JPH02302303A - Power generation system of fuel cell - Google Patents
Power generation system of fuel cellInfo
- Publication number
- JPH02302303A JPH02302303A JP1123420A JP12342089A JPH02302303A JP H02302303 A JPH02302303 A JP H02302303A JP 1123420 A JP1123420 A JP 1123420A JP 12342089 A JP12342089 A JP 12342089A JP H02302303 A JPH02302303 A JP H02302303A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- fuel cell
- desulfurization
- power generation
- generation system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 133
- 238000010248 power generation Methods 0.000 title claims abstract description 28
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 29
- 239000002737 fuel gas Substances 0.000 claims abstract description 27
- 239000001257 hydrogen Substances 0.000 claims abstract description 23
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 23
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 21
- 239000011593 sulfur Substances 0.000 claims abstract description 21
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000003009 desulfurizing effect Effects 0.000 claims abstract description 10
- 238000006477 desulfuration reaction Methods 0.000 claims description 67
- 230000023556 desulfurization Effects 0.000 claims description 67
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- 238000000629 steam reforming Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 7
- 239000005749 Copper compound Substances 0.000 claims description 4
- -1 aluminum compound Chemical class 0.000 claims description 4
- 238000000975 co-precipitation Methods 0.000 claims description 4
- 150000001880 copper compounds Chemical class 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 238000002407 reforming Methods 0.000 claims description 4
- 239000011701 zinc Substances 0.000 claims description 4
- 229910052725 zinc Inorganic materials 0.000 claims description 4
- 150000003752 zinc compounds Chemical class 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- GFCDJPPBUCXJSC-UHFFFAOYSA-N [O-2].[Zn+2].[Cu]=O Chemical compound [O-2].[Zn+2].[Cu]=O GFCDJPPBUCXJSC-UHFFFAOYSA-N 0.000 claims description 2
- JYXHVKAPLIVOAH-UHFFFAOYSA-N aluminum zinc oxocopper oxygen(2-) Chemical compound [O-2].[Al+3].[O-2].[Zn+2].[Cu]=O JYXHVKAPLIVOAH-UHFFFAOYSA-N 0.000 claims description 2
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 239000003054 catalyst Substances 0.000 abstract description 30
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 14
- 230000006866 deterioration Effects 0.000 abstract description 6
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract description 2
- 229910017518 Cu Zn Inorganic materials 0.000 abstract 2
- 229910017752 Cu-Zn Inorganic materials 0.000 abstract 2
- 229910017943 Cu—Zn Inorganic materials 0.000 abstract 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 22
- 239000007789 gas Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 16
- 239000007800 oxidant agent Substances 0.000 description 12
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 11
- 239000011787 zinc oxide Substances 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 229910002090 carbon oxide Inorganic materials 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 239000001273 butane Substances 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 229910000423 chromium oxide Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 239000003915 liquefied petroleum gas Substances 0.000 description 3
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 125000001741 organic sulfur group Chemical group 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- 229910003296 Ni-Mo Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- QNDQILQPPKQROV-UHFFFAOYSA-N dizinc Chemical compound [Zn]=[Zn] QNDQILQPPKQROV-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- WMXCDAVJEZZYLT-UHFFFAOYSA-N tert-butylthiol Chemical compound CC(C)(C)S WMXCDAVJEZZYLT-UHFFFAOYSA-N 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は燃料電池発電システムに関する。さらに詳細に
は、燃料極に供給される―料ガス系を改良し、特に、付
臭剤を含む都市ガス等の気体燃料に適した燃料電池発電
システムに関する。DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a fuel cell power generation system. More specifically, the present invention relates to a fuel cell power generation system that improves the fuel gas system supplied to the fuel electrode and is particularly suitable for gaseous fuels such as city gas containing odorants.
〈従来の技術〉
従来、燃料の有する化学エネルギーを直接電気エネルギ
ーに変換するシステムとして燃料電池が知られている。<Prior Art> Fuel cells have conventionally been known as a system that directly converts chemical energy contained in fuel into electrical energy.
この燃料電池は、通常、電解質を保持した電解質層を挾
んで燃料極と酸化剤極とからなる一対の多孔質電極を対
向させて燃料電池を形成し、燃料極の背面に水素等の燃
料ガスを接触させ、また酸化剤極の背面に空気等の酸化
剤を接触させることにより、このときに生ずる、電気化
学反応を利用して、上記の両極間から電気エネルギーを
取り出すようにしたものである。燃料ガスと酸化剤が供
給されている限り、高い変換効率で電気エネルギーを取
り出すことができ、また省エネルギー、環境保全等で有
利なため実用化研究が活発に行われている。In this fuel cell, a pair of porous electrodes consisting of a fuel electrode and an oxidizer electrode are placed opposite each other with an electrolyte layer holding an electrolyte sandwiched between them to form a fuel cell. By bringing an oxidizing agent such as air into contact with the back of the oxidizing agent electrode, electrical energy is extracted from between the two electrodes by utilizing the electrochemical reaction that occurs at this time. . As long as fuel gas and oxidizer are supplied, electrical energy can be extracted with high conversion efficiency, and research into practical application is being actively conducted because it is advantageous in terms of energy saving and environmental protection.
この種の燃料電池においては、燃料として水素が汎用さ
れ、この水素は、通常、メタン、エタン、プロパン、ブ
タン、天然ガス、ナフサ、灯油、軽油、液化石油ガス(
LPG)、都市ガス等の原燃料を水蒸気改質反応に付し
て、水素を主成分とする燃料ガスに変換することにより
得られている。In this type of fuel cell, hydrogen is commonly used as a fuel, and this hydrogen is usually methane, ethane, propane, butane, natural gas, naphtha, kerosene, diesel oil, liquefied petroleum gas (
It is obtained by subjecting raw fuels such as LPG) and city gas to a steam reforming reaction to convert them into fuel gas whose main component is hydrogen.
上記の原燃料中の硫黄成分は、水蒸気改質触媒(例えば
、Ru系触媒、Ni系触媒等)を被毒し、例えば、原燃
料中の硫黄含有量が0.lppm程度の状態であっても
Ru触媒又はNi触媒の表面の約90%が短時間に硫黄
で覆われてしまい、触媒活性が著しく劣化する。かかる
状況から、水蒸気改質反応に付される前に原燃料は脱硫
反応に付される。The sulfur component in the raw fuel mentioned above poisons the steam reforming catalyst (for example, Ru-based catalyst, Ni-based catalyst, etc.), and for example, if the sulfur content in the raw fuel is 0. Even in a state of about 1 ppm, about 90% of the surface of the Ru catalyst or Ni catalyst is covered with sulfur in a short time, resulting in a significant deterioration of catalytic activity. Under such circumstances, the raw fuel is subjected to a desulfurization reaction before being subjected to a steam reforming reaction.
