[go: up one dir, main page]

JPH02297515A - Stereoscopic electronic endoscope - Google Patents

Stereoscopic electronic endoscope

Info

Publication number
JPH02297515A
JPH02297515A JP1119339A JP11933989A JPH02297515A JP H02297515 A JPH02297515 A JP H02297515A JP 1119339 A JP1119339 A JP 1119339A JP 11933989 A JP11933989 A JP 11933989A JP H02297515 A JPH02297515 A JP H02297515A
Authority
JP
Japan
Prior art keywords
scope
computer
grid
electronic endoscope
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1119339A
Other languages
Japanese (ja)
Inventor
Shohei Tanaka
田中 松平
Koki Matsuura
松浦 弘毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1119339A priority Critical patent/JPH02297515A/en
Publication of JPH02297515A publication Critical patent/JPH02297515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To automatically and exactly recognize the shape of depth of a recessed part and the height of a projecting part, etc., of a disease-affected part as a stereo-scopic three-dimensional structure by fetching a stripe pattern obtained by photographing a grid as an image to a computer, analyzing it by a computer, based on the theory of a trigonometrical survey and displaying it as a graphic. CONSTITUTION:In the scope, a light channel 8, a CCD cable 5, a feed air/feed water channel 6 and an angle wire 7 are incorporated and on the tip part of the light channel 8, an optical fiber 9, a grid 10 and a condensing lens 11 are provided successively toward the tip side of the scope. In this state, a projection is executed through the grid 10 and the condensing lens 11 from the optical fiber 9, and an obtained stripe pattern is fetched as an image to the frame memory of a computer. Also, the coordinate origins of a projecting system and a photographing system are detected correctly and each coordinate system is coordinated. In such a manner, the depth direction distribution of a disease- affected part is calculated, and a stereo-scopic image is obtained by executing a three-dimensional display with a computer graphic.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電子内視鏡の改良に関するものであり、医
療の分野で利用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to improvement of an electronic endoscope and is used in the medical field.

[従来の技術] スコープ、スコープ本体、ユニバーサルコードおよびス
コープコネクターからなる従来の電子内視鏡は、画像が
シャープで、拡大された粘膜像が得、ちれ、微細病変の
診断に威力を発揮でき、しかも映像信号のコンピュータ
への入力が容易なため画像処理がしやすく、病変を強調
したり、色調の変化から新しい診断法が確立される可能
性があるため、広く利用されている。
[Conventional technology] Conventional electronic endoscopes, which consist of a scope, a scope body, a universal cord, and a scope connector, provide sharp images and magnified mucosal images, making them effective in diagnosing cracks and minute lesions. Moreover, it is widely used because it is easy to input video signals into a computer, which makes it easy to process images, and it is possible to emphasize lesions or establish new diagnostic methods based on changes in color tone.

[発明が解決しようとする課組] 従来の電子内視鏡により得られる画像は平面的であるた
め、これを立体的な3次元構造として正確に把握するこ
とは困難であった。
[Problems to be Solved by the Invention] Since images obtained by conventional electronic endoscopes are flat, it has been difficult to accurately grasp them as three-dimensional three-dimensional structures.

[課題を解決するための手段] この発明の発明者は、胃などの病変部を立体的に正確に
把握できる電子内視鏡を開発すべく鋭意研究の結果、グ
リッドを投影して得られた縞模様をコンピュータに画像
として取り込み、三角測量の原理に基づいてコンピュー
タ解析し、こ!tを図形として表示すれば、画像内物体
の高さ、つまり病変部の凹の深さや凸部の高さなどの形
状を自動的に計測できることを見出し、この発明を完成
した。
[Means for Solving the Problems] As a result of intensive research to develop an electronic endoscope that can accurately grasp diseased areas such as the stomach in three dimensions, the inventor of this invention has developed an electronic endoscope that was obtained by projecting a grid. The striped pattern is captured as an image on a computer, analyzed by computer based on the principle of triangulation, and this! The present invention was completed based on the discovery that if t is displayed as a figure, the height of an object in an image, that is, the shape such as the depth of a concave part or the height of a convex part of a lesion, can be automatically measured.

この発明の電子内視鏡は、ス:7−ブ、スコープ本体、
ユニバーサルコードおよびスコープコネクターからなる
通常の電子内視鏡において、スコープにライトチャンネ
ル、CCDケーブル、送気送水チャンネルおよびアング
ルワイヤーを内蔵し、該ライトチャンネルの先端部に光
ファイバー、グリッドおよび集光レンズをスコープの先
端側に向けて順次設けた構造からなる。
The electronic endoscope of the present invention includes a scope, a scope body,
In a normal electronic endoscope consisting of a universal cord and scope connector, the scope has a built-in light channel, CCD cable, air and water supply channel, and angle wire, and an optical fiber, grid, and condensing lens are attached to the tip of the light channel. It consists of a structure that is installed sequentially toward the tip side.

