US7655748B2 (en) | 2004-02-12 | 2010-02-02 | Kureha Corporation | Poly(arylene sulfide) and production process thereof |
US8076447B2 (en) | 2004-02-12 | 2011-12-13 | Kureha Corporation | Poly (arylene sulfide) and production process thereof |
US7834133B2 (en) | 2004-10-29 | 2010-11-16 | Kureha Corporation | Production process of poly(arylene sulfide) |
WO2015152032A1 (en) * | 2014-03-31 | 2015-10-08 | 株式会社クレハ | Process for producing polyarylene sulfide |
KR20160127831A (en) | 2014-03-31 | 2016-11-04 | 가부시끼가이샤 구레하 | Process for producing polyarylene sulfide |
US9896548B2 (en) | 2014-03-31 | 2018-02-20 | Kureha Corporation | Method of producing polyarylene sulfide |
US9809681B2 (en) | 2015-02-19 | 2017-11-07 | Ticona Llc | Method for forming a low viscosity polyarylene sulfide |
US9988494B2 (en) | 2015-02-19 | 2018-06-05 | Ticona Llc | Method for forming a high molecular weight polyarylene sulfide |
US10106654B2 (en) | 2015-02-19 | 2018-10-23 | Ticona Llc | Method of polyarylene sulfide precipitation |
US10882959B2 (en) | 2015-02-19 | 2021-01-05 | Ticona Llc | Method of polyarylene sulfide precipitation |
US9815942B2 (en) | 2015-03-25 | 2017-11-14 | Ticona Llc | Technique for forming a high melt viscosity polyarylene sulfide |
JP2018154693A (en) * | 2017-03-16 | 2018-10-04 | Dic株式会社 | Method for producing polyarylene sulfide resin |
JP2021521313A (en) * | 2018-07-04 | 2021-08-26 | エルジー・ケム・リミテッド | Method for producing polyarylene sulfide |
US11427683B2 (en) | 2018-07-04 | 2022-08-30 | Lg Chem, Ltd. | Preparation method of polyarylene sulfide |
US11407861B2 (en) | 2019-06-28 | 2022-08-09 | Ticona Llc | Method for forming a polyarylene sulfide |
US11319441B2 (en) | 2019-12-20 | 2022-05-03 | Ticona Llc | Method for forming a polyarylene sulfide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5012131B2 (en) | Method for producing polyarylene sulfide resin | |
JP3989785B2 (en) | Process for producing polyarylene sulfide | |
JP3637543B2 (en) | Process for producing polyarylene sulfide polymer | |
JP6517337B2 (en) | Process for producing particulate polyarylene sulfide, and particulate polyarylene sulfide | |
JPH02302436A (en) | Method for producing polyarylene sulfide | |
JPH0651792B2 (en) | Improved method for producing poly (p-phenylene sulfide) | |
JP2008248154A (en) | Method for producing polyarylene sulfide resin | |
JPH08134216A (en) | Method for producing polyarylene sulfide with low sulfur gas generation | |
KR20190060579A (en) | Process for preparing polyarylene sulfide | |
JP2002201275A (en) | Process for preparing polyarylene sulfide | |
EP0272903B1 (en) | Process for producing a polyarylene sulfide | |
JP4893436B2 (en) | Process for producing polyarylene sulfide | |
EP3617250B1 (en) | Method for preparing polyarylene sulfide | |
KR102180533B1 (en) | Method for preparing polyarylene sulfide | |
JP7191344B2 (en) | Method for producing polyarylene sulfide | |
JP7542906B2 (en) | Method for producing polyarylene sulfide | |
KR102251791B1 (en) | Process for preparing polyarylene sulfide | |
JP3023924B2 (en) | Method for producing carboxyl group-containing arylene sulfide copolymer | |
KR102658771B1 (en) | Method for preparing polyarylene sulfide | |
EP0304303A2 (en) | Preparation of poly (arylene sulfide) | |
JPS5939448B2 (en) | Method for producing polyarylene sulfide | |
EP0325061B1 (en) | Process for producing poly (para-phenylene-sulfide) | |
JP2022114027A (en) | Polyphenylene sulfide resin composition | |
JPH0621167B2 (en) | Method for manufacturing poly (arylene sulfide) | |
JPH05230214A (en) | Method for producing polyarylene sulfide |