従来、原燃料の水蒸気改質に先立って行われている代表
的な脱硫方法は、N i−Mo系又はC0−M0系触媒
の存在下、350〜400℃にて、原燃料中の有機硫黄
を水添分解した後、生成するH2 Sを、350〜40
0℃にてZ n OL吸着させて除去する水添脱硫法で
ある。A typical desulfurization method conventionally carried out prior to steam reforming of raw fuel is to remove organic sulfur from raw fuel at 350 to 400°C in the presence of a Ni-Mo or C0-M0 catalyst. After hydrogenolyzing, the H2S produced is 350 to 40
This is a hydrodesulfurization method in which Z n OL is adsorbed and removed at 0°C.
第2図は、水添脱硫法による脱硫装置及び水蒸気改質装
置を有する燃料電池発電システムの代表的な例の基本的
構成の概要を示すシステム図である。同図において、原
燃料1は、後記−酸化炭素変成器5から導かれる水素を
主成分とする燃料ガスと混合されて、水添脱硫装置2b
に導入される。FIG. 2 is a system diagram showing an overview of the basic configuration of a typical example of a fuel cell power generation system having a desulfurization device using a hydrodesulfurization method and a steam reformer. In the figure, the raw fuel 1 is mixed with a fuel gas containing hydrogen as a main component derived from a carbon oxide shift converter 5 (described later), and is mixed with a hydrogen desulfurization device 2b.
will be introduced in
水添脱硫装置2bは、原燃料1の入口側から順に、Ni
−Mo系、Co −M o系触媒等が充填された水素添
加層とZnO等の吸着剤が充填された吸着層とで構成さ
れる。原燃料1は加熱器で350〜400℃に加熱され
た後、水素添加層で水素添加されて原燃料中の硫黄成分
をH2Sに変換し、次いで生成したH2 Sは吸着層で
吸着除去され、原燃料1が脱硫される。脱硫された原燃
料1は混合器3で水蒸気と混合されて水蒸気改質装置4
に導入され、水蒸気改質反応により水素を主成分とする
燃料ガスに変換されて排出される。排出された燃料ガス
は、含有する一酸化炭素が燃料極7の触媒を被毒するこ
と又水素への変換効率を高めるため、変成触媒が充填さ
れた一酸化炭素変成器5に導入され、−酸化炭素は水素
と二酸化炭素に変換される。−酸化炭素変成器5から排
出された燃料ガスは、一部が前記、の水添脱硫装置2b
に送られ、残りは燃料電池本体6の燃料極7に送られて
燃料として使用される。燃料極7に流入した燃料ガス中
の水素は、コンプレッサー8により酸化剤極10に流入
している空気9中の酸素と電気化学的反応を行ない、そ
の結果燃料ガスの一部が消費されて電気エネルギーが得
られ、水が副生する。The hydrodesulfurization equipment 2b sequentially processes Ni from the inlet side of the raw fuel 1.
It is composed of a hydrogenation layer filled with a -Mo-based catalyst, a Co-Mo-based catalyst, etc., and an adsorption layer filled with an adsorbent such as ZnO. The raw fuel 1 is heated to 350 to 400°C in a heater, and then hydrogenated in a hydrogenation layer to convert the sulfur component in the raw fuel to H2S, and then the generated H2S is adsorbed and removed in an adsorption layer. Raw fuel 1 is desulfurized. The desulfurized raw fuel 1 is mixed with steam in a mixer 3 and sent to a steam reformer 4.
The gas is introduced into the fuel gas and is converted into a fuel gas containing hydrogen as a main component through a steam reforming reaction, which is then discharged. The discharged fuel gas is introduced into the carbon monoxide shift converter 5 filled with a shift catalyst to prevent the contained carbon monoxide from poisoning the catalyst of the fuel electrode 7 and to increase the conversion efficiency into hydrogen. Carbon oxide is converted to hydrogen and carbon dioxide. - A portion of the fuel gas discharged from the carbon oxide shift converter 5 is
The remainder is sent to the fuel electrode 7 of the fuel cell main body 6 and used as fuel. Hydrogen in the fuel gas that has flowed into the fuel electrode 7 undergoes an electrochemical reaction with oxygen in the air 9 that has flowed into the oxidizer electrode 10 by the compressor 8, and as a result, a portion of the fuel gas is consumed and electricity is generated. Energy is obtained and water is produced as a by-product.
燃料極7から排出された燃料ガスは、水蒸気改質装置4
のバーナー11に送られると共にコンプレッサー8より
供給される空気9と合流し、バーナー11で燃焼されて
、水蒸気改質装置4の加熱源として利用される。バーナ
ー11から排出された水蒸気を含む排ガスは、熱交換器
12を経た後、凝縮器13で気水分離され、分離された
ガスは排気される。また、凝集した水は給水ライン14
と合流し、給水ポンプ15及び冷却水ポンプ16を経て
、燃料電池本体6へ送られ、その冷却に使用される。燃
料電池本体6から排出された冷却水は、熱交換器17を
経て、気水分離器18に送られ、水と水蒸気に分離され
る。分離された水は冷却水ポンプ16を経て、燃料電池
本体6の冷却に循環使用され、また水蒸気は前記混合器
3に送られ、脱硫された原燃料1と混合された後、水蒸
気改質装置4に送られて水蒸気改質反応に利用される。The fuel gas discharged from the fuel electrode 7 is transferred to the steam reformer 4
The air 9 is sent to the burner 11 of the steam reformer 11 and joins with the air 9 supplied from the compressor 8, is burned in the burner 11, and is used as a heating source for the steam reformer 4. The exhaust gas containing water vapor discharged from the burner 11 passes through the heat exchanger 12, and then is separated into steam and water by the condenser 13, and the separated gas is exhausted. In addition, the aggregated water is removed from the water supply line 14.
The water flows through the water supply pump 15 and the cooling water pump 16, and is sent to the fuel cell main body 6, where it is used for cooling. Cooling water discharged from the fuel cell main body 6 is sent to a steam-water separator 18 via a heat exchanger 17, and is separated into water and steam. The separated water passes through the cooling water pump 16 and is circulated for cooling the fuel cell main body 6, and the steam is sent to the mixer 3 where it is mixed with the desulfurized raw fuel 1 and then sent to the steam reformer. 4 and used in the steam reforming reaction.
このような燃料電池発電システムにおいては、原燃料の
脱硫工程に多くの問題点がある。即ち、水添脱硫触媒は
、約350℃以上の温度でないと触媒活性がなく、燃料
電池の負荷変動に即時に対応し難く、また暖機時間なし
に作動させるためには特別の加熱装置や流路i御装置が
必要であり、小型化が困難である。In such a fuel cell power generation system, there are many problems in the desulfurization process of raw fuel. In other words, the hydrodesulfurization catalyst has no catalytic activity unless the temperature is about 350°C or higher, making it difficult to respond immediately to changes in the load of the fuel cell, and special heating equipment and flow are required to operate without warm-up time. A road control device is required, and miniaturization is difficult.