[実施例コ この発明の電子内視鏡を図面に基づいて以下に説明する 第1〜3図はこの発明の電子内視鏡の一実施例であり、
この発明の電子内視鏡は、通常の電子内視鏡と同様に、
スコープ(1)、スコープ本体(2)、ユニバーサルコ
ード(3)およびスコープコネクター(4)からなって
いる。
[Example] The electronic endoscope of the present invention will be explained below based on the drawings. Figures 1 to 3 are examples of the electronic endoscope of the present invention.
The electronic endoscope of this invention, like a normal electronic endoscope,
It consists of a scope (1), a scope body (2), a universal cord (3), and a scope connector (4).

ス−z −フ本K(2)、ユニバーサルコー)’(3)
およびスコープコネクター(4)は、従来の電子内視鏡
におけるものをそのまま使用できる。
S-Z-F Book K (2), Universal Code' (3)
The scope connector (4) used in conventional electronic endoscopes can be used as is.

スコープ(1)は、従来の電子内視鏡のスコープと同様
に、CCDケーブル(5)、送気送水チャンネル、(’
6)およびアングルワイヤー(7)を内蔵し、これらに
加えてライトチャンネル(8)を内蔵している。
The scope (1) has a CCD cable (5), an air/water supply channel, ('
6) and an angle wire (7), and in addition to these, a light channel (8) is also built in.

ライトチャンネル(8)は、従来の電子内視鏡のスコー
プにおける鉗子チャンネルまたは照明用ライトガイドフ
ァイバーを利用し、その先端部に光ファイバー(9)、
グリッド(10)および集光レンズ(11)をスコープ
(1)の先端側に向けて順次内蔵している。光源および
光ファイバー(9)としては従来の電子内視鏡と全く同
一構造のものを使用することができる。またグリッド(
10)は2.5cmの距離から投射して得られる格子の
幅が0.5mm程度になるものが好ましい。
The light channel (8) utilizes a forceps channel or an illumination light guide fiber in a conventional electronic endoscope scope, and has an optical fiber (9) at its tip.
A grid (10) and a condensing lens (11) are sequentially built in toward the distal end of the scope (1). As the light source and the optical fiber (9), those having exactly the same structure as the conventional electronic endoscope can be used. Also, the grid (
10) is preferably one in which the width of the grid obtained by projection from a distance of 2.5 cm is about 0.5 mm.

なお、スコープ(1)には、従来のスコープと同様に、
ライトガイドファイバーや鉗子チャンネル(図示路)が
内蔵されていてもよい。
In addition, the scope (1) has the following as well as the conventional scope.
A light guide fiber and a forceps channel (as shown) may be built-in.

次に、この発明の電子内視鏡の使用方法について説明す
る。
Next, a method of using the electronic endoscope of the present invention will be explained.

まず、通常の電子内視鏡と同様にして、スコープ(1)
を胃内へ挿入し、その先端を観察個所に臨ませる。スコ
ープ(1)の先端と観察個所との間隔は、通常2.5c
+n程度であればよい。光ファイバー(9)からグリッ
ド(10)および集光レンズ(11)を介して投影し、
得られる縞模様をコンピュータのフレームメモリに画像
として取り込む。三角測量法によって物体の高さ分布、
すなわら形状を求めるためには、投影系と撮影系の座標
原点を正しく検出し、各座標系を対応づけることが必要
である。
First, use the scope (1) in the same way as a normal electronic endoscope.
Insert the probe into the stomach and position its tip toward the area to be observed. The distance between the tip of the scope (1) and the observation point is usually 2.5c.
It is sufficient if it is about +n. Projecting from an optical fiber (9) through a grid (10) and a condensing lens (11),
The resulting striped pattern is imported into the computer's frame memory as an image. Height distribution of objects by triangulation method,
In other words, in order to obtain the shape, it is necessary to correctly detect the coordinate origins of the projection system and the imaging system and to associate each coordinate system.

撮影系の座標原点は画面中心の位置とすればよい。The coordinate origin of the imaging system may be set at the center of the screen.

投影系の座標原点の決定には、投影するパターンにハー
フマスクなどの特定パターンを入れておき、その位置か
ら原点を決定する。また、原点から何本口のグリッドが
撮影系のどの座標上にあるかを順次求めていくことによ
り、投影・撮影系の座標の対応づけが完了する。この対
応づけにより、物体、病変部の奥行方向分布、つまり高
さ分布を算出できる。この高さ分布を、コンピュータグ
ラフィックによって3次元表示すれば、第7図に示すよ
うな立体像が得られる。もちろん、病変部を任意の場所
や方向で切った断層画像を表示することも、容易にでき
る。
To determine the coordinate origin of the projection system, a specific pattern such as a half mask is included in the pattern to be projected, and the origin is determined from that position. Furthermore, by sequentially determining how many grids are located on which coordinates of the imaging system from the origin, the correspondence between the coordinates of the projection and imaging system is completed. Through this association, the depth distribution, that is, the height distribution, of the object and the lesion can be calculated. If this height distribution is displayed three-dimensionally using computer graphics, a three-dimensional image as shown in FIG. 7 can be obtained. Of course, it is also possible to easily display a tomographic image of a lesion cut at any location or direction.

なお、実際の座標対応づけの際には、レンズの収差補正
を行う必要がある。この収差補正は、現実の電子内視鏡
光学系構成の場合では、3次までの補正項を考慮すれば
充分であることを実験により確認している。
Note that during actual coordinate matching, it is necessary to correct lens aberrations. It has been confirmed through experiments that this aberration correction is sufficient in the case of an actual electronic endoscope optical system configuration by considering correction terms up to the third order.

[効果コ この発明の電子内視鏡によれば、CCD素子の画素の細
かさにもよるが、0.1mm程度の精度で病変部の形状
を立体的に正確に把握でき、しかも3次元に表示するこ
とができるため、より正確な診断、ひいてはより適切な
治療が可能となる。
[Effects] According to the electronic endoscope of this invention, it is possible to accurately grasp the shape of a lesion in three dimensions with an accuracy of about 0.1 mm, although it depends on the fineness of the pixels of the CCD element. This enables more accurate diagnosis and, in turn, more appropriate treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図はこの発明の電子内視鏡の一実施例を表し、
第1図はその模式図、第2図はスコープの横断面図、第
3図はライトチャンネルの先端部分の縦断面図である。 第4〜7図はこの発明の電子内視鏡の使用例を表し、第
4図はグリッドパターンの一例、第5図は観測対象とし
た円筒形状物体の一部、第6図は子の発明の立体視電子
内視鏡で撮影されたコンピュータ画像、第7図はそれを
コンピュータ解析して得られたグラフィック画像の一部
をそれぞれ表す。 (1)  ・スコープ、(2)・・スコープ本体、(3
)・・・ユニバーサルコード、 (4)・・・スコープ
コ*り9−1(5)・・・CCDケーブル、(6)・・
・送気送水チャンネル、(7)・・アングルワイヤー、
(8)・・・ライトチャンネル、(9)・・・光ファイ
バー、(10)・・グリッド、(11)・集光レンズ
1 to 3 represent an embodiment of the electronic endoscope of the present invention,
FIG. 1 is a schematic diagram thereof, FIG. 2 is a cross-sectional view of the scope, and FIG. 3 is a vertical cross-sectional view of the tip of the light channel. Figures 4 to 7 represent usage examples of the electronic endoscope of this invention, Figure 4 is an example of a grid pattern, Figure 5 is a part of a cylindrical object to be observed, and Figure 6 is a child invention. A computer image taken with a stereoscopic electronic endoscope, and FIG. 7 shows a part of a graphic image obtained by computer analysis of the computer image. (1) Scope, (2) Scope body, (3
)...Universal cord, (4)...Scope code 9-1 (5)...CCD cable, (6)...
・Air and water channel, (7)...Angle wire,
(8) Light channel, (9) Optical fiber, (10) Grid, (11) Condensing lens

Claims (1)

【特許請求の範囲】[Claims] スコープ、スコープ本体、ユニバーサルコードおよびス
コープコネクターからなる電子内視鏡において、スコー
プにライトチャンネル、CCDケーブル、送気送水チャ
ンネルおよびアングルワイヤーを内蔵し、該ライトチャ
ンネルの先端部に光ファイバー、グリッドおよび集光レ
ンズをスコープの先端側に向けて順次設けたことを特徴
とする立体視電子内視鏡。
An electronic endoscope consisting of a scope, a scope body, a universal cord, and a scope connector.The scope has a built-in light channel, a CCD cable, an air/water supply channel, and an angle wire, and the tip of the light channel has an optical fiber, a grid, and a light condenser. A stereoscopic electronic endoscope characterized in that lenses are sequentially provided toward the distal end of the scope.
JP1119339A 1989-05-12 1989-05-12 Stereoscopic electronic endoscope Pending JPH02297515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119339A JPH02297515A (en) 1989-05-12 1989-05-12 Stereoscopic electronic endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119339A JPH02297515A (en) 1989-05-12 1989-05-12 Stereoscopic electronic endoscope