また、水添脱硫工程において、一定量以上の有機硫黄を
含む原燃料の場合、特に都市ガスなどのように付臭剤と
してジメチルスルフィドなどの難分解性且つ非吸着性の
有機硫黄が含まれている気体燃料の場合には、未分解の
ものがスリップして、ZnOに吸着されることなく素通
りする。また、吸着脱硫に際しては、例えば、
ZnO+H2S::ZnS+H20
ZnO+COS’:ZnS+H2z
で示される平衡のため、H2S5COSなどの量も一定
値以下とはならない。特に、H20およびCO2が存在
する場合には、こ′の傾向は著しい。In addition, in the hydrodesulfurization process, in the case of raw fuel containing more than a certain amount of organic sulfur, especially city gas, which contains persistent and non-adsorbable organic sulfur such as dimethyl sulfide as an odorant. In the case of gaseous fuel, undecomposed substances slip and pass through without being adsorbed by ZnO. Furthermore, during adsorption desulfurization, the amount of H2S5COS does not fall below a certain value due to the equilibrium represented by, for example, ZnO+H2S::ZnS+H20 ZnO+COS':ZnS+H2z. This tendency is particularly pronounced when H20 and CO2 are present.
さらに、装置のスタートアップ、シャットダウンなどに
際して脱硫系が不安定である場合には、吸着脱硫触媒か
ら硫黄が飛散して、原燃料中の硫黄濃度が増大すること
もある。従って、現在の脱硫工程は、精製後の原燃料中
の硫黄濃度が数ppm乃至0.lppmとなるようなレ
ベルで行われており、水蒸気改質触媒の被毒を十分19
抑制することはできず、燃料電池を長時間安定的に運転
することができないという問題がある。Furthermore, if the desulfurization system is unstable during startup or shutdown of the device, sulfur may scatter from the adsorption desulfurization catalyst, increasing the sulfur concentration in the raw fuel. Therefore, in the current desulfurization process, the sulfur concentration in the raw fuel after refining ranges from several ppm to 0.5 ppm. It is carried out at a level of 1ppm, which is sufficient to prevent poisoning of the steam reforming catalyst.
There is a problem in that it cannot be suppressed and the fuel cell cannot be operated stably for a long period of time.
本発明は上記の従来技術の問題を解消すべく創案された
もので、燃料極に供給される燃料ガス系を改良すること
により、小型化でき且つ長時間、安定的に運転すること
ができる燃料電池発電システムを提供することを目的と
する。The present invention was devised to solve the problems of the prior art described above, and by improving the fuel gas system supplied to the fuel electrode, it is possible to reduce the size of the fuel and provide a fuel that can be operated stably for a long time. The purpose is to provide a battery power generation system.
く課題を解決するための手段及び作用〉上記の課題を解
決すべくなされた、本発明の燃料電池発電システムは、
原燃料を脱硫する脱硫装置と、脱硫された原燃料を水素
を主成分とする燃料ガスに改質する水蒸気改質装置とを
少なくとも有する燃料電池発電システムにおいて、脱硫
装置が銅−亜鉛系脱硫剤を充填した脱硫装置で構成され
ることを特徴とするものであり、特に原燃料として都市
ガスなどの気体燃料を使用する燃料電池に適した発電シ
ステムである。なお、本発明において、銅−亜鉛系脱硫
剤とは、銅と亜鉛成分(例えば、酸化亜鉛等)とを少な
くとも含有し、さらにアルミニウム成分(例えば、酸化
アルミニウム等)、クロム成分(例えば、酸化クロム等
)等のその他の成分を含有していてもよい脱硫剤を意味
する。Means and operation for solving the above problems> The fuel cell power generation system of the present invention, which has been made to solve the above problems, has the following features:
In a fuel cell power generation system having at least a desulfurization device for desulfurizing raw fuel and a steam reforming device for reforming the desulfurized raw fuel into fuel gas containing hydrogen as a main component, the desulfurization device uses a copper-zinc desulfurization agent. This power generation system is particularly suitable for fuel cells that use gaseous fuel such as city gas as raw fuel. In the present invention, the copper-zinc desulfurization agent includes at least copper and a zinc component (e.g., zinc oxide, etc.), and further contains an aluminum component (e.g., aluminum oxide, etc.), a chromium component (e.g., chromium oxide, etc.). This refers to a desulfurizing agent that may contain other components such as (etc.).
本発明の燃料電池発電システムでは、原燃料の脱硫に、
脱硫剤として鋼−亜鉛系脱硫剤が充填された脱硫装置(
以下、銅−亜鉛系脱硫装置という)が使用され、該脱硫
剤は原燃料中の硫黄含有量を5ppb (硫黄として、
以下同じ)以下、通常0.1ppb以下とすることがで
きる。従って、後続の水蒸気改質反応における水蒸気改
質触媒の被毒が抑制され、触媒活性を長時間維持するこ
とができ、燃料電池の安定した運転が可能となる。In the fuel cell power generation system of the present invention, for desulfurization of raw fuel,
Desulfurization equipment filled with steel-zinc desulfurization agent (
A copper-zinc desulfurization device (hereinafter referred to as copper-zinc desulfurization equipment) is used, and the desulfurization agent reduces the sulfur content in the raw fuel to 5 ppb (as sulfur,
The same applies hereinafter) or less, which can usually be 0.1 ppb or less. Therefore, poisoning of the steam reforming catalyst in the subsequent steam reforming reaction is suppressed, the catalyst activity can be maintained for a long time, and stable operation of the fuel cell becomes possible.
上記の構成からなる本発明において、原燃料の脱硫に使
用される銅−亜鉛系脱硫装置に充填される銅−亜鉛系脱
硫剤としては、例えば、特願昭62−279867号及
び特願昭62−279868号に開示された銅−亜鉛系
脱硫剤が挙げられ、同公報には、それぞれ銅と酸化亜鉛
を主成分とする脱硫剤(以下、銅−亜鉛脱硫剤という)
及び銅と酸化亜鉛と酸化アルミニウムを主成分とする脱
硫剤(以下、銅−亜鉛−アルミニウム脱硫剤という)が
開示されている。より詳細には、これらの脱硫剤は次の
ような方法により調製される。In the present invention having the above configuration, examples of the copper-zinc desulfurization agent to be filled in the copper-zinc desulfurization equipment used for desulfurization of raw fuel include Japanese Patent Application No. 62-279867 and Japanese Patent Application No. 62-1989. The copper-zinc desulfurization agent disclosed in No. 279868 is mentioned, and the same publication describes a desulfurization agent containing copper and zinc oxide as main components (hereinafter referred to as copper-zinc desulfurization agent).
and a desulfurizing agent containing copper, zinc oxide, and aluminum oxide as main components (hereinafter referred to as a copper-zinc-aluminum desulfurizing agent). More specifically, these desulfurizing agents are prepared by the following method.
(1)銅−亜鉛脱硫剤
銅化合物(例えば、硝酸銅、酢酸銅等)及び亜鉛化合物
(例えば、硝酸亜鉛、酢酸亜鉛等)を含む水溶液とアル
カリ物質(例えば、炭酸ナトリウム等)の水溶液を使用
して、常法による共沈法により沈澱を生じさせる。生成
した沈澱を乾燥、焼成(300℃程度)して酸化銅−酸
化亜鉛混合物(原子比で、通常、銅:亜鉛−1=約0.
3〜10、好ましくは1:約0.5〜3、より好ましく
は1:約1〜2.3)を得た後、水素含有量6容量%以
下、より好ましくは0.5〜4容量%程度となるように
不活性ガス(例えば窒素ガス等)により希釈された水素
ガスの存在下に、150〜300℃程度で上記混合物を
還元処理する。このようにして得られた銅−亜鉛脱硫剤
は、他の成分、例えば、酸化クロム等を含有していても
よい。(1) Copper-zinc desulfurization agent: Uses an aqueous solution containing a copper compound (e.g., copper nitrate, copper acetate, etc.) and a zinc compound (e.g., zinc nitrate, zinc acetate, etc.) and an aqueous solution of an alkaline substance (e.g., sodium carbonate, etc.) Then, a precipitate is produced by a conventional coprecipitation method. The formed precipitate is dried and calcined (about 300°C) to form a copper oxide-zinc oxide mixture (in atomic ratio, usually copper:zinc-1=about 0.
3 to 10, preferably 1: about 0.5 to 3, more preferably 1: about 1 to 2.3), the hydrogen content is 6% by volume or less, more preferably 0.5 to 4% by volume. The above mixture is reduced at about 150 to 300° C. in the presence of hydrogen gas diluted with an inert gas (for example, nitrogen gas) so as to achieve the desired temperature. The copper-zinc desulfurization agent thus obtained may contain other components, such as chromium oxide.
■銅−亜鉛一アルミニウム脱硫剤
銅化合物(例えば、硝酸鋼、酢酸銅等)、亜鉛化合物(
例えば、硝酸亜鉛、酢酸亜鉛等)及びアルミニウム化合
物(例えば、硝酸アルミニウム、アルミン酸ナトリウム
等)を含む水溶液とアルカ□す物質(例えば、炭酸ナト
リウム等)の水溶液を使用して、常法による共沈法によ
り沈澱を生じさせる。生成した沈澱を乾燥、焼成(30
0℃程度)して、酸化銅−酸化亜鉛−酸化アルミニウム
混合物(原子比で、通常、銅:亜鉛ニアルミニウム−1
:約0.3〜10:約0.05〜2、好ましくは1:約
0.6〜3:約0.3〜1)を得た後、水素含有量6容
量%以下、より好ましくは0.5〜4容量%程度となる
ように不活性ガス(例えば、窒素ガス等)により希釈さ
れた水素ガスの存在下に、150〜300℃程度で上記
混合物を還元処理する。このようにして得られた銅−・
亜鉛−アルミニウム脱硫剤は、他の成分、例えば、酸化
クロム等を含有していてもよい。■Copper-zinc-aluminum desulfurization agent Copper compounds (e.g. nitric steel, copper acetate, etc.), zinc compounds (
Co-precipitation by a conventional method using an aqueous solution containing an aluminum compound (e.g., aluminum nitrate, sodium aluminate, etc.) and an aqueous solution of an alkaline substance (e.g., sodium carbonate, etc.). A method is used to form a precipitate. The generated precipitate was dried and calcined (30
(approximately 0°C) and then prepare a copper oxide-zinc oxide-aluminum oxide mixture (in atomic ratio, usually copper:zinc nialium-1
: about 0.3 to 10: about 0.05 to 2, preferably 1: about 0.6 to 3: about 0.3 to 1), the hydrogen content is 6% by volume or less, more preferably 0. The above mixture is reduced at about 150 to 300° C. in the presence of hydrogen gas diluted with an inert gas (for example, nitrogen gas, etc.) to a concentration of about 5 to 4% by volume. Copper obtained in this way...
The zinc-aluminum desulfurization agent may contain other components, such as chromium oxide.
上記(1)及び0の方法で得られた銅−亜鉛系脱硫剤は
、大きな表面積を有する微粒子状の銅が、酸化亜鉛(及
び酸化アルミニウム)中に均一に分散しているとともに
、酸化亜鉛(及び酸化アルミニウム)との化学的な相互
作用により高活性状態となっている。従って、これらの
脱硫剤を使用すると、原燃料中の硫黄含有量を確実に5
ppb以下、通常0.1ppb以下とすることができ、
またジメチルスルフィド等の難分解性の硫黄化合物も確
実に除去することができる。The copper-zinc desulfurization agent obtained by methods (1) and 0 above has fine particulate copper with a large surface area uniformly dispersed in zinc oxide (and aluminum oxide), and zinc oxide (and aluminum oxide). It is in a highly active state due to chemical interaction with aluminum oxide and aluminum oxide). Therefore, the use of these desulfurization agents ensures that the sulfur content in raw fuels is reduced by 5.
ppb or less, usually 0.1 ppb or less,
Further, it is also possible to reliably remove refractory sulfur compounds such as dimethyl sulfide.
本発明において、使用される原燃料としては、従来から
燃料電池の原燃料として使用されている種々の燃料が使
用し得るが、特に気体燃料が好ましく、例えば、メタン
、エタン、プロパン、ブタン、天然ガス、LPG、都市
ガス及びこれらの混合物等が挙げられる。また、燃料電
池の種類は特に限定されず、低温燃料電池(例えば、リ
ン酸電解液燃料電池、固体高分子電解質燃料電池、超強
酸電解質燃料電池、アルカリ性電解液燃料電池等)及び
高温燃料電池(例えば、溶融炭酸塩燃料電池、固体酸化
物電解質燃料電池等)の何れであってもよい。In the present invention, various fuels conventionally used as raw fuels for fuel cells can be used, but gaseous fuels are particularly preferred, such as methane, ethane, propane, butane, natural fuels, etc. Examples include gas, LPG, city gas, and mixtures thereof. In addition, the types of fuel cells are not particularly limited, and include low-temperature fuel cells (for example, phosphoric acid electrolyte fuel cells, solid polymer electrolyte fuel cells, super acid electrolyte fuel cells, alkaline electrolyte fuel cells, etc.) and high-temperature fuel cells ( For example, it may be a molten carbonate fuel cell, a solid oxide electrolyte fuel cell, etc.).
〈実施例〉
以下、実施例を示す添付図面によって、本発明の詳細な
説明する。<Examples> Hereinafter, the present invention will be described in detail with reference to the accompanying drawings showing examples.
第1図は、本発明の燃料電池発電システムの一実施例の
概略を示すシステム図であり、第2図と同一の部材には
同一の符号を付して示した。FIG. 1 is a system diagram schematically showing an embodiment of the fuel cell power generation system of the present invention, and the same members as in FIG. 2 are denoted by the same reference numerals.