Publications (1)

Publication Number Publication Date
JPH02297515A true JPH02297515A (en) 1990-12-10

Family

ID=14759037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119339A Pending JPH02297515A (en) 1989-05-12 1989-05-12 Stereoscopic electronic endoscope

Country Status (1)

Country Link
JP (1) JPH02297515A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059253A1 (en) * 2010-11-04 2012-05-10 Siemens Aktiengesellschaft Endoscope having 3d functionality
EP2549226A1 (en) * 2011-07-20 2013-01-23 Samsung Electronics Co., Ltd. Endoscope and endoscope system
JP2018535725A (en) * 2015-10-09 2018-12-06 スリーディインテグレイテッド アーペーエス3Dintegrated Aps Description system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969722A (en) * 1982-10-15 1984-04-20 Olympus Optical Co Ltd Path endoscope video system
JPS60247614A (en) * 1984-05-24 1985-12-07 Olympus Optical Co Ltd Endoscope
JPS6219143A (en) * 1985-07-18 1987-01-27 旭光学工業株式会社 Endoscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969722A (en) * 1982-10-15 1984-04-20 Olympus Optical Co Ltd Path endoscope video system
JPS60247614A (en) * 1984-05-24 1985-12-07 Olympus Optical Co Ltd Endoscope
JPS6219143A (en) * 1985-07-18 1987-01-27 旭光学工業株式会社 Endoscope

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059253A1 (en) * 2010-11-04 2012-05-10 Siemens Aktiengesellschaft Endoscope having 3d functionality
JP2014502174A (en) * 2010-11-04 2014-01-30 シーメンス アクチエンゲゼルシヤフト Endoscope with 3D function
EP2549226A1 (en) * 2011-07-20 2013-01-23 Samsung Electronics Co., Ltd. Endoscope and endoscope system
JP2018535725A (en) * 2015-10-09 2018-12-06 スリーディインテグレイテッド アーペーエス3Dintegrated Aps Description system

Similar Documents

Publication Publication Date Title
US12349985B2 (en) Device and method for tracking the position of an endoscope within a patient's body
US11555997B2 (en) Endoscope with integrated measurement of distance to objects of interest
US10706610B2 (en) Method for displaying an object
US7794388B2 (en) Method and apparatus for generating at least one section of a virtual 3D model of a body interior
US7102634B2 (en) Apparatus and method for displaying virtual endoscopy display
JP6242543B2 (en) Image processing apparatus and image processing method
US20020137986A1 (en) Endoscope apparatus
JP2001512241A (en) Scanning apparatus and method
JPH03102202A (en) Testing method of objective part by photographing means
US20120004541A1 (en) Surgery assistance system
JP7125479B2 (en) MEDICAL IMAGE PROCESSING APPARATUS, METHOD OF OPERATION OF MEDICAL IMAGE PROCESSING APPARATUS, AND ENDOSCOPE SYSTEM
JP7385731B2 (en) Endoscope system, image processing device operating method, and endoscope
KR20210150695A (en) Image-based size estimation system and method for calculating lesion size through endoscopic imaging
JPS6273223A (en) Endoscope device
JP2017205343A (en) Endoscope device and method for operating endoscope device
US20220409030A1 (en) Processing device, endoscope system, and method for processing captured image
JPH0349567B2 (en)
JPH02297515A (en) Stereoscopic electronic endoscope
WO2021221017A1 (en) Endoscope system
JP6987243B2 (en) Landmark estimation method, endoscope device, and position estimation program
JPH01209415A (en) Endoscope device with measuring function
Suter et al. Macro-optical color assessment of the pulmonary airways with subsequent three-dimensional multidetector-x-ray-computed-tomography<? xpp qa?> assisted display
KR102516406B1 (en) Method and apparatus for calibrating images obtained by confocal endoscopy
HIURA et al. 3D endoscopic system based on active stereo method for shape measurement of biological tissues and specimen
JP2005111115A (en) Three-dimensional marker, method and apparatus for measuring the orientation of a subject using the same