第1図において、原燃料1は、必要に応じて、別途設け
られた加熱器や熱交換器で予熱された後、銅−亜鉛系脱
硫装置2aに流入する。銅−亜鉛系脱硫装置2aには、
前記の銅−亜鉛系脱硫剤が充填されており、該脱硫器2
aにおける脱硫は、例えば、温度10〜400℃程度、
好ましくは150〜250℃程度、圧力0〜10kg/
c−φG程度、GH3V500〜3000程度ニテ行わ
れるが、この条件に限定されるものではない。該脱硫器
2aから排出された原燃料1は硫黄含有量が5ppb以
下、通常は0.1ppb以下に脱硫されている。In FIG. 1, raw fuel 1 is preheated by a separately provided heater or heat exchanger as required, and then flows into a copper-zinc desulfurization device 2a. The copper-zinc desulfurization equipment 2a includes
The desulfurizer 2 is filled with the above-mentioned copper-zinc desulfurization agent.
For example, the desulfurization in step a is performed at a temperature of about 10 to 400°C,
Preferably about 150~250℃, pressure 0~10kg/
It is performed for approximately c-φG and GH3V of approximately 500 to 3000, but is not limited to these conditions. The raw fuel 1 discharged from the desulfurizer 2a has been desulfurized to a sulfur content of 5 ppb or less, usually 0.1 ppb or less.
斯くして脱硫された原燃料1は混合器3で水蒸気と適宜
の混合比で混合された後、水蒸気改質装置4に導入され
、水蒸気改質反応に付されて水素を主成分とする燃料ガ
スに変換される。水蒸気改質装置4は、従来の燃料電池
の水蒸気改質装置と同様に、例えば、Ru触媒、Ni触
媒等が充填された水蒸気改質装置が用いられる。水蒸気
改質装置4から排出される水素を主成分とする燃料ガス
は、従来と同様に一酸化炭素変成器5に送られ、−酸化
炭素含有量を減少させると共に水素含有量が高められる
。次いで、−酸化炭素変成器5から排出された燃料ガス
は燃料電池本体6の燃料極7に送られ、コンプレッサー
8により酸化剤極10に流入している空気9中の酸素と
電気化学的反応を行ない、その結果燃料ガスの一部が消
費されて電気エネルギーが得られ、水が副生する。The raw fuel 1 desulfurized in this way is mixed with steam at an appropriate mixing ratio in a mixer 3, and then introduced into a steam reformer 4 where it is subjected to a steam reforming reaction to produce a fuel containing hydrogen as a main component. converted to gas. As the steam reformer 4, a steam reformer filled with, for example, a Ru catalyst, a Ni catalyst, etc. is used, similar to the steam reformer of a conventional fuel cell. Fuel gas containing hydrogen as a main component discharged from the steam reformer 4 is sent to the carbon monoxide shift converter 5 in the same manner as in the past, and the carbon oxide content is reduced and the hydrogen content is increased. Next, the fuel gas discharged from the carbon oxide shift converter 5 is sent to the fuel electrode 7 of the fuel cell main body 6, and undergoes an electrochemical reaction with oxygen in the air 9 flowing into the oxidizer electrode 10 by the compressor 8. As a result, part of the fuel gas is consumed, electrical energy is obtained, and water is produced as a by-product.
なお、燃料極7から排出された燃料ガスの処理(例えば
、バーナー11に送り、燃焼させて水蒸気改質装置4の
加熱源として利用する等)、酸化剤極10から排出され
た排ガスの処理、燃料電池本体6の冷却及び冷却水回路
等は、従来の装置と同様である。In addition, processing of the fuel gas discharged from the fuel electrode 7 (for example, sending it to the burner 11, burning it, and using it as a heating source for the steam reformer 4, etc.), processing of the exhaust gas discharged from the oxidizer electrode 10, The cooling of the fuel cell main body 6, the cooling water circuit, etc. are the same as those of the conventional device.
本発明は上記の実施例に限定されるものではなく、その
要旨を変更しない範囲で種々に変形して実施することが
でき、また従来公知の種々の機構を付加することができ
る。例えば、燃料極7に供給する燃料ガス及び酸化剤極
10に供給する空気9を負荷に見合って制御する機構や
、燃料極7と酸化剤極10間の差圧を検知して差圧を調
整する機構が設けられていてもよく、また複数の燃料電
池本体6を並列又は直列に結合してもよい。さらに燃料
極7の燃料ガス供給ラインと一燃料ガス排出ラインとの
間に燃料再循環ファンを設けて排出された燃料ガスの一
部を燃料極7に戻す機構や、酸化剤極10の空気供給ラ
インと空気排出ラインとの間に空気再循環ファンを設け
て排出された空気の一部を酸化剤極10に戻す機構が設
けられていてもよい。これらの再循環機構を設けること
により、電極反応後の反応性ガスの再利用を図ると共に
排出燃料ガスの水素濃度及び排出空気の酸素濃度を調整
し、燃料電池の負荷変動の調整を行なうことができる。The present invention is not limited to the above-described embodiments, but can be implemented with various modifications without changing the gist thereof, and various conventionally known mechanisms can be added. For example, a mechanism that controls the fuel gas supplied to the fuel electrode 7 and the air 9 supplied to the oxidizer electrode 10 according to the load, or a mechanism that detects the differential pressure between the fuel electrode 7 and the oxidizer electrode 10 and adjusts the differential pressure. Alternatively, a plurality of fuel cell main bodies 6 may be connected in parallel or in series. Furthermore, a fuel recirculation fan is provided between the fuel gas supply line of the fuel electrode 7 and the fuel gas discharge line to return a part of the discharged fuel gas to the fuel electrode 7, and an air supply line of the oxidizer electrode 10 is provided. An air recirculation fan may be provided between the line and the air exhaust line to return a portion of the exhausted air to the oxidizer electrode 10. By providing these recirculation mechanisms, it is possible to reuse the reactive gas after the electrode reaction, adjust the hydrogen concentration of the exhaust fuel gas and the oxygen concentration of the exhaust air, and adjust the load fluctuation of the fuel cell. can.
以下、試験例及び比較例に基づき、本発明をより詳細に
説明するが、本発明はこれら試験例に限定されるもので
はない。Hereinafter, the present invention will be explained in more detail based on test examples and comparative examples, but the present invention is not limited to these test examples.
試験例1
第1図に示される燃料電池発電システムを用いて試験を
行なった。なお、水蒸気改質装置として、Ru触媒(R
u2%、AI)z03担持)5g (かさ密度的0.8
kg#)を充填した水蒸気改質装置(触媒層長さ約1m
)を用いた。また、脱硫装置としては、硝酸銅及び硝酸
亜鉛を含有する混合水溶液にアルカリ物質として炭酸ナ
トリウム水溶液を加え、生じた沈澱を洗浄及び濾取した
後、高さ1/8インチ×直径1/8インチの大きさに打
錠成型し、約300℃で焼成し、次いで、該焼成体[銅
二亜鉛−約1=1(原子比)]を、水素2容量%を含む
窒素ガスを用いて温度約200℃で還元処理して得られ
た銅−亜鉛脱硫剤2(lを充填した脱硫装置(脱硫層長
さ約50印)を用いた。Test Example 1 A test was conducted using the fuel cell power generation system shown in FIG. In addition, as a steam reformer, Ru catalyst (R
u2%, AI) z03 supported) 5g (bulk density 0.8
kg #) (catalyst layer length approximately 1 m)
) was used. In addition, as a desulfurization device, a sodium carbonate aqueous solution is added as an alkaline substance to a mixed aqueous solution containing copper nitrate and zinc nitrate, and the resulting precipitate is washed and filtered, and then the precipitate is 1/8 inch in height x 1/8 inch in diameter. The fired product [copper dizinc - about 1=1 (atomic ratio)] was heated to about 300°C using nitrogen gas containing 2% by volume of hydrogen. A desulfurization device (desulfurization layer length about 50 marks) filled with copper-zinc desulfurization agent 2 (l) obtained by reduction treatment at 200° C. was used.
原燃料として、下記第1表に示さ・れる成分からなる都
市ガス13Aを予熱器で200℃に予熱した後、10m
″/hで上記脱硫装置に導入して脱硫した。。脱硫した
ガスを水蒸気と混合した後、水蒸気改質装置に導入し、
S/C(原燃料炭化水素中の炭素1モル当りの水蒸気の
モル数)−3,3、反応温度450℃(入口)及び66
5℃(出口)、反応圧力0.2)cg/c−・Gで水蒸
気改質反応に付した。水蒸気改質された燃料ガスは、−
酸化炭素変成器を経て燃料電池本体の燃料極に導き、酸
化剤極に導入された空気中の酸素と反応させて、電気エ
ネルギーを取り出した。As raw fuel, city gas 13A consisting of the components shown in Table 1 below was preheated to 200°C in a preheater, and then heated to 10 m
''/h to the desulfurization equipment for desulfurization. After mixing the desulfurized gas with steam, it was introduced to the steam reforming equipment,
S/C (number of moles of water vapor per mole of carbon in raw fuel hydrocarbon) -3,3, reaction temperature 450 ° C (inlet) and 66
A steam reforming reaction was carried out at 5°C (outlet) and a reaction pressure of 0.2) cg/c-G. The steam-reformed fuel gas is −
It was led to the fuel electrode of the fuel cell main body through a carbon oxide transformer, and reacted with the oxygen in the air introduced to the oxidizer electrode to extract electrical energy.
第 1 表
メタン 86.9容量%エタン
8.1容量%プロパン
3.7容量%ブタン
1.3容量%付臭剤 ジメチルスルフィド 3m
g−8/Nrn”t−ブチルメルカプタン 2s+g−
8/Nm″上記の試験において、脱硫装置出口のガス中
の硫黄含有量を経時的に測定したが、2000時間経過
後も硫黄含有量は0. 1ppb以下であった。Table 1 Methane 86.9% by volume Ethane
8.1% by volume propane
3.7% by volume butane
1.3% by volume odorant dimethyl sulfide 3m
g-8/Nrn” t-butyl mercaptan 2s+g-
8/Nm'' In the above test, the sulfur content in the gas at the desulfurizer outlet was measured over time, and even after 2000 hours, the sulfur content was 0.1 ppb or less.
また、水蒸気改質触媒は、2000時間経過後において
も触媒活性の劣化は認められず、反応開始直後と同様な
活性を維持しており、燃料電池は正常に作動した。Furthermore, no deterioration of the catalytic activity of the steam reforming catalyst was observed even after 2000 hours had elapsed, and the same activity as that immediately after the start of the reaction was maintained, and the fuel cell operated normally.
比較例1
第2図に示される燃料電池発電システムおいて、脱硫剤
としてNi−Mo系水添脱硫触媒5g及び酸化亜鉛IC
II!を充填した脱硫装置を用いたシステムを作製し、
試験例1と同様に燃料電池を作動させた。但し、′脱硫
温度380℃、脱硫器に供給するリサイクル改質ガス(
即ち、−酸化炭素変成器からリサイクルする燃料ガス)
量は、原燃料に対して2容量%とした。Comparative Example 1 In the fuel cell power generation system shown in FIG. 2, 5 g of Ni-Mo hydrodesulfurization catalyst and zinc oxide IC were used as desulfurization agents.
II! We created a system using a desulfurization equipment filled with
The fuel cell was operated in the same manner as Test Example 1. However, when the desulfurization temperature is 380℃ and the recycled reformed gas is supplied to the desulfurizer (
i.e. - fuel gas recycled from the carbon oxide transformer)
The amount was 2% by volume based on the raw fuel.
その結果、反応開始直後の脱硫装置出口のガスの硫黄含
有量は、0.2ppmであり、その後もほぼ変わらなか
ったが、500時間経過後から改質装置の出口でメタン
のスリップが増大し、燃料電池の電気出力が低下し始め
、やがて、装置を停止せざるをえなくなった。このとき
改質触媒はほぼ完全に劣化していた。As a result, the sulfur content of the gas at the desulfurizer outlet immediately after the start of the reaction was 0.2 ppm, and remained almost unchanged thereafter, but after 500 hours, the methane slip at the reformer outlet increased. The fuel cell's electrical output began to decline, and eventually the device had to be shut down. At this time, the reforming catalyst had almost completely deteriorated.
試験例2
試験例1で用いた燃料電池発電システムにおいて、脱硫
装置の前に加熱器及び冷却器を仮設し、原燃料を加熱又
は冷却できるようにした他は、試験例1と同様の装置を
用いて、同様に燃料電池発電システムを作動させた。但
し、この間、8時間毎に、脱硫装置入口の温度を15分
かけて約20℃に低下させ、引続き15分かけて約20
0℃に戻すという操作を行った。これは、燃料電池発電
システムのたち上げ、停止時に受ける脱硫装置の条件を
模擬したこととなる。Test Example 2 In the fuel cell power generation system used in Test Example 1, a heater and a cooler were temporarily installed in front of the desulfurization equipment so that the raw fuel could be heated or cooled, but the same equipment as Test Example 1 was used. A fuel cell power generation system was similarly operated using the same method. However, during this period, every 8 hours, the temperature at the inlet of the desulfurization equipment is lowered to about 20°C over 15 minutes, and then lowered to about 20°C over 15 minutes.
An operation was performed to return the temperature to 0°C. This simulates the conditions that the desulfurization equipment undergoes during start-up and shutdown of a fuel cell power generation system.
その結果、試験例1と同様、通算2000時間の運転の
後も、脱硫装置出口ガス中の硫黄含有量は、0. 1p
pb以下であり、触媒の劣化も認められず、燃料電池は
正常に作動した。As a result, as in Test Example 1, even after a total of 2000 hours of operation, the sulfur content in the desulfurization equipment outlet gas remained at 0. 1p
pb or less, no deterioration of the catalyst was observed, and the fuel cell operated normally.
比較例2
比較例1と同様な装置を用い、試験例2と同様な運転パ
ターンで燃料電池を作動させた。但し、脱硫器入口温度
の幅は、20℃〜380℃(常用)とした。Comparative Example 2 Using the same device as in Comparative Example 1, a fuel cell was operated in the same operating pattern as in Test Example 2. However, the range of the desulfurizer inlet temperature was 20°C to 380°C (commonly used).
その結果、脱硫器出口のガス中の硫黄含有量は、常用温
度では0.2ppmであったが、温度低下時には3pp
mに達していた。また、運転開始200時間経過後には
、改質装置の出口で原料炭化水素のスリップが増大し、
燃料電池の電気出力が低下し始め、やがて装置を停止せ
ざるをえなくなった。このとき改質触媒はほぼ完全に劣
化していた。As a result, the sulfur content in the gas at the desulfurizer outlet was 0.2 ppm at normal temperature, but 3 ppm when the temperature dropped.
It had reached m. In addition, after 200 hours of operation, the slip of the feedstock hydrocarbon at the exit of the reformer increases,
The fuel cell's electrical output began to decline, and eventually the device had to be shut down. At this time, the reforming catalyst had almost completely deteriorated.
試験例3
試験例1において、脱硫装置に充填する銅−亜鉛系脱硫
剤として、硝酸銅、硝酸亜鉛及び硝酸アルミニウムを溶
解する混合水溶液にアルカリ物質として炭酸ナトリウム
水溶液を加え、生じた沈澱を洗浄及び濾過した後、高さ
1/8インチX直径1/8インチの大きさに打錠成型し
、約400℃で焼成し、次いで該焼成体(酸化銅45%
、酸化亜鉛45%、酸化アルミニウム10%)を水素2
容量%を含む窒素ガスを用いて、温度約200℃で還元
して得られた銅−亜鉛−アルミニウム脱硫剤を用いて、
試験例1と同様な試験を行った。Test Example 3 In Test Example 1, a sodium carbonate aqueous solution was added as an alkaline substance to a mixed aqueous solution in which copper nitrate, zinc nitrate, and aluminum nitrate were dissolved as a copper-zinc desulfurization agent to be filled in a desulfurization equipment, and the resulting precipitate was washed and washed. After filtration, the tablets are formed into a size of 1/8 inch in height x 1/8 inch in diameter, fired at about 400°C, and then the fired body (copper oxide 45%
, zinc oxide 45%, aluminum oxide 10%) to hydrogen 2
Using a copper-zinc-aluminum desulfurization agent obtained by reduction using nitrogen gas containing % by volume at a temperature of about 200°C,
A test similar to Test Example 1 was conducted.
その結果、試験例1と同様に、脱硫装置出口ガス中の硫
黄含有量を0.1ppb以下に脱硫でき、水蒸気改質触
媒の劣化を抑制することができることが判明し、また燃
料電池は正常に作動した。As a result, as in Test Example 1, it was found that the sulfur content in the desulfurization device outlet gas could be desulfurized to 0.1 ppb or less, that deterioration of the steam reforming catalyst could be suppressed, and that the fuel cell could be operated normally. It worked.
〈発明の効果〉
本発明の燃料電池発電システムによれば、下記の効果を
奏することができる。<Effects of the Invention> According to the fuel cell power generation system of the present invention, the following effects can be achieved.
(1)脱硫性能に優れた脱硫装置が用いられ、原燃料を
高度に脱硫して水蒸気改質反応に付すので、水蒸気改質
触媒の劣化が防止され、燃料電池を長時間、安定的に運
転することができ、また水蒸気改質触媒コストの低減が
図れると共に装置の小型化が可能となる。(1) A desulfurization device with excellent desulfurization performance is used to highly desulfurize the raw fuel and subject it to a steam reforming reaction, which prevents deterioration of the steam reforming catalyst and allows the fuel cell to operate stably for long periods of time. In addition, it is possible to reduce the cost of the steam reforming catalyst and to downsize the device.
■水蒸気改質触媒が高活性を長時間維持することができ
るので、高りv運転が可能で装置の小型化及び触媒コス
トの低減が図れる。また、低S/C運転が可能となり、
熱効率、発電効率等の向上に寄与することができる。(2) Since the steam reforming catalyst can maintain high activity for a long time, high V operation is possible, making it possible to downsize the device and reduce catalyst cost. In addition, low S/C operation is possible,
It can contribute to improving thermal efficiency, power generation efficiency, etc.
G)低い温度領域での脱硫が可能であり、従来の水添脱
硫のように高温で脱硫する必要力jないので、特別な加
熱装置を必要とせず、また燃料電池の負荷変動に対して
も迅速に対応することができる。G) Desulfurization is possible in a low temperature range, and there is no need for high-temperature desulfurization like in conventional hydrodesulfurization, so there is no need for a special heating device, and it is resistant to fuel cell load fluctuations. Able to respond quickly.
(4)脱硫工程に従来の水添脱硫を用いる場合には、水
蒸気改質装置等から水素のリサイクルラインが必要であ
るが、本発明のシステムにおいては水素のリサイクルラ
インが不要なので、システムが簡素化され、装置の小型
化が図れる。(4) When conventional hydrodesulfurization is used in the desulfurization process, a hydrogen recycle line is required from a steam reformer, etc., but the system of the present invention does not require a hydrogen recycle line, so the system is simple. It is possible to reduce the size of the device.
第1図は、本発明の燃料電池発電システムの一実施例の
概要を示すシステム図、
第2図は、従来の燃料電池発電システムの概要を示すシ
ステム図である。FIG. 1 is a system diagram showing an overview of an embodiment of the fuel cell power generation system of the present invention, and FIG. 2 is a system diagram showing an overview of a conventional fuel cell power generation system.
Claims (1)
素主成分の燃料ガスに改質する水蒸気改質装置とを少な
くとも有する燃料電池発電システムにおいて、脱硫装置
が銅−亜鉛系脱硫剤を充填した脱硫装置で構成されるこ
とを特徴とする燃料電池発電システム。 2、脱硫装置により、原燃料の硫黄含有量を5ppb以
下に脱硫する請求項1記載の燃料電池発電システム。 3、脱硫装置により、原燃料の硫黄含有量を0.1pp
b以下に脱硫する請求項2記載の燃料電池発電システム
。 4、脱硫装置の銅−亜鉛系脱硫剤が、銅化合物及び亜鉛
化合物を用いる共沈法により調製した酸化銅−酸化亜鉛
混合物を水素還元して得られた脱硫剤、又は銅化合物、
亜鉛化合物及びアルミニウム化合物を用いる共沈法によ
り調製した酸化銅−酸化亜鉛−酸化アルミニウム混合物
を水素還元して得られた脱硫剤である請求項1乃至3の
いずれかに記載の燃料電池発電システム。 5、原燃料が気体燃料である請求項1乃至4のいずれか
に記載の燃料電池発電システム。[Scope of Claims] 1. In a fuel cell power generation system having at least a desulfurization device for desulfurizing raw fuel and a steam reforming device for reforming the desulfurized raw fuel into fuel gas mainly composed of hydrogen, the desulfurization device - A fuel cell power generation system comprising a desulfurization device filled with a zinc-based desulfurization agent. 2. The fuel cell power generation system according to claim 1, wherein the desulfurization device desulfurizes the sulfur content of the raw fuel to 5 ppb or less. 3. Desulfurization equipment reduces the sulfur content of raw fuel to 0.1pp
The fuel cell power generation system according to claim 2, wherein the fuel cell power generation system desulfurizes to below b. 4. The copper-zinc desulfurization agent in the desulfurization equipment is a desulfurization agent obtained by hydrogen reduction of a copper oxide-zinc oxide mixture prepared by a coprecipitation method using a copper compound and a zinc compound, or a copper compound;
4. The fuel cell power generation system according to claim 1, wherein the desulfurization agent is obtained by hydrogen reduction of a copper oxide-zinc oxide-aluminum oxide mixture prepared by a coprecipitation method using a zinc compound and an aluminum compound. 5. The fuel cell power generation system according to any one of claims 1 to 4, wherein the raw fuel is a gaseous fuel.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1123420A JP2993507B2 (en) | 1989-05-17 | 1989-05-17 | Fuel cell power generation system |
PCT/JP1990/000607 WO1990014305A1 (en) | 1989-05-16 | 1990-05-15 | Fuel cell power generation system |
DK90907417.1T DK0427869T3 (en) | 1989-05-16 | 1990-05-15 | Energy producing fuel cell system |
CA002033064A CA2033064C (en) | 1989-05-16 | 1990-05-15 | Fuel cell power generation system |
DE69008669T DE69008669T2 (en) | 1989-05-16 | 1990-05-15 | FUEL CELL WITH POWER GENERATION SYSTEM. |
EP90907417A EP0427869B1 (en) | 1989-05-16 | 1990-05-15 | Fuel cell power generation system |
US07/921,596 US5302470A (en) | 1989-05-16 | 1992-07-31 | Fuel cell power generation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1123420A JP2993507B2 (en) | 1989-05-17 | 1989-05-17 | Fuel cell power generation system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10243336A Division JP3050850B2 (en) | 1998-08-28 | 1998-08-28 | Fuel cell power generation system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02302303A true JPH02302303A (en) | 1990-12-14 |
JP2993507B2 JP2993507B2 (en) | 1999-12-20 |
Family
ID=14860114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1123420A Expired - Lifetime JP2993507B2 (en) | 1989-05-16 | 1989-05-17 | Fuel cell power generation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2993507B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008056621A1 (en) | 2006-11-07 | 2008-05-15 | Nippon Oil Corporation | Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5830695B2 (en) | 2012-11-29 | 2015-12-09 | パナソニックIpマネジメント株式会社 | Fuel cell system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511376A (en) * | 1978-07-10 | 1980-01-26 | Matsushita Electric Ind Co Ltd | Bothhside circuit board and method of manufacturing same |
JPS60238389A (en) * | 1984-05-11 | 1985-11-27 | Osaka Gas Co Ltd | Method for high-order desulfurization of gas |
JPS61163568A (en) * | 1985-01-11 | 1986-07-24 | Mitsubishi Heavy Ind Ltd | Unified desulfurizing device |
JPH01123628A (en) * | 1987-11-05 | 1989-05-16 | Osaka Gas Co Ltd | Production of high temperature-resistant high-order desulfurizing agent |
-
1989
- 1989-05-17 JP JP1123420A patent/JP2993507B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5511376A (en) * | 1978-07-10 | 1980-01-26 | Matsushita Electric Ind Co Ltd | Bothhside circuit board and method of manufacturing same |
JPS60238389A (en) * | 1984-05-11 | 1985-11-27 | Osaka Gas Co Ltd | Method for high-order desulfurization of gas |
JPS61163568A (en) * | 1985-01-11 | 1986-07-24 | Mitsubishi Heavy Ind Ltd | Unified desulfurizing device |
JPH01123628A (en) * | 1987-11-05 | 1989-05-16 | Osaka Gas Co Ltd | Production of high temperature-resistant high-order desulfurizing agent |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008056621A1 (en) | 2006-11-07 | 2008-05-15 | Nippon Oil Corporation | Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene |
Also Published As
Publication number | Publication date |
---|---|
JP2993507B2 (en) | 1999-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5302470A (en) | Fuel cell power generation system | |
JP2001524739A (en) | Cover gas and starting gas supply system for solid oxide fuel cell power plant | |
AU2003261776B2 (en) | Fuel Cell Electrical Power Generation System | |
EP1878781A1 (en) | Desulfurizing agent and method of desulfurization with the same | |
US4181503A (en) | Process for alternately steam reforming sulfur containing hydrocarbons that vary in oxygen content | |
US6551732B1 (en) | Use of fuel cell cathode effluent in a fuel reformer to produce hydrogen for the fuel cell anode | |
US20040047799A1 (en) | Dynamic sulfur tolerant process and system with inline acid gas-selective removal for generating hydrogen for fuel cells | |
US8945784B2 (en) | Hydrogen production apparatus and fuel cell system using the same | |
JP2002518820A (en) | Fuel desulfurization unit for use in fuel cell power equipment | |
CN111788731B (en) | Fuel cell system and method of operating the fuel cell system | |
JP4902859B2 (en) | Autothermal reforming in fuel processors using non-ignitable shift catalysts | |
JP2002020102A (en) | Method for starting and method for stopping hydrogen producing device | |
JP2016517613A (en) | Manganese oxide containing materials for use in oxidative desulfurization in fuel cell systems | |
JP2004284875A (en) | Hydrogen production system and fuel cell system | |
JP4292362B2 (en) | Polymer electrolyte fuel cell power generation system and polymer electrolyte fuel cell power generation method | |
US7198862B2 (en) | Process for preparing a low-sulfur reformate gas for use in a fuel cell system | |
JPH02302302A (en) | Power generation system of fuel cell | |
JP2004338975A (en) | Starting method of hydrogen production equipment | |
JP4931865B2 (en) | Solid polymer fuel cell power generation system and solid polymer fuel cell power generation method | |
JP3050850B2 (en) | Fuel cell power generation system | |
JP2003132926A (en) | Reformer for fuel cell generator | |
JP4267483B2 (en) | Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells | |
JP5098073B2 (en) | Energy station | |
JP2002020103A (en) | Method for starting and method for stopping hydrogen producing device | |
JPH02302303A (en) | Power generation system of fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081022 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091022 Year of fee payment: 10 |